1
|
Zhang L, He J, Zhao W, Zhou Y, Li J, Li S, Zhao W, Zhang L, Tang Z, Tan G, Chen S, Zhang B, Zhang YW, Wang Z. CD2AP promotes the progression of glioblastoma multiforme via TRIM5-mediated NF-kB signaling. Cell Death Dis 2024; 15:722. [PMID: 39353894 PMCID: PMC11445578 DOI: 10.1038/s41419-024-07094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024]
Abstract
CD2-associated protein (CD2AP) is a scaffolding/adaptive protein that regulates intercellular adhesion and multiple signaling pathways. Although emerging evidence suggests that CD2AP is associated with several malignant tumors, there is no study investigating the expression and biological significance of CD2AP in glioblastoma multiforme (GBM). Here by studying public datasets, we found that CD2AP expression was significantly elevated in GBM and that glioma patients with increased CD2AP expression had a worse prognosis. We also confirmed the increase of CD2AP expression in clinical GBM samples and GBM cell lines. CD2AP overexpression in GBM cells promoted their proliferation, colony formation, migration, and invasion in vitro and their tumorigenesis in vivo, and reduced cell apoptosis both at basal levels and in response to temozolomide. While CD2AP knockdown had the opposite effects. Mechanistically, we revealed that CD2AP interacted with TRIM5, an NF-κB modulator. CD2AP overexpression and knockdown increased and decreased TRIM5 levels as well as the NF-κB activity, respectively. Moreover, downregulation of TRIM5 reversed elevated NF-κB activity in GBM cells with CD2AP overexpression; and inhibition of the NF-κB activity attenuated malignant features of GBM cells with CD2AP overexpression. Our findings demonstrate that CD2AP promotes GBM progression through activating TRIM5-mediated NF-κB signaling and that downregulation of CD2AP can attenuate GBM malignancy, suggesting that CD2AP may become a biomarker and the CD2AP-TRIM5-NF-κB axis may become a therapeutic target for GBM.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Xiamen Neurosurgical Quality Control Center, Xiamen, China
| | - Jiawei He
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wentao Zhao
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yuhang Zhou
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jin Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Shaobo Li
- Department of Neurosurgery, Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| | - Wenpeng Zhao
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lingliang Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ziqian Tang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Guowei Tan
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Neurosurgical Quality Control Center, Xiamen, China
| | - Sifang Chen
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Neurosurgical Quality Control Center, Xiamen, China
| | - Bingchang Zhang
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yun-Wu Zhang
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Zhanxiang Wang
- Department of Neurosurgery and Department of Neuroscience, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
- Xiamen Neurosurgical Quality Control Center, Xiamen, China.
| |
Collapse
|
2
|
Wang C, Huang W, Zhong Y, Zou X, Liu S, Li J, Sun Y, Zhou K, Chen X, Li Z, Wang S, Huang Y, Bai Y, Yin J, Jin X, Liu S, Yuan Y, Deng Q, Jiang M, Liu C, Liu L, Xu X, Wu L. Single-cell multi-modal chromatin profiles revealing epigenetic regulations of cells in hepatocellular carcinoma. Clin Transl Med 2024; 14:e70000. [PMID: 39210544 PMCID: PMC11362026 DOI: 10.1002/ctm2.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/12/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Various epigenetic regulations systematically govern gene expression in cells involving various biological processes. Dysregulation of the epigenome leads to aberrant transcriptional programs and subsequently results in diseases, such as cancer. Therefore, comprehensive profiling epigenomics is essential for exploring the mechanisms underlying gene expression regulation during development and disease. METHODS In this study, we developed single-cell chromatin proteins and accessibility tagmentation (scCPA-Tag), a multi-modal single-cell epigenetic profile capturing technique based on barcoded Tn5 transposases and a droplet microfluidics platform. scCPA-Tag enables the simultaneous capture of DNA profiles of histone modification and chromatin accessibility in the same cell. RESULTS By applying scCPA-Tag to K562 cells and a hepatocellular carcinoma (HCC) sample, we found that the silence of several chromatin-accessible genes can be attributed to lysine-27-trimethylation of the histone H3 tail (H3K27me3) modification. We characterized the epigenetic features of the tumour cells and different immune cell types in the HCC tumour tissue by scCPA-Tag. Besides, a tumour cell subtype (C2) with more aggressive features was identified and characterized by high chromatin accessibility and a lower abundance of H3K27me3 on tumour-promoting genes. CONCLUSIONS Our multi-modal scCPA-Tag provides a comprehensive approach for exploring the epigenetic landscapes of heterogeneous cell types and revealing the mechanisms of gene expression regulation during developmental and pathological processes at the single-cell level. HIGHLIGHTS scCPA-Tag offers a highly efficient and high throughput technique to simultaneously profile histone modification and chromatin accessibility within a single cell. scCPA-Tag enables to uncover multiple epigenetic modification features of cellular compositions within tumor tissues. scCPA-Tag facilitates the exploration of the epigenetic landscapes of heterogeneous cell types and provides the mechanisms governing gene expression regulation.
