1
|
Griffiths K, Grand RJ, Horan I, Certo M, Keeler RC, Mauro C, Tseng CC, Greig I, Morrell NW, Zanda M, Frenneaux MP, Madhani M. Fluorinated perhexiline derivative attenuates vascular proliferation in pulmonary arterial hypertension smooth muscle cells. Vascul Pharmacol 2024; 156:107399. [PMID: 38901807 DOI: 10.1016/j.vph.2024.107399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/30/2024] [Accepted: 05/26/2024] [Indexed: 06/22/2024]
Abstract
Increased proliferation and reduced apoptosis of pulmonary artery smooth muscle cells (PASMCs) is recognised as a universal hallmark of pulmonary arterial hypertension (PAH), in part related to the association with reduced pyruvate dehydrogenase (PDH) activity, resulting in decreased oxidative phosphorylation of glucose and increased aerobic glycolysis (Warburg effect). Perhexiline is a well-recognised carnitine palmitoyltransferase-1 (CPT1) inhibitor used in cardiac diseases, which reciprocally increases PDH activity, but is associated with variable pharmacokinetics related to polymorphic variation of the cytochrome P450-2D6 (CYP2D6) enzyme, resulting in the risk of neuro and hepatotoxicity in 'slow metabolisers' unless blood levels are monitored and dose adjusted. We have previously reported that a novel perhexiline fluorinated derivative (FPER-1) has the same therapeutic profile as perhexiline but is not metabolised by CYP2D6, resulting in more predictable pharmacokinetics than the parent drug. We sought to investigate the effects of perhexiline and FPER-1 on PDH flux in PASMCs from patients with PAH. We first confirmed that PAH PASMCs exhibited increased cell proliferation, enhanced phosphorylation of AKTSer473, ERK 1/2Thr202/Tyr204 and PDH-E1αSer293, indicating a Warburg effect when compared to healthy PASMCs. Pre-treatment with perhexiline or FPER-1 significantly attenuated PAH PASMC proliferation in a concentration-dependent manner and suppressed the activation of the AKTSer473 but had no effect on the ERK pathway. Perhexiline and FPER-1 markedly activated PDH (seen as dephosphorylation of PDH-E1αSer293), reduced glycolysis, and upregulated mitochondrial respiration in these PAH PASMCs as detected by Seahorse analysis. However, both perhexiline and FPER-1 did not induce apoptosis as measured by caspase 3/7 activity. We show for the first time that both perhexiline and FPER-1 may represent therapeutic agents for reducing cell proliferation in human PAH PASMCs, by reversing Warburg physiology.
Collapse
MESH Headings
- Cell Proliferation/drug effects
- Humans
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Perhexiline/pharmacology
- Perhexiline/analogs & derivatives
- Cells, Cultured
- Male
- Phosphorylation
- Female
- Pulmonary Arterial Hypertension/drug therapy
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/physiopathology
- Pulmonary Arterial Hypertension/pathology
- Middle Aged
- Signal Transduction/drug effects
- Antihypertensive Agents/pharmacology
- Adult
- Apoptosis/drug effects
- Case-Control Studies
Collapse
Affiliation(s)
- Kayleigh Griffiths
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Roger J Grand
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Ian Horan
- Department for Medicine, University of Cambridge, Cambridge, UK
| | - Michelangelo Certo
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Ross C Keeler
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Claudio Mauro
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Chih-Chung Tseng
- Kosterlitz Centre for Therapeutics, University of Aberdeen, Aberdeen, UK
| | - Iain Greig
- Kosterlitz Centre for Therapeutics, University of Aberdeen, Aberdeen, UK
| | | | - Matteo Zanda
- The Institute of Chemical Sciences and Technologies, Milan, Italy
| | | | - Melanie Madhani
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
2
|
