1
|
Xiao B, Wu S, Tian Y, Huang W, Chen G, Luo D, Cai Y, Chen M, Zhang Y, Liu C, Zhao J, Li L. Advances of NAT10 in diseases: insights from dual properties as protein and RNA acetyltransferase. Cell Biol Toxicol 2024; 41:17. [PMID: 39725720 DOI: 10.1007/s10565-024-09962-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024]
Abstract
N-acetyltransferase 10 (NAT10) is a member of the Gcn5-related N-acetyltransferase (GNAT) family and it plays a crucial role in various cellular processes, such as regulation of cell mitosis, post-DNA damage response, autophagy and apoptosis regulation, ribosome biogenesis, RNA modification, and other related pathways through its intrinsic protein acetyltransferase and RNA acetyltransferase activities. Moreover, NAT10 is closely associated with the pathogenesis of tumors, Hutchinson-Gilford progeria syndrome (HGPS), systemic lupus erythematosus, pulmonary fibrosis, depression and host-pathogen interactions. In recent years, mRNA acetylation has emerged as a prominent focus of research due to its pivotal role in regulating RNA stability and translation. NAT10 stands out as the sole identified modification enzyme responsible for RNA acetylation. There remains some ambiguity regarding the similarities and differences in NAT10's actions on protein and RNA substrates. While NAT10 involves acetylation modification in both cases, which is a crucial molecular mechanism in epigenetic regulation, there are significant disparities in the catalytic mechanisms, regulatory pathways, and biological processes involved. Therefore, this review aims to offer a comprehensive overview of NAT10 as a protein and RNA acetyltransferase, covering its basic catalytic features, biological functions, and roles in related diseases.
Collapse
Affiliation(s)
- Bin Xiao
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China.
- Department of Laboratory Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510095, Guangdong, China.
| | - Shunhong Wu
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Yan Tian
- Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Weikai Huang
- Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Guangzhan Chen
- Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Dongxin Luo
- Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Yishen Cai
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Ming Chen
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Yuqian Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Chuyan Liu
- Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Junxiu Zhao
- College of Public Health, Dali University, Dali, 671003, Yunnan, China
| | - Linhai Li
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China.
| |
Collapse
|
2
|
Liu J, Gu Z, Zou L, Zhang Z, Shen L, Wang R, Xue S, Geng J, Mao S, Zhang W, Yao X. Acetyltransferase NAT10 promotes an immunosuppressive microenvironment by modulating CD8 + T cell activity in prostate cancer. MOLECULAR BIOMEDICINE 2024; 5:67. [PMID: 39648231 PMCID: PMC11625704 DOI: 10.1186/s43556-024-00228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 12/10/2024] Open
Abstract
N-acetyltransferase 10 (NAT10), an enzyme responsible for ac4C acetylation, is implicated in cancer progression, though its specific biological function in prostate cancer remains insufficiently understood. This study clarifies NAT10's role in prostate cancer and its effects on the tumor immune microenvironment. NAT10 expression and clinical relevance were assessed through bioinformatics, RT-qPCR, and IHC analyses, comparing prostate cancer tissues with normal controls. The impact of NAT10 on tumor cell proliferation, migration, and invasion was investigated via in vitro assays-including CCK-8, EdU, wound healing, and 3D-Transwell-as well as in vivo mouse xenograft models and organoid studies. Further, NAT10's influence on immune cell infiltration was examined using flow cytometry, IHC, cell co-culture assays, and ELISA to elucidate downstream chemokine effects, specifically targeting CD8+ T cells. Findings indicated significant upregulation of NAT10 in prostate cancer cells, enhancing their proliferative and invasive capacities. Notably, NAT10 suppresses CD8+ T cell recruitment and cytotoxicity through the CCL25/CCR9 axis, fostering an immunosuppressive microenvironment that exacerbates tumor progression. An ac4C modification score was also devised based on NAT10's downstream targets, providing a novel predictive tool for evaluating immune infiltration and forecasting immunotherapy responses in patients with prostate cancer. This study underscores NAT10's pivotal role in modulating the prostate cancer immune microenvironment, offering insights into the immune desert phenomenon and identifying NAT10 as a promising therapeutic target for improving immunotherapy efficacy.