Collapse
Affiliation(s)
- Chunqing Wang
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
- BGI ResearchChongqingChina
- BGI ResearchShenzhenChina
| | - Waidong Huang
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
- BGI ResearchChongqingChina
| | | | - Xuanxuan Zou
- BGI ResearchChongqingChina
- BGI ResearchShenzhenChina
- Department of Medical LaboratoryHubei Provincial Clinical Research Center for Parkinson's DiseaseXiangyang No.1 People's Hospital, Hubei University of MedicineXiangyangChina
| | - Shang Liu
- BGI ResearchChongqingChina
- BGI ResearchShenzhenChina
| | - Jie Li
- BGI ResearchShenzhenChina
| | - Yunfan Sun
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiChina
- Zhongshan‐BGI Precision Medical CenterZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Kaiqian Zhou
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiChina
- Zhongshan‐BGI Precision Medical CenterZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Xi Chen
- BGI ResearchChongqingChina
- BGI ResearchShenzhenChina
| | - Zihao Li
- BGI ResearchShenzhenChina
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | | | | | | | | | | | | | - Yue Yuan
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiChina
| | - Qiuting Deng
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiChina
| | | | - Chuanyu Liu
- BGI ResearchShenzhenChina
- Shanxi Medical University‐BGI Collaborative Center for Future MedicineShanxi Medical UniversityTaiyuanChina
| | - Longqi Liu
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiChina
| | - Xun Xu
- BGI ResearchShenzhenChina
| | - Liang Wu
- BGI ResearchChongqingChina
- BGI ResearchShenzhenChina
- Zhongshan‐BGI Precision Medical CenterZhongshan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
3
|
Frosina G. Radiotherapy of high-grade gliomas: dealing with a stalemate. Crit Rev Oncol Hematol 2023; 190:104110. [PMID: 37657520 DOI: 10.1016/j.critrevonc.2023.104110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/14/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
This article discusses the studies on radiotherapy of high-grade gliomas published between January 1, 2022, and June 30, 2022, with special reference to their molecular biology basis. The focus was on advances in radioresistance, radiosensitization and the toxicity of radiotherapy treatments. In the first half of 2022, several important advances have been made in understanding resistance mechanisms in high-grade gliomas. Furthermore, the development of several radiosensitization procedures for these deadly tumors, including studies with small molecule radiosensitizers, new fractionation protocols, and new immunostimulatory agents, has progressed in both the preclinical and clinical settings, reflecting the frantic research effort in the field. However, since 2005 our research efforts fail to produce significant improvements to treatment guidelines for high-grade gliomas. Possible reasons for this stalemate and measures to overcome it are discussed.
Collapse
Affiliation(s)
- Guido Frosina
- Mutagenesis & Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy.
| |
Collapse
|
4
|
Trotier A, Bagnoli E, Walski T, Evers J, Pugliese E, Lowery M, Kilcoyne M, Fitzgerald U, Biggs M. Micromotion Derived Fluid Shear Stress Mediates Peri-Electrode Gliosis through Mechanosensitive Ion Channels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301352. [PMID: 37518828 PMCID: PMC10520674 DOI: 10.1002/advs.202301352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/11/2023] [Indexed: 08/01/2023]
Abstract
The development of bioelectronic neural implant technologies has advanced significantly over the past 5 years, particularly in brain-machine interfaces and electronic medicine. However, neuroelectrode-based therapies require invasive neurosurgery and can subject neural tissues to micromotion-induced mechanical shear, leading to chronic inflammation, the formation of a peri-electrode void and the deposition of reactive glial scar tissue. These structures act as physical barriers, hindering electrical signal propagation and reducing neural implant functionality. Although well documented, the mechanisms behind the initiation and progression of these processes are poorly understood. Herein, in silico analysis of micromotion-induced peri-electrode void progression and gliosis is described. Subsequently, ventral mesencephalic cells exposed to milliscale fluid shear stress in vitro exhibited increased expression of gliosis-associated proteins and overexpression of mechanosensitive ion channels PIEZO1 (piezo-type mechanosensitive ion channel component 1) and TRPA1 (transient receptor potential ankyrin 1), effects further confirmed in vivo in a rat model of peri-electrode gliosis. Furthermore, in vitro analysis indicates that chemical inhibition/activation of PIEZO1 affects fluid shear stress mediated astrocyte reactivity in a mitochondrial-dependent manner. Together, the results suggest that mechanosensitive ion channels play a major role in the development of a peri-electrode void and micromotion-induced glial scarring at the peri-electrode region.