Zeng H, Lan B, Li B, Xie H, Zhao E, Liu X, Xue X, Sun J, Su L, Zhang Y. The role and mechanism of thrombospondin-4 in pulmonary arterial hypertension associated with congenital heart disease. Respir Res 2024; 25:313. [PMID: 39154161 PMCID: PMC11330619 DOI: 10.1186/s12931-024-02932-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Due to a special hemodynamic feature, pulmonary vascular disease in pulmonary arterial hypertension associated with congenital heart disease (PAH-CHD) has two stages: reversible and irreversible. So far, the mechanism involved in the transition from reversible to irreversible stage is elusive. Moreover, no recognized and reliable assessments to distinguish these two stages are available. Furthermore, we found that compared with control and reversible PAH, thrombospondin-4 (THBS4) was significantly upregulated in irreversible group by bioinformatic analysis. Hence, we further verify and investigate the expression and role of THBS4 in PAH-CHD. METHODS We established the monocrotaline plus aorto-cava shunt-induced (MCT-AV) rat model. We measured the expression of THBS4 in lung tissues from MCT-AV rats. Double immunofluorescence staining of lung tissue for THBS4 and α-SMA (biomarker of smooth muscle cells) or vWF (biomarker of endothelial cells) to identify the location of THBS4 in the pulmonary artery. Primary pulmonary artery smooth muscle cells (PASMCs) were cultivated, identified, and used in this study. THBS4 was inhibited and overexpressed by siRNA and plasmid, respectively, to explore the effect of THBS4 on phenotype transformation, proliferation, apoptosis, and migration of PASMCs. The effect of THBS4 on pulmonary vascular remodeling was evaluated in vivo by adeno-associated virus which suppressed THBS4 expression. Circulating level of THBS4 in patients with PAH-CHD was measured by ELISA. RESULTS THBS4 was upregulated in the lung tissues of MCT-AV rats, and was further upregulated in severe pulmonary vascular lesions. And THBS4 was expressed mainly in PASMCs. When THBS4 was inhibited, contractile markers α-SMA and MYH11 were upregulated, while the proliferative marker PCNA was decreased, the endothelial-mensenchymal transition marker N-cad was downregulated, proapototic marker BAX was increased. Additionally, proliferation and migration of PASMCs was inhibited and apoptosis was increased. Conversely, THBS4 overexpression resulted in opposite effects. And the impact of THBS4 on PASMCs was probably achieved through the regulation of the PI3K/AKT pathway. THBS4 suppression attenuated pulmonary vascular remodeling. Furthermore, compared with patients with simple congenital heart disease and mild PAH-CHD, the circulating level of THBS4 was higher in patients with severe PAH-CHD. CONCLUSIONS THBS4 is a promising biomarker to distinguish reversible from irreversible PAH-CHD before repairing the shunt. THBS4 is a potential treatment target in PAH-CHD, especially in irreversible stage.
Collapse
Affiliation(s)
- Haowei Zeng
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Beidi Lan
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bingyi Li
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hang Xie
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Enfa Zhao
- Department of Ultrasound, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Xiaoqin Liu
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyi Xue
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingyan Sun
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Linjie Su
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yushun Zhang
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
3
|
Ejikeme C, Safdar Z. Exploring the pathogenesis of pulmonary vascular disease. Front Med (Lausanne) 2024; 11:1402639. [PMID: 39050536 PMCID: PMC11267418 DOI: 10.3389/fmed.2024.1402639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Pulmonary hypertension (PH) is a complex cardiopulmonary disorder impacting the lung vasculature, resulting in increased pulmonary vascular resistance that leads to right ventricular dysfunction. Pulmonary hypertension comprises of 5 groups (PH group 1 to 5) where group 1 pulmonary arterial hypertension (PAH), results from alterations that directly affect the pulmonary arteries. Although PAH has a complex pathophysiology that is not completely understood, it is known to be a multifactorial disease that results from a combination of genetic, epigenetic and environmental factors, leading to a varied range of symptoms in PAH patients. PAH does not have a cure, its incidence and prevalence continue to increase every year, resulting in higher morbidity and mortality rates. In this review, we discuss the different pathologic mechanisms with a focus on epigenetic modifications and their roles in the development and progression of PAH. These modifications include DNA methylation, histone modifications, and microRNA dysregulation. Understanding these epigenetic modifications will improve our understanding of PAH and unveil novel therapeutic targets, thus steering research toward innovative treatment strategies.
