1
|
Wu Y, Mohd Sani SB, Peng K, Lin T, Tan C, Huang X, Li Z. Research progress of the Otubains subfamily in hepatocellular carcinoma. Biomed Pharmacother 2024; 179:117348. [PMID: 39208669 DOI: 10.1016/j.biopha.2024.117348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
In cancer research, oncogenesis can be affected by modulating the deubiquitination pathway. Ubiquitination regulates proteins post-translationally in variety of physiological processes. The Otubain Subfamily includes OTUB1 (ovarian tumor-associated proteinase B1) and OTUB2(ovarian tumor-associated proteinase B2). They are deubiquitinating enzymes, which are research hotspots in tumor immunotherapy, with their implications extending across the spectrum of tumor development. Understanding their important role in tumorigenesis, includ-ing hepatocellular carcinoma (HCC) is crucial. HCC has alarming global incidence rates and mortality statistics, ranking among the top five prevalent cancers in Malaysia1. Numerous studies have consistently indicated significant expression of OTUB1 and OTUB2 in HCC cells. In addition, OTUB1 has important biological functions in cancer, suggesting its important role in tumorigenesis. However, the mechanism underlying the action of OTUB1 and OTUB2 in liver cancer remains inadequately explored. Therefore, Otubain Subfamily, as potential molecular target, holds promise for advancing HCC treatments. However, further clinical studies are required to verify its efficacy and application prospects.
Collapse
Affiliation(s)
- Yanming Wu
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang 13200, Malaysia.
| | - Sa'udah Badriah Mohd Sani
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang 13200, Malaysia.
| | - Ke Peng
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, China.
| | - Tao Lin
- Department of General Surgery, Anyang People's Hospital, Anyang, Henan 450000, China.
| | - Chenghao Tan
- Department of Social Science, Universiti Sain Malaysia, Gelugor, Penang 11700, Malaysia.
| | | | - Zhengrui Li
- Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China.
| |
Collapse
|
2
|
Nakagawa H, Higurashi M, Ishikawa F, Mori K, Shibanuma M. An indispensable role of TAZ in anoikis resistance promoted by OTUB1 deubiquitinating enzyme in basal-like triple-negative breast cancer cells. Biochem Biophys Res Commun 2023; 649:1-9. [PMID: 36738577 DOI: 10.1016/j.bbrc.2023.01.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
Aggressive cancers, such as triple-negative breast cancer (TNBC), are mostly fatal because of their potential to metastasize to distant organs. Cancer cells acquire various abilities to metastasize, including resistance to anoikis, an apoptotic cell death induced by loss of anchorage to the extracellular matrix. Transcriptional coactivator with PDZ binding motif (TAZ) and Yes-associated protein (YAP), the downstream effectors of the Hippo pathway, regulate cell- and tissue-level architectures by responding to mechanical microenvironments of cells, including the cell-extracellular matrix interaction. The Hippo pathway is frequently disrupted in cancer cells, and TAZ and YAP are irrelevantly activated, potentially resulting in anchorage-independent survival/proliferation of cancer cells and metastatic progression. The study aims to investigate the roles of TAZ and YAP in anoikis resistance in basal-like (BL) TNBC cells, which comprise a major subtype (>70%) of TNBC. We found that TAZ and YAP had nonredundant roles in anchorage-independent cancer cell survival or anoikis resistance. Particularly, TAZ was indispensable for anoikis resistance in BL-TNBC cells but not for survival of non-transformed mammary epithelial cells (MECs). In contrast, YAP, a paralog of TAZ, was indispensable for survival of both non-transformed MECs and cancer cells. Therefore, TAZ might be a preferable therapeutic target against dissemination of aggressive cancer cells without killing normal cells. Interestingly, TAZ was abnormally stabilized in BL-TNBC cells under non-adherent conditions, which promoted anoikis resistance. Furthermore, OTUB1, a deubiquitinating enzyme, was responsible for the stabilization of TAZ in detached BL-TNBC cells. Importantly, simultaneous high expression of TAZ and OTUB1 was associated with poor prognosis in BC. Thus, OTUB1 has emerged as a potentially druggable target. Successful inhibition of OTUB1 enzymatic activity is expected to downregulate TAZ and eventually prevents metastasis of aggressive cancers, such as BL-TNBC.
