1
|
Wang Z, Jia X, Sun W, Wang M, Yuan Q, Xu T, Liu Y, Chen Z, Huang M, Ji N, Zhang M. A micropeptide TREMP encoded by lincR-PPP2R5C promotes Th2 cell differentiation by interacting with PYCR1 in allergic airway inflammation. Allergol Int 2024; 73:587-602. [PMID: 39025723 DOI: 10.1016/j.alit.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Allergic asthma is largely dominated by Th2 lymphocytes. Micropeptides in Th2 cells and asthma remain unmasked. Here, we aimed to demonstrate a micropeptide, T-cell regulatory micropeptide (TREMP), in Th2 cell differentiation in asthma. METHODS TREMP translated from lincR-PPP2R5C was validated using Western blotting and mass spectrometry. TREMP knockout mice were generated using CRISPR/Cas9. Coimmunoprecipitation revealed that TREMP targeted pyrroline-5-carboxylate reductase 1 (PYCR1), which was further explored in vitro and in vivo. The levels of TREMP and PYCR1 in Th2 cells from clinical samples were determined by flow cytometry. RESULTS TREMP, encoded by lincR-PPP2R5C, was in the mitochondrion. The lentivirus encoding TREMP promoted Th2 cell differentiation. In contrast, Th2 differentiation was suppressed in TREMP-/- CD4+ T cells. In the HDM-induced model of allergic airway inflammation, TREMP was increased in pulmonary tissues. Allergic airway inflammation was relieved in TREMP-/- mice treated with HDM. Mechanistically, TREMP interacted with PYCR1, which regulated Th2 differentiation via glycolysis. Glycolysis was decreased in Th2 cells from TREMP-/- mice and PYCR1-/- mice. Similar to TREMP-/- mice, allergic airway inflammation was mitigated in HDM-challenged PYCR1-/- mice. Moreover, we measured TREMP and PYCR1 in asthma patients. And we found that, compared with those in healthy controls, the levels of TREMP and PYCR1 in Th2 cells were significantly increased in asthmatic patients. CONCLUSIONS The micropeptide TREMP encoded by lincR-PPP2R5C promoted Th2 differentiation in allergic airway inflammation by interacting with PYCR1 and enhancing glycolysis. Our findings highlight the importance of neglected micropeptides from noncoding RNAs in allergic diseases.
Collapse
Affiliation(s)
- Zhengxia Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyu Jia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Sun
- Department of Respiratory and Critical Care Medicine, Xishan People's Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Affiliate to Southeast University, Wuxi, China
| | - Min Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Yuan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanan Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhongqi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Ningfei Ji
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Mingshun Zhang
- NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Rajala A, Rajala RVS. Age-Related Changes in the Glycolytic Enzymes of M2-Isoform of Pyruvate Kinase and Fructose-1,6-Bisphosphate Aldolase: Implications to Age-Related Macular Degeneration. Aging Dis 2024; 15:2271-2283. [PMID: 38739943 PMCID: PMC11346409 DOI: 10.14336/ad.2024.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024] Open
Abstract
Prior studies have emphasized a bioenergetic crisis in the retinal pigment epithelium (RPE) as a critical factor in the development of age-related macular degeneration (AMD). The isoforms Fructose-1,6-bisphosphate aldolase C (ALDOC) and pyruvate kinase M2 (PKM2) have been proposed to play a role in AMD pathogenesis. While PKM2 and ALDOC are crucial for aerobic glycolysis in the neural retina, they are not as essential for the RPE. In this study, we examined the expression and activity of PKM2 and ALDOC in both young and aged RPE cells, as well as in the retina and RPE tissue of mice, including an experimentally induced AMD mouse model. Our findings reveal an upregulation in PKM2 and ALDOC expression, accompanied by increased pyruvate kinase activity, in the aged and AMD mouse RPE. Conversely, there is a decrease in ALDOC expression but an increase in PKM2 expression and pyruvate kinase activity in the aged and AMD retina. Overall, our study indicates that aged and AMD RPE cells tend to favor aerobic glycolysis, while this tendency is diminished in the aged and AMD retina. These results underscore the significance of targeting PKM2 and ALDOC in the RPE as a promising therapeutic approach to address the bioenergetic crisis and prevent vision loss in AMD.
Collapse
Affiliation(s)
- Ammaji Rajala
- Department of Ophthalmology
- Dean McGee Eye Institute, Oklahoma, Oklahoma 73104, USA.
| | - Raju V. S. Rajala
- Department of Ophthalmology
- Department of Biochemistry and Physiology, and
- Department of Cell Biology, University of Oklahoma Health Sciences Center
- Dean McGee Eye Institute, Oklahoma, Oklahoma 73104, USA.