Collapse
Affiliation(s)
| | - Zeenat Safdar
- Department of Pulmonary-Critical Care Medicine, Houston Methodist Lung Center, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
4
|
Wu YC, Wang WT, Yang MC, Su YT, Yeh JL, Hsu JH, Wu JR. The novel roles of YULINK in the migration, proliferation and glycolysis of pulmonary arterial smooth muscle cells: implications for pulmonary arterial hypertension. Biol Res 2023; 56:66. [PMID: 38057829 DOI: 10.1186/s40659-023-00480-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Abnormal remodeling of the pulmonary vasculature, characterized by the proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) along with dysregulated glycolysis, is a pathognomonic feature of pulmonary arterial hypertension (PAH). YULINK (MIOS, Entrez Gene: 54468), a newly identified gene, has been recently shown to possess pleiotropic physiologic functions. This study aims to determine novel roles of YULINK in the regulation of PAH-related pathogenesis, including PASMC migration, proliferation and glycolysis. RESULTS Our results utilized two PAH-related cell models: PASMCs treated with platelet-derived growth factor (PDGF) and PASMCs harvested from monocrotaline (MCT)-induced PAH rats (PAH-PASMCs). YULINK modulation, either by knockdown or overexpression, was found to influence PASMC migration and proliferation in both models. Additionally, YULINK was implicated in glycolytic processes, impacting glucose uptake, glucose transporter 1 (GLUT1) expression, hexokinase II (HK-2) expression, and pyruvate production in PASMCs. Notably, YULINK and GLUT1 were observed to colocalize on PASMC membranes under PAH-related pathogenic conditions. Indeed, increased YULINK expression was also detected in the pulmonary artery of human PAH specimen. Furthermore, YULINK inhibition led to the suppression of platelet-derived growth factor receptor (PDGFR) and the phosphorylation of focal adhesion kinase (FAK), phosphoinositide 3-kinase (PI3K), and protein kinase B (AKT) in both cell models. These findings suggest that the effects of YULINK are potentially mediated through the PI3K-AKT signaling pathway. CONCLUSIONS Our findings indicate that YULINK appears to play a crucial role in the migration, proliferation, and glycolysis in PASMCs and therefore positioning it as a novel promising therapeutic target for PAH.
Collapse
Affiliation(s)
- Yi-Chia Wu
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Plastic Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, 80145, Taiwan
- Department of Surgery, School of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Wei-Ting Wang
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Ming-Chun Yang
- Department of Pediatrics, E-Da Hospital/I-Shou University, No. 1, Yi-Da Road, Jiao-Su Village, Yan-Chao District, Kaohsiung, 82445, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Tsun Su
- Department of Pediatrics, E-Da Hospital/I-Shou University, No. 1, Yi-Da Road, Jiao-Su Village, Yan-Chao District, Kaohsiung, 82445, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Jwu-Lai Yeh
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jong-Hau Hsu
- Division of Pediatric Cardio-Pulmonology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jiunn-Ren Wu
- Department of Pediatrics, E-Da Hospital/I-Shou University, No. 1, Yi-Da Road, Jiao-Su Village, Yan-Chao District, Kaohsiung, 82445, Taiwan.
| |
Collapse
|
5
|
Chen CG, Yi CF, Chen CF, Tian LQ, Li LW, Yang L, Li ZM, He LQ. Inhibitory Effect of PPARδ Agonist GW501516 on Proliferation of Hypoxia-induced Pulmonary Arterial Smooth Muscle Cells by Regulating the mTOR Pathway. Curr Med Sci 2023; 43:979-987. [PMID: 37606736 DOI: 10.1007/s11596-023-2757-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/03/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVE This study aimed to investigate the effects of the peroxisome proliferator-activated receptor δ (PPARδ) agonist GW501516 on the proliferation of pulmonary artery smooth muscle cells (PASMCs) induced by hypoxia, in order to search for new drugs for the treatment and prevention of pulmonary vascular remodeling. METHODS PASMCs were incubated with different concentrations of GW501516 (10, 30, 100 nmol/L) under the hypoxic condition. The proliferation was determined by a CCK-8 assay. The cell cycle progression was analyzed by flow cytometry. The expression of PPARδ, S phase kinase-associated protein 2 (Skp2), and cell cycle-dependent kinase inhibitor p27 was detected by Western blotting. Then PASMCs were treated with 100 nmol/ L GW501516, 100 nmol/L mammalian target of rapamycin (mTOR) inhibitor rapamycin and/or 2 µmol/L mTOR activator MHY1485 to explore the molecular mechanisms by which GW501516 reduces the proliferation of PASMCs. RESULTS The presented data demonstrated that hypoxia reduced the expression of PPARδ in an oxygen concentration- and time-dependent manner, and GW501516 decreased the proliferation of PASMCs induced by hypoxia by blocking the progression through the G0/G1 to S phase of the cell cycle. In accordance with these findings, GW501516 downregulated Skp2 and upregulated p27 in hypoxia-exposed PASMCs. Further experiments showed that rapamycin had similar effects as GW501516 in inhibiting cell proliferation, arresting the cell cycle, regulating the expression of Skp2 and p27, and inactivating mTOR in hypoxia-exposed PASMCs. Moreover, MHY1485 reversed all the beneficial effects of GW501516 on hypoxia-stimulated PASMCs. CONCLUSION GW501516 inhibited the proliferation of PASMCs induced by hypoxia through blocking the mTOR/Skp2/p27 signaling pathway.