Collapse
Affiliation(s)
- Alexandre Trotier
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
| | - Enrico Bagnoli
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
| | - Tomasz Walski
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Department of Biomedical EngineeringFaculty of Fundamental Problems of TechnologyWrocław University of Science and TechnologyWroclaw50‐370Poland
| | - Judith Evers
- School of Electrical and Electronic EngineeringUniversity College DublinDublin 4Ireland
| | - Eugenia Pugliese
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
| | - Madeleine Lowery
- School of Electrical and Electronic EngineeringUniversity College DublinDublin 4Ireland
| | - Michelle Kilcoyne
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
- Carbohydrate Signalling GroupDiscipline of MicrobiologyUniversity of GalwayGalwayH91 W2TYIreland
| | - Una Fitzgerald
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
| | - Manus Biggs
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
| |
Collapse
|
5
|
Shi P, Xu J, Cui H. The Recent Research Progress of NF-κB Signaling on the Proliferation, Migration, Invasion, Immune Escape and Drug Resistance of Glioblastoma. Int J Mol Sci 2023; 24:10337. [PMID: 37373484 PMCID: PMC10298967 DOI: 10.3390/ijms241210337] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and invasive primary central nervous system tumor in humans, accounting for approximately 45-50% of all primary brain tumors. How to conduct early diagnosis, targeted intervention, and prognostic evaluation of GBM, in order to improve the survival rate of glioblastoma patients, has always been an urgent clinical problem to be solved. Therefore, a deeper understanding of the molecular mechanisms underlying the occurrence and development of GBM is also needed. Like many other cancers, NF-κB signaling plays a crucial role in tumor growth and therapeutic resistance in GBM. However, the molecular mechanism underlying the high activity of NF-κB in GBM remains to be elucidated. This review aims to identify and summarize the NF-κB signaling involved in the recent pathogenesis of GBM, as well as basic therapy for GBM via NF-κB signaling.
Collapse
Affiliation(s)
- Pengfei Shi
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; (P.S.); (J.X.)
- Jinfeng Laboratory, Chongqing 401329, China
| | - Jie Xu
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; (P.S.); (J.X.)
- Jinfeng Laboratory, Chongqing 401329, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; (P.S.); (J.X.)
- Jinfeng Laboratory, Chongqing 401329, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| |
Collapse
|
6
|
Li B, Liu Y, Sun S. Pump proton inhibitors display anti-tumour potential in glioma. Cell Prolif 2022:e13321. [PMID: 35961680 DOI: 10.1111/cpr.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES Glioma is one of the most aggressive brain tumours with poor overall survival despite advanced technology in surgical resection, chemotherapy and radiation. Progression and recurrence are the hinge causes of low survival. Our aim is to explain the concrete mechanism in the proliferation and progression of tumours based on tumour microenvironment (TME). The main purpose is to illustrate the mechanism of proton pump inhibitors (PPIs) in affecting acidity, hypoxia, oxidative stress, inflammatory response and autophagy based on the TME to induce apoptosis and enhance the sensitivity of chemoradiotherapy. FINDINGS TME is the main medium for tumour growth and progression. Acidity, hypoxia, inflammatory response, autophagy, angiogenesis and so on are the main causes of tumour progress. PPIs, as a common clinical drug to inhibit gastric acid secretion, have the advantages of fast onset, long action time and small adverse reactions. Nowadays, several kinds of literature highlight the potential of PPIs in inhibiting tumour progression. However, long-term use of PPIs alone also has obvious side effects. Therefore, till now, how to apply PPIs to promote the effect of radio-chemotherapy and find the concrete dose and concentration of combined use are novel challenges. CONCLUSIONS PPIs display the potential in enhancing the sensitivity of chemoradiotherapy to defend against glioma based on TME. In the clinic, it is also necessary to explore specific concentrations and dosages in synthetic applications.
Collapse
Affiliation(s)
- Bihan Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Ying Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Shilong Sun
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|