| |
Collapse
|
3
|
Liu Y, Zhou H, Yu Q, Wang Q. Hypomethylation-associated ELF3 helps nasopharyngeal carcinoma to escape immune surveillance via MUC16-mediated glycolytic metabolic reprogramming. Am J Physiol Cell Physiol 2024; 327:C1125-C1142. [PMID: 39219440 PMCID: PMC11481993 DOI: 10.1152/ajpcell.00438.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Immune escape and metabolic reprogramming are two essential hallmarks of cancer. Mucin-16 (MUC16) has been linked to glycolysis and immune response in different cancers. However, its involvement in nasopharyngeal carcinoma (NPC) has not been well described. We seek to dissect the functions and detailed mechanisms of MUC16 in NPC. Bioinformatics prediction was performed to identify NPC-related molecules. MUC16 was significantly enhanced in NPC tissues, which was correlated with the advanced tumor stage of patients. Lentiviral plasmids-mediated MUC16 deletion inhibited the malignant behavior of NPC cells, and glycolysis inhibition by MUC16 deletion blocked immune escape in NPC cells. E74-like factor 3 (ELF3) bound to the MUC16 promoter promotes the transcription of MUC16. MUC16 overexpression reversed the repressive effect of ELF3 silencing on glycolysis and immune escape in NPC and accelerated tumor growth in vivo. Overexpression of ELF3 in NPC was associated with reduced DNA methylation in its promoter. Our findings revealed the role of the ELF3/MUC16 axis in the immune escape and metabolic reprogramming of NPC, providing potential therapeutic targets for NPC.NEW & NOTEWORTHY We identified the functions of E74-like factor 3 (ELF3) in glycolysis and immune escape of nasopharyngeal carcinoma cells for the first time. As a transcription factor, ELF3 promoted mucin-16 (MUC16) expression by binding to its promoter, leading to the glycolysis-mediated immune escape of nasopharyngeal carcinoma (NPC) cells. Targeting the ELF3/MUC16 axis generates a superior antitumor immune response, which will help establish a novel approach to restore protective antitumor immunity for NPC immunotherapy.
Collapse
Affiliation(s)
- Yueyang Liu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Otolaryngology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Hong Zhou
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Qi Yu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Otolaryngology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Qiang Wang
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Otolaryngology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, People's Republic of China
| |
Collapse
|
4
|
Wang T, Wang X, Zheng X, Guo Z, Mohsin A, Zhuang Y, Wang G. Overexpression of SLC2A1, ALDOC, and PFKFB4 in the glycolysis pathway drives strong drug resistance in 3D HeLa tumor cell spheroids. Biotechnol J 2024; 19:e2400163. [PMID: 39295558 DOI: 10.1002/biot.202400163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 09/21/2024]
Abstract
The 3D multicellular tumor spheroid (MTS) model exhibits enhanced fidelity in replicating the tumor microenvironment and demonstrates exceptional resistance to clinical drugs compared to the 2D monolayer model. In this study, we used multiomics (transcriptome, proteomics, and metabolomics) tools to explore the molecular mechanisms and metabolic differences of the two culture models. Analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathways revealed that the differentially expressed genes between the two culture models were mainly enriched in cellular components and biological processes associated with extracellular matrix, extracellular structural organization, and mitochondrial function. An integrated analysis of three omics data revealed 11 possible drug resistance targets. Among these targets, seven genes, AKR1B1, ALDOC, GFPT2, GYS1, LAMB2, PFKFB4, and SLC2A1, exhibited significant upregulation. Conversely, four genes, COA7, DLD, IFNGR1, and QRSL1, were significantly downregulated. Clinical prognostic analysis using the TCGA survival database indicated that high-expression groups of SLC2A1, ALDOC, and PFKFB4 exhibited a significant negative correlation with patient survival. We further validated their involvement in chemotherapy drug resistance, indicating their potential significance in improving prognosis and chemotherapy outcomes. These results provide valuable insights into potential therapeutic targets that can potentially enhance treatment efficacy and patient outcomes.
Collapse
Affiliation(s)
- Tong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Xueting Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Xuli Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Zhongfang Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
- Qingdao Innovation Institute of East China University of Science and Technology, Shanghai, People's Republic of China
| | - Guan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
- Qingdao Innovation Institute of East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Xu H, Li YF, Yi XYL, Zheng XN, Yang Y, Wang Y, Liao DZ, Zhang JP, Tan P, Xiong XY, Jin X, Gong LN, Qiu S, Cao DH, Li H, Wei Q, Yang L, Ai JZ. ADP-dependent glucokinase controls metabolic fitness in prostate cancer progression. Mil Med Res 2023; 10:64. [PMID: 38082365 PMCID: PMC10714548 DOI: 10.1186/s40779-023-00500-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Cell metabolism plays a pivotal role in tumor progression, and targeting cancer metabolism might effectively kill cancer cells. We aimed to investigate the role of hexokinases in prostate cancer (PCa) and identify a crucial target for PCa treatment. METHODS The Cancer Genome Atlas (TCGA) database, online tools and clinical samples were used to assess the expression and prognostic role of ADP-dependent glucokinase (ADPGK) in PCa. The effect of ADPGK expression on PCa cell malignant phenotypes was validated in vitro and in vivo. Quantitative proteomics, metabolomics, and extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) tests were performed to evaluate the impact of ADPGK on PCa metabolism. The underlying mechanisms were explored through ADPGK overexpression and knockdown, co-immunoprecipitation (Co-IP), ECAR analysis and cell counting kit-8 (CCK-8) assays. RESULTS ADPGK was the only glucokinase that was both upregulated and predicted worse overall survival (OS) in prostate adenocarcinoma (PRAD). Clinical sample analysis demonstrated that ADPGK was markedly upregulated in PCa tissues vs. non-PCa tissues. High ADPGK expression indicates worse survival outcomes, and ADPGK serves as an independent factor of biochemical recurrence. In vitro and in vivo experiments showed that ADPGK overexpression promoted PCa cell proliferation and migration, and ADPGK inhibition suppressed malignant phenotypes. Metabolomics, proteomics, and ECAR and OCR tests revealed that ADPGK significantly accelerated glycolysis in PCa. Mechanistically, ADPGK binds aldolase C (ALDOC) to promote glycolysis via AMP-activated protein kinase (AMPK) phosphorylation. ALDOC was positively correlated with ADPGK, and high ALDOC expression was associated with worse survival outcomes in PCa. CONCLUSIONS In summary, ADPGK is a driving factor in PCa progression, and its high expression contributes to a poor prognosis in PCa patients. ADPGK accelerates PCa glycolysis and progression by activating ALDOC-AMPK signaling, suggesting that ADPGK might be an effective target and marker for PCa treatment and prognosis evaluation.