Collapse
Affiliation(s)
- Chang-Gui Chen
- Department of Cardiology, Wuhan No. 1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, 430022, China
| | - Chun-Feng Yi
- Department of Cardiology, Wuhan No. 1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, 430022, China
| | - Chang-Fa Chen
- Shanghai Smartide Biotechnology Co. Ltd., Shanghai, 201203, China
| | - Li-Qun Tian
- Department of Cardiology, Wuhan No. 1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, 430022, China
| | - Li-Wei Li
- Department of Cardiology, Wuhan No. 1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, 430022, China
| | - Li Yang
- Department of Cardiology, Wuhan No. 1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, 430022, China
| | - Zuo-Min Li
- Department of Cardiology, Wuhan No. 1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, 430022, China
| | - Li-Qun He
- Department of Cardiology, Wuhan No. 1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, 430022, China.
| |
Collapse
|
6
|
Developmental toxicity window of fetal testicular injury in offspring mice induced by prenatal amoxicillin exposure at different time, doses and courses. Toxicol Lett 2023; 374:85-95. [PMID: 36529298 DOI: 10.1016/j.toxlet.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022]
Abstract
Amoxicillin is widely used in the clinical treatment of syphilis, gonorrhea and other infectious diseases during pregnancy, but the effects of prenatal amoxicillin exposure (PAmE) on fetal testicular development have not been reported. Based on the characteristics of clinical medication, Kunming mice were orally gavaged with amoxicillin during pregnancy at different time (mid- or late-pregnancy), doses (75, 150 or 300 mg/kg·d) or courses (single- or multi-course). The results showed that compared with the control group, PAmE resulted in fetal testicular abnormal morphological development, cell proliferation inhibition and apoptosis enhancement, Leydig cell steroid synthase system (SF1, StAR, P450scc, CYP17a1) expression inhibition, and fetal blood testosterone levels decreased. Among them, the late-pregnancy and high-dose amoxicillin groups had severe damage, while the damage in different course groups was basically the same. Meanwhile, PAmE could damage the number and function of germ cells at all time, doses and courses, but had no obvious effect on Sertoli cells. It was further found that PAmE inhibited fetal testis AKT and ERK signaling pathways in late pregnancy and high dose, while the damage in different course groups was basically the same. In summary, this study proposed the developmental toxicity window of fetal testicular injury induced by PAmE in late-pregnancy and high-dose and its related mechanism of AKT and ERK signaling pathway, which provided a theoretical and experimental basis for guiding rational drug use during pregnancy and effectively evaluating the risk of fetal testicular developmental toxicity.