Collapse
Affiliation(s)
- Hidetsugu Nakagawa
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, Japan
| | - Masato Higurashi
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, Japan
| | - Fumihiro Ishikawa
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, Japan
| | - Kazunori Mori
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, Japan.
| | - Motoko Shibanuma
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, Japan
| |
Collapse
|
3
|
Maruyama T, Saito K, Higurashi M, Ishikawa F, Kohno Y, Mori K, Shibanuma M. HMGA2 drives the IGFBP1/AKT pathway to counteract the increase in P27KIP1 protein levels in mtDNA/RNA-less cancer cells. Cancer Sci 2022; 114:152-163. [PMID: 36102493 PMCID: PMC9807519 DOI: 10.1111/cas.15582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/06/2022] [Accepted: 09/02/2022] [Indexed: 01/07/2023] Open
Abstract
Recent comprehensive analyses of mtDNA and orthogonal RNA-sequencing data revealed that in numerous human cancers, mtDNA copy numbers and mtRNA amounts are significantly reduced, followed by low respiratory gene expression. Under such conditions (called mt-Low), cells encounter severe cell proliferation defects; therefore, they must acquire countermeasures against this fatal disadvantage during malignant transformation. This study elucidated a countermeasure against the mt-Low condition-induced antiproliferative effects in hepatocellular carcinoma (HCC) cells. The mechanism relied on the architectural transcriptional regulator HMGA2, which was preferably expressed in HCC cells of the mt-Low type in vitro and in vivo. Detailed in vitro analyses suggest that HMGA2 regulates insulin-like growth factor binding protein 1 (IGFBP1) expression, leading to AKT activation, which then phosphorylates the cyclin-dependent kinase inhibitor (CKI), P27KIP1, and facilitates its ubiquitin-mediated degradation. Accordingly, intervention in the HMGA2 function by RNAi resulted in an increase in P27KIP1 levels and an induction of senescence-like cell proliferation inhibition in mt-Low-type HCC cells. Conclusively, the HMGA2/IGFBP1/AKT axis has emerged as a countermeasure against P27KIP1 CKI upregulation under mt-Low conditions, thereby circumventing cell proliferation inhibition and supporting the tumorigenic state. Notably, similar to in vitro cell lines, HMGA2 was likely to regulate IGFBP1 expression in HCC in vivo, thereby contributing to poor patient prognosis. Considering the significant number of cases under mt-Low or the threat of CKI upregulation cancer-wide, the axis is noteworthy as a vulnerability of cancer cells or target for tumor-agnostic therapy inducing irreversible cell proliferation inhibition via CKI upregulation in a large population with cancer.