Collapse
Affiliation(s)
- Hang Xu
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi-Fan Li
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xian-Yan-Ling Yi
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiao-Nan Zheng
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Yang
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Wang
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Da-Zhou Liao
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jia-Peng Zhang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Tan
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xing-Yu Xiong
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xi Jin
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li-Na Gong
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shi Qiu
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - De-Hong Cao
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Li
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Wei
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Lu Yang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jian-Zhong Ai
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Song Y, Yuan M, Wang G. Update value and clinical application of MUC16 (cancer antigen 125). Expert Opin Ther Targets 2023; 27:745-756. [PMID: 37584221 DOI: 10.1080/14728222.2023.2248376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/25/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
INTRODUCTION The largest transmembrane mucin, mucin 16 (MUC16), contains abundant glycosylation sites on the molecular surface, allowing it to participate in various molecular pathways. When cells lose polarity and become cancerous, MUC16 is overexpressed, and more of the extracellular region (cancer antigen [CA]125) is released into serum and possibly, promote the development of diseases. Thus, MUC16 plays an indispensable role in clinical research and application. AREAS COVERED This review summarizes the update proposed role of MUC16 in carcinogenesis and metastasis. Most importantly, we prospect its potential value in targeted therapy after screening 1226 articles published within the last 10 years from PubMed. Two reviewers screened each record and each report retrieved independently. We have summarized the progress of MUC16/CA125 in basic research and clinical application, and predicted its possible future development directions. EXPERT OPINION As an important noninvasive co-factor in the diagnosis of gynecological diseases, MUC16 has been used for a long time, especially in the diagnosis and treatment of ovarian cancer. The overexpression of MUC16 plays a very obvious role in regulating inflammatory response, supporting immune suppression, and promoting the proliferation, division, and metastasis of cancer cells. In the next 20 years, there will be a luxuriant clinical application of MUC16 as a target for immune monitoring and immunotherapy.
Collapse
Affiliation(s)
- Yaan Song
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Ming Yuan
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Guoyun Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, Shandong, China
| |
Collapse
|
7
|
Chen L, Zeng Y, Ren B, Wang X, Zhao F, Du J, Zhang R, Deng J. ALDOC regulated the biological function and immune infiltration of gastric cancer cells. Int J Biochem Cell Biol 2023; 158:106407. [PMID: 36997056 DOI: 10.1016/j.biocel.2023.106407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/08/2023] [Accepted: 03/24/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND The role of ALDOC which is an important regulator involved in tumor metabolic reprogramming and immune microenvironment in GC remains unclear. Therefore, we investigated the feasibility of ALDOC as a prognostic marker and therapeutic target. METHODS We verified the expression of ALDOC in GC and its effect on the prognosis of GC patients by analyzing clinical data. The regulation of ALDOC on the biological behavior of GC cells was confirmed by experiments. The potential mechanism of miRNA regulating GC immune cell infiltration by inhibiting ALDOC was explored by experiments and bioinformatic analysis. We further analyzed the effect of ALDOC on somatic mutations in gastric cancer, and constructed a prognostic model based on ALDOC and related immune molecules. RESULTS ALDOC is overexpressed in GC cells and tissues, which promotes malignant biological behavior of GC cells and is an independent risk factor for poor prognosis of GC patients. MiR-19a-5p promotes the expression of ALDOC by down-regulating ETS1, leading to poor prognosis in GC patients. ALDOC is significantly associated with immune infiltration in GC, regulates macrophage differentiation and promotes the progression of GC. ALDOC is significantly correlated with TMB and MSI of gastric cancer, and affects somatic mutation of gastric cancer. The prognostic model has good predictive efficiency. CONCLUSIONS ALDOC is a potential prognostic marker and therapeutic target with abnormal immune-mediated effects. The prognostic model based on ALDOC provides a reference for prognosis prediction and individualized treatment of GC patients.