Collapse
|
7
|
Zhou J, Li F, Yang Y. Protective effects of calcyclin-binding protein against pulmonary vascular remodeling in flow-associated pulmonary arterial hypertension. Respir Res 2022; 23:223. [PMID: 36042446 PMCID: PMC9429705 DOI: 10.1186/s12931-022-02137-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 08/04/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Pulmonary arterial hypertension associated with congenital heart disease (CHD-PAH) is recognized as a cancer-like disease with a proliferative and pro-migratory phenotype in pulmonary artery smooth muscle cells (PASMCs). Calcyclin-binding protein/Siah-1-interacting protein (CacyBP/SIP) has been implicated in the progression of various cancers; however, it has not been previously studied in the context of CHD-PAH. Here, we aimed to examine the function of CacyBP/SIP in CHD-PAH and explore its potential as a novel regulatory target for the disease. METHODS The expression of CacyBP/SIP in PASMCs was evaluated both in the pulmonary arterioles of patients with CHD-PAH and in high-flow-induced PAH rats. The effects of CacyBP/SIP on pulmonary vascular remodeling and PASMC phenotypic switch, proliferation, and migration were investigated. LY294002 (MedChemExpress, NJ, USA) was used to block the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway to explore changes in PASMC dysfunction induced by low CacyBP/SIP levels. Hemodynamics and pulmonary arterial remodeling were further explored in rats after short-interfering RNA-mediated decrease of CacyBP/SIP expression. RESULTS CacyBP/SIP expression was markedly reduced both in the remodeled pulmonary arterioles of patients with CHD-PAH and in high-flow-induced PAH rats. Low CacyBP/SIP expression promoted hPASMC phenotypic switch, proliferation, and migration via PI3K/AKT pathway activation. Our results indicated that CacyBP/SIP protected against pulmonary vascular remodeling through amelioration of hPASMC dysfunction in CHD-PAH. Moreover, after inhibition of CacyBP/SIP expression in vivo, we observed increased right ventricular hypertrophy index, poor hemodynamics, and severe vascular remodeling. CONCLUSIONS CacyBP/SIP regulates hPASMC dysfunction, and its increased expression may ameliorate progression of CHD-PAH.
Collapse
Affiliation(s)
- Jingjing Zhou
- Echocardiography Medical Center, Maternal-Fetal Medicine Center in Fetal Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - FuRong Li
- Department of Laboratory Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yicheng Yang
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, North Lishi Road, Xicheng, No. 167, Beijing, 100037, China.
| |
Collapse
|
8
|
Zhou J. Synemin promotes pulmonary artery smooth muscle cell phenotypic switch in shunt-induced pulmonary arterial hypertension. ESC Heart Fail 2022; 9:3221-3231. [PMID: 35769011 DOI: 10.1002/ehf2.14048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/11/2022] [Accepted: 06/03/2022] [Indexed: 11/06/2022] Open
Abstract
AIMS Although considerable progress has been made in the diagnosis and treatment of congenital heart disease-associated pulmonary heart hypertension (CHD-PAH), the clinical prognosis and overall survival of patients with CHD-PAH remain poor. Therefore, the molecular pathogenesis of CHD-PAH requires further investigation. The intermediate filament protein synemin (SYN) is reported to modulate phenotypic alterations and varicose vein development, but there is little understanding of its exact functions in CHD-PAH. METHODS AND RESULTS SYN expression in the pulmonary arterioles of CHD-PAH patients and shunt-induced PAH rat models was evaluated using immunohistochemistry and western blot. Cell counts and Transwell migration assays were used to assess the effect of SYN on the proliferation and migration capability of human pulmonary smooth muscle cells (hPASMCs). Adeno-associated viruses (AAVs) have been used to suppress SYN expression in the pulmonary arterioles of rats. Such rats were further used to construct a shunt-induced PAH animal model to investigate the function of SYN in PAH and pulmonary vascular remodelling. Compared with the normal control group, SYN expression was found to be clearly up-regulated in the remodelled pulmonary arterioles of CHD-PAH and shunt-induced PAH rat models. In addition, SYN suppression increased the expression of hPASMC contractile-phenotype markers and decreased the expression of synthetic phenotype markers, in contrast to the control group. SYN suppression also dramatically attenuated the proliferation and migration capability of hPASMCs. Conversely, SYN overexpression promoted phenotypic switch, proliferation, and migration of hPASMCs, whereas these effects were notably alleviated by the protein kinase B (AKT) inhibitor MK-2206. Furthermore, we confirmed that SYN suppression mitigated PAH and pulmonary vascular remodelling induced by high blood flow in vivo. CONCLUSIONS Our findings indicated that SYN may represent a promising therapeutic target in the treatment of CHD-PAH.