Collapse
Affiliation(s)
- Tsuyoshi Maruyama
- Division of Cancer Cell Biology, Department of Pharmaceutical SciencesShowa University School of PharmacyTokyoJapan
| | - Koji Saito
- Department of PathologyShowa University School of MedicineTokyoJapan,Department of PathologyTeikyo University HospitalTokyoJapan
| | - Masato Higurashi
- Division of Cancer Cell Biology, Department of Pharmaceutical SciencesShowa University School of PharmacyTokyoJapan
| | - Fumihiro Ishikawa
- Division of Cancer Cell Biology, Department of Pharmaceutical SciencesShowa University School of PharmacyTokyoJapan
| | - Yohko Kohno
- Showa University Koto Toyosu HospitalTokyoJapan
| | - Kazunori Mori
- Division of Cancer Cell Biology, Department of Pharmaceutical SciencesShowa University School of PharmacyTokyoJapan
| | - Motoko Shibanuma
- Division of Cancer Cell Biology, Department of Pharmaceutical SciencesShowa University School of PharmacyTokyoJapan
| |
Collapse
|
4
|
Liao J, Jiang L, Wang C, Zhao D, He W, Zhou K, Liang Y. FoxM1 Regulates Proliferation and Apoptosis of Human Neuroblastoma Cell through PI3K/AKT Pathway. Fetal Pediatr Pathol 2022; 41:355-370. [PMID: 32901528 DOI: 10.1080/15513815.2020.1814915] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Aim: This study investigated the effect of FoxM1 on the biological behavior of neuroblastoma (NB) cells in vitro and the association between FoxM1 and PI3K/AKT pathways in NB cell lines. Materials and methods: Recombinant plasmid pcDNA3.1 (+)-FoxM1 and FoxM1-specific small interfering RNA (siRNA) were transfected into IMR-32 cells by liposome transfection. The expression of FoxM1, AKT and PI3K were determined by qRT-PCR and western blotting. The effect of FoxM1 and PI3K/AKT pathways on the cell cycles and apoptosis were analyzed by flow cytometry. Cell viability and proliferation ability were assessed by CCK8 and colony formation assay. Results: Knockdown of FoxM1 promoted NB cell apoptosis and G1-phase cell cycle arrest significantly, increased the expression of apoptosis-related proteins, and suppressed the phospho-activation of PI3K and AKT. Over-expression of FoxM1 had the opposite effects. Conclusion: FoxM1 knockdown inhibited NB cell proliferation and induced apoptosis through inhibiting activation of PI3K and AKT.
Collapse
Affiliation(s)
- Junzuo Liao
- Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lin Jiang
- The Second Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Cheng Wang
- Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Dan Zhao
- Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Wenfei He
- Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Kejun Zhou
- Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yun Liang
- Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
5
|
Liu M, Du Q, Mao G, Dai N, Zhang F. MYB proto-oncogene like 2 promotes hepatocellular carcinoma growth and glycolysis via binding to the Optic atrophy 3 promoter and activating its expression. Bioengineered 2022; 13:5344-5356. [PMID: 35176941 PMCID: PMC8973866 DOI: 10.1080/21655979.2021.2017630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Optic atrophy 3 (OPA3) is an integral protein of the mitochondrial outer membrane. The current study explored the expression of OPA3 in hepatocellular carcinoma (HCC), its association with the prognosis and its involvement in HCC cell proliferation and aerobic glycolysis. In addition, the transcription factors that activate its expression were screened and validated. Gene expression data in normal liver and liver cancer were acquired from the Genotype-Tissue Expression Project (GTEx) and The Cancer Genome Atlas (TCGA)-Liver Hepatocellular Carcinoma (TCGA-LIHC). Chromatin immunoprecipitation-seq data (GSM1010876) in Cistrome Data Browser was used for searching transcriptional factors binding to the OPA3 promoter. HCC cell lines HLF and JHH2 were used for in-vitro and in-vivo studies. Results showed that OPA3 is significantly upregulated in HCC and associated with unfavorable prognosis. OPA3 knockdown impaired HCC cell growth in vitro and in vivo. Besides, it decreased glucose uptake, lactate production, intracellular ATP levels, and extracellular acidification rate (ECAR) of HLF and JHH2 cells. MYB Proto-Oncogene Like 2 (MYBL2) can bind to the promoter of OPA3 and enhance its transcription. MYBL2 knockdown decreased aerobic glycolysis in HCC cells. OPA3 overexpression reversed these alterations. In conclusion, this study revealed a novel MYBL2-OPA3 axis that enhances HCC cell proliferation and aerobic glycolysis.