Collapse
Affiliation(s)
- Liqiao Chen
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, P. R. China
| | - Yi Zeng
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, P. R. China
| | - Baoqing Ren
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, P. R. China
| | - Xinyu Wang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, P. R. China
| | - Fucheng Zhao
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, P. R. China
| | - Jitao Du
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, P. R. China
| | - Rupeng Zhang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, P. R. China
| | - Jingyu Deng
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, P. R. China.
| |
Collapse
|
8
|
Song Q, Zhang K, Sun T, Xu C, Zhao W, Zhang Z. Knockout of ENO1 leads to metabolism reprogramming and tumor retardation in pancreatic cancer. Front Oncol 2023; 13:1119886. [PMID: 36845730 PMCID: PMC9950624 DOI: 10.3389/fonc.2023.1119886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/06/2023] [Indexed: 02/12/2023] Open
Abstract
The shift in glucose utilization from oxidative phosphorylation to glycolysis is the hallmark of tumor cells. The overexpression of ENO1, one of the key enzymes in the glycolysis process, has been identified in several cancers, however, its role in pancreatic cancer (PC) is yet unclear. This study identifies ENO1 as an indispensable factor in the progression of PC. Interestingly, ENO1-knockout could inhibit cell invasion and migration and prevent cell proliferation in pancreatic ductal adenocarcinoma (PDAC) cells (PANC-1 and MIA PaCa-2); meanwhile, tumor cell glucose uptake and lactate excretion also decreased significantly. Furthermore, ENO1-knockout reduced colony formation and tumorigenesis in both in vitro and in vivo tests. In total, after ENO1 knockout, 727 differentially expressed genes (DEGs) were identified in PDAC cells by RNA-seq. Gene Ontology enrichment analysis revealed that these DEGs are mainly associated with components such as the 'extracellular matrix' and 'endoplasmic reticulum lumen', and participate in the regulation of signal receptor activity. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the identified DEGs are associated with pathways, such as 'fructose and mannose metabolism', 'pentose phosphate pathway, and 'sugar metabolism for amino and nucleotide. Gene Set Enrichment Analysis showed that ENO1 knockout promoted the upregulation of oxidative phosphorylation and lipid metabolism pathways-related genes. Altogether, these results indicated that ENO1-knockout inhibited tumorigenesis by reducing cell glycolysis and activating other metabolic pathways by altering the expression of G6PD, ALDOC, UAP1, as well as other related metabolic genes. Concisely, ENO1, which plays a vital role in the abnormal glucose metabolism in PC, can be exploited as a target to control carcinogenesis by reducing aerobic glycolysis.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhiqian Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell Biology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
9
|
Fan K, Zhang S, Ni X, Shen S, Wang J, Sun W, Suo T, Liu H, Ni X, Liu H. KRAS G12D mutation eliminates reactive oxygen species through the Nrf2/CSE/H 2S axis and contributes to pancreatic cancer growth. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1731-1739. [PMID: 36514219 PMCID: PMC9828102 DOI: 10.3724/abbs.2022173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 02/09/2022] [Indexed: 11/11/2022] Open
Abstract
In pancreatic cancer, KRAS G12D can trigger pancreatic cancer initiation and development. Rapid tumor growth is often accompanied by excess intracellular reactive oxygen species (ROS) production, which is unfavorable to tumor. However, the regulation of intracellular ROS levels in KRAS mutant pancreatic cancer remains unclear. In this study, we establish BxPC3 stable cell strains expressing KRAS wild type (WT) and G12D mutation and find unchanged ROS levels despite higher glycolysis and proliferation viability in KRAS mutant cells than KRAS WT cells. The key hydrogen sulfide (H 2S)-generating enzyme cystathionine-γ-lyase (CSE) is upregulated in KRAS mutant BxPC3 cells, and its knockdown significantly increases intracellular ROS levels and decreases cell glycolysis and proliferation. Nuclear factor erythroid 2-related factor 2 (Nrf2) is activated by KRAS mutation to promote CSE transcription. An Nrf2 binding site (‒47/‒39 bp) in the CSE promoter is verified. CSE overexpression and the addition of NaHS after Nrf2 knockdown or inhibition by brusatol decreases ROS levels and rescues cell proliferation. Our study reveals the regulatory mechanism of intracellular ROS levels in KRAS mutant pancreatic cancer cells, which provides a potential target for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Kun Fan
- Department of General SurgeryCentral Hospital of Xuhui DistrictShanghai200032China
- Department of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
- Biliary Tract Disease Center of Zhongshan HospitalFudan UniversityShanghai200032China
- Biliary Tract Disease InstituteFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
| | - Shulong Zhang
- Department of General SurgeryCentral Hospital of Xuhui DistrictShanghai200032China
| | - Xiaojian Ni
- Department of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
- Biliary Tract Disease Center of Zhongshan HospitalFudan UniversityShanghai200032China