Collapse
Affiliation(s)
- Jingjing Zhou
- Beijing Key Laboratory of Maternal-Fetal Medicine and Fetal Heart Disease & Echocardiography Department, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Hsieh MCW, Wang WT, Yeh JL, Lin CY, Kuo YR, Lee SS, Hou MF, Wu YC. The Potential Application and Promising Role of Targeted Therapy in Pulmonary Arterial Hypertension. Biomedicines 2022; 10:biomedicines10061415. [PMID: 35740436 PMCID: PMC9220101 DOI: 10.3390/biomedicines10061415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare yet serious progressive disorder that is currently incurable. This female-predominant disease unfolds as a pan-vasculopathy that affects all layers of the vessel wall. Five classes of pharmacological agents currently exist to target the three major cellular signaling pathways identified in PAH but are incapable of effectively reversing the disease progression. While several targets have been identified for therapy, none of the current PAH specific therapies are curative and cost-effective as they fail to reverse vascular remodeling and do not address the cancer-like features of PAH. Our purpose is to review the current literature on the therapeutic management of PAH, as well as the molecular targets under consideration for therapy so as to shed light on the potential role and future promise of novel strategies in treating this high-mortality disease. This review study summarizes and discusses the potential therapeutic targets to be employed against PAH. In addition to the three major conventional pathways already used in PAH therapy, targeting PDGF/PDGFR signaling, regulators in glycolytic metabolism, PI3K/AKT pathways, mitochondrial heat shock protein 90 (HSP90), high-mobility group box-1 (HMGB1), and bromodomain and extra-terminal (BET) proteins by using their specific inhibitors, or a pharmacological induction of the p53 expression, could be attractive strategies for treating PAH.
Collapse
Affiliation(s)
- Meng-Chien Willie Hsieh
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (M.-C.W.H.); (W.-T.W.); (Y.-R.K.); (S.-S.L.)
- Department of Plastic Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Wei-Ting Wang
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (M.-C.W.H.); (W.-T.W.); (Y.-R.K.); (S.-S.L.)
| | - Jwu-Lai Yeh
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Chuang-Yu Lin
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yur-Ren Kuo
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (M.-C.W.H.); (W.-T.W.); (Y.-R.K.); (S.-S.L.)
- Department of Surgery, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Su-Shin Lee
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (M.-C.W.H.); (W.-T.W.); (Y.-R.K.); (S.-S.L.)
- Department of Surgery, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 81267, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yi-Chia Wu
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (M.-C.W.H.); (W.-T.W.); (Y.-R.K.); (S.-S.L.)
- Department of Plastic Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Department of Surgery, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-7-312-1101 (ext. 7675)
| |
Collapse
|
10
|
Huang Y, Su D, Ye B, Huang Y, Qin S, Chen C, Zhao Y, Pang Y. Expression and clinical significance of circular RNA hsa_circ_0003416 in pediatric pulmonary arterial hypertension associated with congenital heart disease. J Clin Lab Anal 2022; 36:e24273. [PMID: 35165927 PMCID: PMC8993640 DOI: 10.1002/jcla.24273] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 12/27/2022] Open
Abstract
Background Circular RNAs (circRNAs) have been found to be involved in the development of pulmonary arterial hypertension (PAH). However, their diagnostic value in pediatric PAH remains unclear. This study aimed to examine the characteristic expression of the circRNA hsa_circ_0003416 in the plasma of children with PAH caused by congenital heart disease (CHD); the potential of hsa_circ_0003416 as a diagnostic biomarker was also investigated. Methods The plasma expression levels of hsa_circ_0003416 were determined via quantitative reverse transcription–polymerase chain reaction in 50 CHD patients, 50 PAH patients, and 20 healthy subjects; the associations between hsa_circ_0003416 levels and clinical data were analyzed thereafter. Receiver operating characteristic curves were employed to determine the diagnostic capacity of this circRNA. Results Expression levels of hsa_circ_0003416 in plasma were lower in the PAH‐CHD group than in the CHD and healthy control groups (p = 0.009 vs. healthy control group, p = 0.026 vs. CHD group). Moreover, hsa_circ_0003416 was found to be negatively associated with B‐type natriuretic peptide (r = −0.342, p = 0.013). In addition, the area under the curve of hsa_circ_0003416 levels in plasma was 0.721 (95% confidence intervals = 0.585–0.857, p = 0.004), suggesting that it has a promising diagnostic value. Conclusions Overall, hsa_circ_0003416 was found to be significantly downregulated in children with PAH‐CHD and to be potent as a biomarker for PAH‐CHD diagnosis.