Collapse
Affiliation(s)
- Miao Liu
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Du
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gang Mao
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ning Dai
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fan Zhang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Xie P, Chao Q, Mao J, Liu Y, Fang J, Xie J, Zhen J, Ding Y, Fu B, Ke Y, Huang D. The deubiquitinase OTUB1 fosters papillary thyroid carcinoma growth through EYA1 stabilization. J Cell Mol Med 2021; 25:10980-10989. [PMID: 34773364 PMCID: PMC8642681 DOI: 10.1111/jcmm.17020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/07/2021] [Accepted: 09/19/2021] [Indexed: 11/28/2022] Open
Abstract
Deubiquitinating enzyme OTU domain‐containing ubiquitin aldehyde‐binding proteins 1 (OTUB1) has been shown to have an essential role in multiple carcinomas. However, the function of OTUB1 in papillary thyroid cancer (PTC) and the underlying mechanisms regulating PTC cells proliferation remain poorly understood. In this study, OTUB1 was significantly upregulated in papillary thyroid carcinoma tissues and cells. Through in vitro and in vivo experiments, knockdown of OTUB1 suppressed PTC cells growth whereas OTUB1 overexpression enhanced the proliferation ability of PTC cells. Moreover, the eyes absent homologue 1 (EYA1) was recognized as a potential target of OTUB1 through mass spectrometry analysis, and we further verified that EYA1 protein level was positively correlated with OTUB1 expression in PTC cells and clinical samples. Mechanistically, OTUB1 could interact with EYA1 directly and deubiquitinate EYA1 to stabilize it. At last, EYA1 was found to play an essential role in OTUB1‐derived PTC cells growth. Overall, our investigation reveals that OTUB1 is a previously unrecognized oncogenic factor in PTC cells proliferation and suggests that OTUB1 might be a novel therapeutic target in PTC.
Collapse
Affiliation(s)
- Peiyi Xie
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing Chao
- Second College of Clinical Medicine, Zunyi Medical University, Zhuhai, China
| | - Jiuang Mao
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yue Liu
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Jiayu Fang
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Jing Xie
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Jing Zhen
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yongqi Ding
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Bidong Fu
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yun Ke
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Da Huang
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Liu JW, Yang YG, Wang K, Wang G, Shen CC, Chen YH, Liu YF, James TD, Jiang K, Zhang H. Activation and Monitoring of mtDNA Damage in Cancer Cells via the "Proton-Triggered" Decomposition of an Ultrathin Nanosheet. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3669-3678. [PMID: 33435678 DOI: 10.1021/acsami.0c20060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mitochondrial DNA (mtDNA) damage is a very important molecular event, which has significant effects on living organisms. Therefore, a particularly important challenge for biomaterials research is to develop functionalized nanoparticles that can activate and monitor mtDNA damage and instigate cancer cell apoptosis, and as such eliminate the negative effects on living organisms. Toward that goal, with this research, we have developed a hydroxyapatite ultrathin nanosheet (HAP-PDCns)-a high Ca2+ content biomaterial. HAP-PDCns undergoes proton-triggered decomposition after entering cancer cells via clathrin-mediated endocytosis, and then, it selectively concentrates in the charged mitochondrial membrane. This kind of proton-triggered decomposition phenomenon facilitates mtDNA damage by causing instantaneous local calcium overload in the mitochondria of cancer cells, and inhibits tumor growth. Importantly, at the same time, a real-time green-red-green fluorescence change occurs that correlates with the degree of mtDNA deterioration because of the changes in the highest occupied molecular orbital-lowest unoccupied molecular orbital energy gaps during this process. Significantly, the decomposition and the fluorescence changes cannot be triggered in normal cells. Thus, HAP-PDCns can selectively induce apoptosis and the death of a cancer cell by facilitating mtDNA damage, but does not affect normal cells. In addition, HAP-PDCns can simultaneously monitor the degree of mtDNA damage. We anticipate that this design strategy can be generalized to develop other functionalized biomaterials that can be used to instigate the positive effects of mtDNA damage on living organisms while eliminating any negative effects.
Collapse
Affiliation(s)
- Jun W Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yong G Yang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Kui Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ge Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Cong C Shen
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yue H Chen
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yu F Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Kai Jiang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hua Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|