- Biliary Tract Disease InstituteFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
| | - Sheng Shen
- Department of General SurgeryCentral Hospital of Xuhui DistrictShanghai200032China
- Department of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
- Biliary Tract Disease Center of Zhongshan HospitalFudan UniversityShanghai200032China
- Biliary Tract Disease InstituteFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
| | - Jiwen Wang
- Department of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
- Biliary Tract Disease Center of Zhongshan HospitalFudan UniversityShanghai200032China
- Biliary Tract Disease InstituteFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
| | - Wentao Sun
- Department of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
- Biliary Tract Disease Center of Zhongshan HospitalFudan UniversityShanghai200032China
- Biliary Tract Disease InstituteFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
| | - Tao Suo
- Department of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
- Biliary Tract Disease Center of Zhongshan HospitalFudan UniversityShanghai200032China
- Biliary Tract Disease InstituteFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
| | - Han Liu
- Department of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
- Biliary Tract Disease Center of Zhongshan HospitalFudan UniversityShanghai200032China
- Biliary Tract Disease InstituteFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
| | - Xiaoling Ni
- Department of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
- Biliary Tract Disease Center of Zhongshan HospitalFudan UniversityShanghai200032China
- Biliary Tract Disease InstituteFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
| | - Houbao Liu
- Department of General SurgeryCentral Hospital of Xuhui DistrictShanghai200032China
- Department of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
- Biliary Tract Disease Center of Zhongshan HospitalFudan UniversityShanghai200032China
- Biliary Tract Disease InstituteFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
| |
Collapse
|
10
|
Identification of the Differentially Expressed Genes in the leg muscles of Zhedong White Geese (Anser cygnoides) reared under different photoperiods. Poult Sci 2022; 101:102193. [PMID: 36257072 PMCID: PMC9579406 DOI: 10.1016/j.psj.2022.102193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Light is a factor affecting muscle development and meat quality in poultry production. However, few studies have reported on the role of light in muscle development and meat quality in geese. In this experiment, 10 healthy 220-day-old Zhedong white geese were reared for 60 d under a long photoperiod (15L:9D, LL) and short photoperiod (9L:15D, SL). The gastrocnemius muscles were collected after slaughter to evaluate muscle fiber characteristics and meat color, and RNA-seq analysis. The results showed that compared to the LL group, the SL group had large muscle fiber diameter and cross-sectional area, few muscle fibers per unit area, high meat color a* value, and low L* value at 24 h postmortem. On comparing the 2 groups, 70 differentially expressed genes (DEGs) were identified. Compared to the SL group, the LL group had 25 upregulated and 45 downregulated genes. Gene Ontology (GO) enrichment analysis showed that these DEGs were mainly involved in cell, cell part, binding, cellular processes, and single-organism processes. Several significantly enriched athways were identified in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, such as the calcium and PI3k-Akt signaling pathways. The expression of five randomly selected DEGs was verified using quantitative real-time PCR, and the results were consistent with the RNA-seq data. This study provides a theoretical basis for studying the molecular mechanisms by which light affects muscle development and meat color in geese.
Collapse
|
11
|
[MUC16: The Novel Target for Tumor Therapy]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:452-459. [PMID: 35899441 PMCID: PMC9346149 DOI: 10.3779/j.issn.1009-3419.2022.101.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mucin16 (MUC16), also known as carbohydrate antigen 125 (CA125), is a glycoprotein antigen that can be recognized by the monoclonal antibody OC125 detected from epithelial ovarian carcinoma antigen by Bast et al in 1981. CA125 is not present in normal ovarian tissue but is usually elevated in the serum of epithelial ovarian carcinoma patients. CA125 is the most commonly used serologic biomarker for the diagnosis and recurrence monitoring of epithelial ovarian carcinoma. MUC16 is highly expressed in varieties of tumors. MUC16 can interact with galectin-1/3, mesothelin, sialic acid-binding immunoglobulin-type lectins-9 (Siglec-9), and other ligands. MUC16 plays an important role in tumor genesis, proliferation, migration, invasion, and tumor immunity through various signaling pathways. Besides, therapies targeting MUC16 have some significant achievements. Related preclinical studies and clinical trials are in progress. MUC16 may be a potential novel target for tumor therapy. This article will review the mechanism of MUC16 in tumor genesis and progression, and focus on the research actuality of MUC16 in tumor therapy. This article also provides references for subsequent tumor therapy studies targeting MUC16.
.