Collapse
Affiliation(s)
- Yanyun Huang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Danyan Su
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bingbing Ye
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuqin Huang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Suyuan Qin
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Cheng Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yijue Zhao
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yusheng Pang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
11
|
Ye C, Lian G, Wang T, Chen A, Chen W, Gong J, Luo L, Wang H, Xie L. The zinc transporter ZIP12 regulates monocrotaline-induced proliferation and migration of pulmonary arterial smooth muscle cells via the AKT/ERK signaling pathways. BMC Pulm Med 2022; 22:111. [PMID: 35346134 PMCID: PMC8962172 DOI: 10.1186/s12890-022-01905-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/17/2022] [Indexed: 01/05/2024] Open
Abstract
Background The zinc transporter ZIP12 is a membrane-spanning protein that transports zinc ions into the cytoplasm from the extracellular space. Recent studies demonstrated that upregulation of ZIP12 is involved in elevation of cytosolic free zinc and excessive proliferation of pulmonary arterial smooth muscle cells (PASMCs) induced by hypoxia. However, the expression of ZIP12 and its role in pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT) in rats have not been evaluated previously. The aim of this study was to investigate the effect of ZIP12 on the proliferation and migration of PASMCs and its underlying mechanisms in MCT-induced PAH. Methods A PAH rat model was generated by intraperitoneal injection of 20 mg/kg MCT twice at one-week intervals. PASMCs were isolated from the pulmonary arteries of rats with MCT-induced PAH or control rats. The expression of ZIP12 and related molecules was detected in the lung tissues and cells. A ZIP12 knockdown lentivirus and an overexpressing lentivirus were constructed and transfected into PASMCs derived from PAH and control rats, respectively. EdU assays, wound healing assays and Western blotting were carried out to explore the function of ZIP12 in PASMCs. Results Increased ZIP12 expression was observed in PASMCs derived from MCT-induced PAH rats. The proliferation and migration of PASMCs from PAH rats were significantly increased compared with those from control rats. These results were corroborated by Western blot analysis of PCNA and cyclin D1. All these effects were significantly reversed by silencing ZIP12. Comparatively, ZIP12 overexpression resulted in the opposite effects as shown in PASMCs from control rats. Furthermore, selective inhibition of AKT phosphorylation by LY294002 abolished the effect of ZIP12 overexpression on enhancing cell proliferation and migration and partially suppressed the increase in ERK1/2 phosphorylation induced by ZIP12 overexpression. However, inhibition of ERK activity by U0126 resulted in partial reversal of this effect and did not influence an increase in AKT phosphorylation induced by ZIP12 overexpression. Conclusions ZIP12 is involved in MCT-induced pulmonary vascular remodeling and enhances the proliferation and migration of PASMCs. The mechanism of these effects was partially mediated by enhancing the AKT/ERK signaling pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01905-3.
Collapse
Affiliation(s)
- Chaoyi Ye
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, Fujian, People's Republic of China.,Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Guili Lian
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Tingjun Wang
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, Fujian, People's Republic of China.,Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Ai Chen
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Weixiao Chen
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Jin Gong
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, Fujian, People's Republic of China.,Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Li Luo
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, Fujian, People's Republic of China.,Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Huajun Wang
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Liangdi Xie
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, Fujian, People's Republic of China. .,Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China. .,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.