Collapse
|
12
|
Aragoneses-Cazorla G, Buendia-Nacarino MP, Mena ML, Luque-Garcia JL. A Multi-Omics Approach to Evaluate the Toxicity Mechanisms Associated with Silver Nanoparticles Exposure. NANOMATERIALS 2022; 12:nano12101762. [PMID: 35630985 PMCID: PMC9146515 DOI: 10.3390/nano12101762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022]
Abstract
Silver nanoparticles (AgNPs) are currently used in many different industrial, commercial and health fields, mainly due to their antibacterial properties. Due to this widespread use, humans and the environment are increasingly exposed to these types of nanoparticles, which is the reason why the evaluation of the potential toxicity associated with AgNPs is of great importance. Although some of the toxic effects induced by AgNPs have already been shown, the elucidation of more complete mechanisms is yet to be achieved. In this sense, and since the integration of metabolomics and transcriptomics approaches constitutes a very useful strategy, in the present study targeted and untargeted metabolomics and DNA microarrays assays have been combined to evaluate the molecular mechanisms involved in the toxicity induced by 10 nm AgNPs. The results have shown that AgNPs induce the synthesis of glutathione as a cellular defense mechanism to face the oxidative environment, while inducing the depletion of relevant molecules implicated in the synthesis of important antioxidants. In addition, it has been observed that AgNPs completely impair the intracellular energetic metabolism, especially affecting the production of adenosine triphosphate (ATP) and disrupting the tricarboxylic acids cycle. It has been demonstrated that AgNPs exposure also affects the glycolysis pathway. The effect on such pathway differs depending on the step of the cycle, which a significant increase in the levels of glucose as way to counterbalance the depleted levels of ATP.
Collapse
|
13
|
Fan C, Liu Y, Wang Y, Zhang A, Xie W, Zhang H, Weng Q, Xu M. Expression of glycogenic genes in the oviduct of Chinese brown frog (Rana dybowskii) during pre-brumation. Theriogenology 2022; 185:78-87. [DOI: 10.1016/j.theriogenology.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
|
14
|
Maruyama R, Nagaoka Y, Ishikawa A, Akabane S, Fujiki Y, Taniyama D, Sentani K, Oue N. Overexpression of aldolase, fructose-bisphosphate C and its association with spheroid formation in colorectal cancer. Pathol Int 2022; 72:176-186. [PMID: 35147255 DOI: 10.1111/pin.13200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related death worldwide. The spheroid colony formation assay is a useful method to identify cancer stem cells (CSCs). Using the DLD-1 and WiDr CRC cell lines, we performed microarray analyses of spheroid body-forming and parental cells and demonstrated that aldolase, fructose-bisphosphate C (ALDOC) was overexpressed in the spheroid body-forming cells of both lines. Cells transfected with small interfering RNA against ALDOC demonstrated lower proliferation, migration, and invasion compared with negative control cells. Both the number and size of spheres produced by the CRC cells were significantly reduced by ALDOC knockdown. Additionally, inhibition of ALDOC reduced lactate production. Immunohistochemistry was used to analyze ALDOC protein expression in tissues from 135 CRC patients and revealed that 66 (49%) cases were positive for ALDOC. The ALDOC-positive cases were associated with higher T and M grades and, as determined by Kaplan-Meier analysis, a poorer prognosis. Univariate and multivariate analyses indicated that ALDOC expression was an independent prognostic factor for CRC patients. Furthermore, ALDOC expression was associated with CD44 expression. These results suggest that ALDOC contributes to CRC progression and plays an important role in CSCs derived from CRC.
Collapse
Affiliation(s)
- Ryota Maruyama
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuma Nagaoka
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akira Ishikawa
- Institute for Clinical Laboratory, National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Shintaro Akabane
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuto Fujiki
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Daiki Taniyama
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naohide Oue
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
15
|
Zhong J, Wu H, Bu X, Li W, Cai S, Du M, Gao Y, Ping B. Establishment of Prognosis Model in Acute Myeloid Leukemia Based on Hypoxia Microenvironment, and Exploration of Hypoxia-Related Mechanisms. Front Genet 2021; 12:727392. [PMID: 34777463 PMCID: PMC8578022 DOI: 10.3389/fgene.2021.727392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/22/2021] [Indexed: 01/21/2023] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous hematologic neoplasm with poor survival outcomes. However, the routine clinical features are not sufficient to accurately predict the prognosis of AML. The expression of hypoxia-related genes was associated with survival outcomes of a variety of hematologic and lymphoid neoplasms. We established an 18-gene signature-based hypoxia-related prognosis model (HPM) and a complex model that consisted of the HPM and clinical risk factors using machine learning methods. Both two models were able to effectively predict the survival of AML patients, which might contribute to improving risk classification. Differentially expressed genes analysis, Gene Ontology (GO) categories, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed to reveal the underlying functions and pathways implicated in AML development. To explore hypoxia-related changes in the bone marrow immune microenvironment, we used CIBERSORT to calculate and compare the proportion of 22 immune cells between the two groups with high and low hypoxia-risk scores. Enrichment analysis and immune cell composition analysis indicated that the biological processes and molecular functions of drug metabolism, angiogenesis, and immune cell infiltration of bone marrow play a role in the occurrence and development of AML, which might help us to evaluate several hypoxia-related metabolic and immune targets for AML therapy.
Collapse
Affiliation(s)
- Jinman Zhong
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hang Wu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyin Bu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiru Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shengchun Cai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meixue Du
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ya Gao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Baohong Ping
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Huiqiao, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Chen Z, Liu X, Liu F, Zhang G, Tu H, Lin W, Lin H. Identification of 4-methylation driven genes based prognostic signature in thyroid cancer: an integrative analysis based on the methylmix algorithm. Aging (Albany NY) 2021; 13:20164-20178. [PMID: 34456184 PMCID: PMC8436924 DOI: 10.18632/aging.203338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/01/2021] [Indexed: 12/09/2022]
Abstract
Thyroid cancer (TC) is known with a high rate of persistence and recurrence. We aimed to develop a prognostic signature to monitor and assess the survival of TC patients. mRNA expression and methylation data were downloaded from the TCGA database. Then, R package methylmix was applied to construct a mixed model was used to identify methylation-driven genes (MDGs) according to the methylation levels. Furthermore, an MDGs based prognostic signature and predictive nomogram were constructed according to the analysis of univariate and multivariate Cox regression. Totally 62 methylation-driven genes that were mainly enriched in substrate-dependent cell migration, cellular response to mechanical stimulus, et al. were found in TC tissues. aldolase C (AldoC), C14orf62, dishevelled 1 (DVL1), and protein tyrosine phosphatase receptor type C (PTPRC) were identified to be significantly related to patients' survival, and may serve as independent prognostic biomarkers for TC. Additionally, the prognostic methylation signature and a novel prognostic, predictive nomogram was established based on the methylation level of 4 MDGs. In this study, we developed a 4-MDGs based prognostic model, which might be the potential predictors for the survival rate of TC patients, and this findings might provide a novel sight for accurate monitoring and prognosis assessment.
Collapse
Affiliation(s)
- Zhiwei Chen
- Department of Pathology, The Affiliated Hospital of Putian University, Putian 351100, Fujian Province, China
| | - Xiaoli Liu
- Department of Pathology, The Affiliated Hospital of Putian University, Putian 351100, Fujian Province, China
| | - Fangfang Liu
- Department of Pathology, The Affiliated Hospital of Putian University, Putian 351100, Fujian Province, China
| | - Guolie Zhang
- Department of Thyroid Surgery, The Affiliated Hospital of Putian University, Putian 351100, Fujian Province, China
| | - Haijian Tu
- Clinical Laboratory, The Affiliated Hospital of Putian University, Putian 351100, Fujian Province, China
| | - Wei Lin
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Putian University, Putian 351100, Fujian Province, China
| | - Haifeng Lin
- Department of Gastroenterology, The Affiliated Hospital of Putian University, Putian 351100, Fujian Province, China
| |
Collapse
|
17
|
Li H, Zou L, Shi J, Han X. Bioinformatics analysis of differentially expressed genes and identification of an miRNA-mRNA network associated with entorhinal cortex and hippocampus in Alzheimer's disease. Hereditas 2021; 158:25. [PMID: 34243818 PMCID: PMC8272337 DOI: 10.1186/s41065-021-00190-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/28/2021] [Indexed: 01/09/2023] Open
Abstract
Background Alzheimer’s disease (AD) is a fatal neurodegenerative disorder, and the lesions originate in the entorhinal cortex (EC) and hippocampus (HIP) at the early stage of AD progression. Gaining insight into the molecular mechanisms underlying AD is critical for the diagnosis and treatment of this disorder. Recent discoveries have uncovered the essential roles of microRNAs (miRNAs) in aging and have identified the potential of miRNAs serving as biomarkers in AD diagnosis. Methods We sought to apply bioinformatics tools to investigate microarray profiles and characterize differentially expressed genes (DEGs) in both EC and HIP and identify specific candidate genes and pathways that might be implicated in AD for further analysis. Furthermore, we considered that DEGs might be dysregulated by miRNAs. Therefore, we investigated patients with AD and healthy controls by studying the gene profiling of their brain and blood samples to identify AD-related DEGs, differentially expressed miRNAs (DEmiRNAs), along with gene ontology (GO) analysis, KEGG pathway analysis, and construction of an AD-specific miRNA–mRNA interaction network. Results Our analysis identified 10 key hub genes in the EC and HIP of patients with AD, and these hub genes were focused on energy metabolism, suggesting that metabolic dyshomeostasis contributed to the progression of the early AD pathology. Moreover, after the construction of an miRNA–mRNA network, we identified 9 blood-related DEmiRNAs, which regulated 10 target genes in the KEGG pathway. Conclusions Our findings indicated these DEmiRNAs having the potential to act as diagnostic biomarkers at an early stage of AD. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-021-00190-0.