| |
Collapse
|
12
|
Liu J, Dong Q, Du G, Wang J, An Y, Liu J, Su J, Xie H, Yin J. Identification of metabolites in plasma related to different biological activities of Panax ginseng and American ginseng. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9219. [PMID: 34740284 DOI: 10.1002/rcm.9219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE Panax ginseng (PG) and American ginseng (AMG) are both medicinal plants of the Panax genus in the Acanthopanax family. Although PG and AMG have similar components of ginsenosides, there are many differences of their bioactivities. In this study, the biochemical mechanisms of different bioactivities of PG and AMG were explored by researching the differential metabolites in plasma after administration of each of PG and AMG. METHODS In order to explore the material basis of differential bioactivities, two groups of mice were administrated orally with PG and AMG, and the method of metabolomics was used to identify the differential metabolites in plasma. Then network pharmacology was used based on the differential metabolites. Afterward, the metabolite-target-pathway network of PG and AMG was constructed; thus the pathways related to different bioactivities were analyzed. RESULTS Through principal component analysis and orthogonal projections to latent structures discriminant analysis, there were 10 differential metabolites identified in the PG group and 8 differential metabolites identified in the AMG group. Based on network pharmacology, the differential metabolites were classified and related to differential bioactivities of PG and AMG. In the PG group, there were 6 metabolites related to aphrodisiac effect and exciting the nervous system, and 5 metabolites associated with raised blood pressure. In the AMG group, 5 metabolites were classified as having the effect of inhibiting the nervous system, and 6 metabolites were related to antihypertensive effect. CONCLUSIONS This study explored the material basis of the differential biological activities between PG and AMG, which is significant for the research of PG and AMG use and to promote human health.
Collapse
Affiliation(s)
- Jihua Liu
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Qinghai Dong
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Guangguang Du
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Jia Wang
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Yang An
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Jiayin Liu
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Jun Su
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Hongliu Xie
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| | - Jianyuan Yin
- Department of Natural Product Chemistry, College of Pharmacy, Jilin University, Changchun, China
| |
Collapse
|
13
|
Li ZK, Gao LF, Zhu XA, Xiang DK. LncRNA HOXA-AS3 Promotes the Progression of Pulmonary Arterial Hypertension through Mediation of miR-675-3p/PDE5A Axis. Biochem Genet 2021; 59:1158-1172. [PMID: 33687636 DOI: 10.1007/s10528-021-10053-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/19/2021] [Indexed: 11/25/2022]
Abstract
Pulmonary arterial hypertension (PAH) seriously threatens the elder people. Long non-coding RNAs (lncRNAs) are involved in multiple diseases. However, the study of the lncRNAs in the occurrence of PAH is just beginning. For this, we sought to explore the biological function of lncRNA HOXA cluster antisense RNA 3 (HOXA-AS3) in PAH. Hypoxia (HYP) was used to mimic in vitro model of PAH. Gene and protein expressions in cells were detected by q-PCR and Western blotting, respectively. In addition, cell proliferation and viability were tested by CCK-8 and MTT assay. Cell apoptosis was measured by flow cytometry. Wound healing was used to detect cell migration. Furthermore, the connection of HOXA-AS3, miR-675-3p, and phosphodiesterase 5A (PDE5A) was verified by dual-luciferase report assay. HOXA-AS3 and PDE5A were upregulated in human pulmonary artery smooth muscle cells (HPASMCs) in the presence of HYP, while miR-675-3p was downregulated. Moreover, knockdown of HOXA-AS3 suppressed the growth and migration of HPASMCs, but induced the apoptosis. Overexpression of miR-675-3p achieved the same effect. MiR-675-3p inhibitor or overexpression of PDE5A notably reversed the inhibitory effect of HOXA-AS3 knockdown on PAH. Finally, HOXA-AS3 could sponge miR-675-3p, and PDE5A was directly targeted by miR-675-3p. HOXA-AS3 increased the development of PAH via regulation of miR-675-3p/PDE5 axis, which could be the potential biomarker for treatment of PAH.
Collapse
Affiliation(s)
- Zhong-Kui Li
- Department of Cardiovascular Surgery, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, 550002, Guizhou Province, People's Republic of China
| | - Lu-Fang Gao
- Department of Cardiovascular Surgery, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, 550002, Guizhou Province, People's Republic of China
| | - Xi-An Zhu
- Department of Cardiovascular Surgery, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, 550002, Guizhou Province, People's Republic of China
| | - Dao-Kang Xiang
- Department of Cardiovascular Surgery, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, 550002, Guizhou Province, People's Republic of China.
| |
Collapse
|