Collapse
Affiliation(s)
- Haoming Li
- Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center, Neuroregeneration of Nantong University, Nantong, 226001, Jiangsu, China
| | - Linqing Zou
- Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Jinhong Shi
- Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| | - Xiao Han
- Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China. .,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center, Neuroregeneration of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
18
|
Izraely S, Ben-Menachem S, Sagi-Assif O, Meshel T, Malka S, Telerman A, Bustos MA, Ramos RI, Pasmanik-Chor M, Hoon DSB, Witz IP. The melanoma brain metastatic microenvironment: aldolase C partakes in shaping the malignant phenotype of melanoma cells - a case of inter-tumor heterogeneity. Mol Oncol 2020; 15:1376-1390. [PMID: 33274599 PMCID: PMC8096793 DOI: 10.1002/1878-0261.12872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
Previous studies indicated that microglia cells upregulate the expression of aldolase C (ALDOC) in melanoma cells. The present study using brain‐metastasizing variants from three human melanomas explores the functional role of ALDOC in the formation and maintenance of melanoma brain metastasis (MBM). ALDOC overexpression impacted differentially the malignant phenotype of these three variants. In the first variant, ALDOC overexpression promoted cell viability, adhesion to and transmigration through a layer of brain endothelial cells, and amplified brain micrometastasis formation. The cross‐talk between this MBM variant and microglia cells promoted the proliferation and migration of the latter cells. In sharp contrast, ALDOC overexpression in the second brain‐metastasizing melanoma variant reduced or did not affect the same malignancy features. In the third melanoma variant, ALDOC overexpression augmented certain characteristics of malignancy and reduced others. The analysis of biological functions and disease pathways in the ALDOC overexpressing variants clearly indicated that ALDOC induced the expression of tumor progression promoting genes in the first variant and antitumor progression properties in the second variant. Overall, these results accentuate the complex microenvironment interactions between microglia cells and MBM, and the functional impact of intertumor heterogeneity. Since intertumor heterogeneity imposes a challenge in the planning of cancer treatment, we propose to employ the functional response of tumors with an identical histology, to a particular drug or the molecular signature of this response, as a predictive indicator of response/nonresponse to this drug.
Collapse
Affiliation(s)
- Sivan Izraely
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Israel
| | - Shlomit Ben-Menachem
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Israel
| | - Orit Sagi-Assif
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Israel
| | - Tsipi Meshel
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Israel
| | - Sapir Malka
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Israel
| | - Alona Telerman
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Israel
| | - Matias A Bustos
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Romela Irene Ramos
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, The George S. Wise Faculty of Life Science, Tel Aviv University, Israel
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Isaac P Witz
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Science, Tel Aviv University, Israel
| |
Collapse
|
19
|
Yuan J, Xing H, Li Y, Song Y, Zhang N, Xie M, Liu J, Xu Y, Shen Y, Wang B, Zhang L, Yang M. EPB41 suppresses the Wnt/β-catenin signaling in non-small cell lung cancer by sponging ALDOC. Cancer Lett 2020; 499:255-264. [PMID: 33242559 DOI: 10.1016/j.canlet.2020.11.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/26/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022]
Abstract
Despite advancements in therapeutic options, the overall prognosis for non-small-cell lung cancer (NSCLC) remains poor. Further exploration of the etiology and targets for novel treatments is crucial for managing NSCLC. In this study, we revealed the significant potential of EPB41 for inhibiting NSCLC proliferation, invasion and metastasis in vitro and in vivo. Consistent with its tumor suppressor role in NSCLC, the expression of EPB41 in NSCLC specimens evidently decreased compared to that in normal tissues, and low EPB41 expression was associated with poor prognoses for NSCLC patients. We further demonstrated the importance of EPB41 protein as a novel inhibitor of the Wnt signaling, which regulates β-Catenin stability, and elucidated the crucial role of the EPB41/ALDOC/GSK3β/β-Catenin axis in NSCLC. Suppression of EPB41 expression in cancer cells elevated the levels of free ALDOC protein released from the EPB41-ALDOC complex, leading to disassembly of the β-catenin destruction complex, reduced proteolytic degradation of β-catenin, elevated cytoplasmic accumulation and nuclear translocation of β-catenin, thereby activating the expression of multiple oncogenes and, thus, NSCLC pathogenesis. Our study highlights the potential of EPB41 as a future therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Jupeng Yuan
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Huaixin Xing
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Yankang Li
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Yemei Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Nasha Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Mengyu Xie
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Jiandong Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Yeyang Xu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Yue Shen
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Bowen Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Li Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
20
|
Carboxyl-terminal polypeptide fragment of MUC16 combing stathmin1 promotes gallbladder cancer cell migration and invasion. Med Oncol 2020; 37:114. [PMID: 33196934 DOI: 10.1007/s12032-020-01438-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/30/2020] [Indexed: 01/21/2023]
Abstract
CA-125, coded by MUC16 gene, is responsible to many kinds of tumor metastasis. However, the related mechanism remains unclear. We have established a novel manner to reveal gallbladder cancer metastasis related to serum CA-125 levels through the C-terminal polypeptide of MUC16 gene production. MUC16 C-terminal polypeptide significantly promoted gallbladder cancer cell migration and invasion in vitro. Mass spectrum indicated that interaction of MUC16 C-terminal fragment with the C-terminal domain of stathmin1 inhibited the phosphorylation of stathmin1 to promote the combination with tubulin. Stathmin1 knockdown inhibited the migration and invasion of gallbladder cancer cells in vitro and lung metastasis in vivo induced by MUC16 C-terminal polypeptide. The high expression level of MUC16c consistent with stathmin1 was also confirmed in gallbladder cancer tissues. Our study revealed the underlying mechanism of gallbladder cancer metastasis related to CA-125 levels, which was beneficial for CA-125 in gallbladder cancer diagnose and therapy.
Collapse
|