Collapse
Affiliation(s)
- Ji Liu
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
- Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zhuoran Gu
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
- Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Libin Zou
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
- Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zhijin Zhang
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
- Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Liliang Shen
- Department of Urology, the Affiliated People's Hospital of Ningbo University, 251 East Baizhang Road, Ningbo City, Zhejiang Province, 315040, China
| | - Ruiliang Wang
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
- Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Shaobo Xue
- Department of Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People's Hospital, Shanghai, 200435, China
| | - Jiang Geng
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
- Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Shiyu Mao
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
- Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Wentao Zhang
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
- Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Xudong Yao
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
- Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
3
|
Gu Z, Zou L, Pan X, Yu Y, Liu Y, Zhang Z, Liu J, Mao S, Zhang J, Guo C, Li W, Geng J, Zhang W, Yao X, Shen B. The role and mechanism of NAT10-mediated ac4C modification in tumor development and progression. MedComm (Beijing) 2024; 5:e70026. [PMID: 39640362 PMCID: PMC11617596 DOI: 10.1002/mco2.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
RNA modification has emerged as a crucial area of research in epigenetics, significantly influencing tumor biology by regulating RNA metabolism. N-acetyltransferase 10 (NAT10)-mediated N4-acetylcytidine (ac4C) modification, the sole known acetylation in eukaryotic RNA, influences cancer pathogenesis and progression. NAT10 is the only writer of ac4C and catalyzes acetyl transfer on targeted RNA, and ac4C helps to improve the stability and translational efficiency of ac4C-modified RNA. NAT10 is highly expressed and associated with poor prognosis in pan-cancers. Based on its molecular mechanism and biological functions, ac4C is a central factor in tumorigenesis, tumor progression, drug resistance, and tumor immune escape. Despite the increasing focus on ac4C, the specific regulatory mechanisms of ac4C in cancer remain elusive. The present review thoroughly analyzes the current knowledge on NAT10-mediated ac4C modification in cancer, highlighting its broad regulatory influence on targeted gene expression and tumor biology. This review also summarizes the limitations and perspectives of current research on NAT10 and ac4C in cancer, to identify new therapeutic targets and advance cancer treatment strategies.
Collapse
Affiliation(s)
- Zhuoran Gu
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Libin Zou
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Xinjian Pan
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Yang Yu
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Yongqiang Liu
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Zhijin Zhang
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Ji Liu
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Shiyu Mao
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Junfeng Zhang
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Changcheng Guo
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Wei Li
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Jiang Geng
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Wentao Zhang
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Xudong Yao
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Bing Shen
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of MedicineTongi UniversityShanahaiChina
| |
Collapse
|
4
|
Wang Z, Wan X, Khan MA, Peng L, Sun X, Yi X, Chen K. NAT10 promotes liver lipogenesis in mouse through N4-acetylcytidine modification of Srebf1 and Scap mRNA. Lipids Health Dis 2024; 23:368. [PMID: 39529018 PMCID: PMC11552140 DOI: 10.1186/s12944-024-02360-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Metabolic dysfunction associated steatotic liver disease (MASLD), closely linked to excessive lipogenesis, induces chronic liver disease. MASLD often cause other metabolic diseases, such as cardiovascular disease, diabetes and obesity. However, the mechanism of N-acetyltransferase 10 (NAT10)-mediated N4-acetylcytidine (ac4C) mRNA modification in lipogenesis of MASLD has not been fully elucidated. This study investigated the role of NAT10 in lipogenesis targeting mRNA ac4C modification. METHODS The expression of NAT10 in mouse liver was assessed after a 12-week high-fat diet. In addition, the expression of NAT10 also was detected after AML12 hepatocytes cells were treated with 150 µmol/L palmitic acid (PA). The ac4C mRNA modification was performed by dot blotting. Oil red O staining and the mRNA expression of Srebf1, Acaca and Fasn were used to assess lipogenesis in AML12 cells with NAT10 overexpression or knockdown. acRIP-PCR and NAT10 RIP-PCR were used to verify the Srebf1 and Scap mRNA ac4C modification by NAT10. Furthermore, the liver lipogenesis was evaluated by AAV-mediated target knockdown of NAT10 in mouse liver and treating a specific inhibitor, Remodelin. RESULTS This study revealed that NAT10 is significantly upregulated in liver lipogenesis after a 12-week high-fat diet. NAT10 and ac4C mRNA modification were also drastically increased in AML12 cells after treated with 150 µmol/L PA. Silencing of NAT10 notably inhibited the lipogenesis in AML12 cells and AAV-mediated target knockdown of NAT10 in mouse liver. The acRIP-PCR and NAT10-RIP-PCR revealed that NAT10 ac4C modified Srebf1 and Scap mRNA, the critical modulator of liver lipogenesis, to regulate liver lipogenesis. Besides, Remodelin strongly inhibited liver lipogenesis, including liver TG, serum ALT, AST, TG and TC level and glucose metabolism. CONCLUSIONS NAT10 mediates ac4C modification of Srebf1 and Scap mRNA, thereby affecting lipogenesis in the liver. This study provided a new target for the treatment of MASLD.
Collapse
Affiliation(s)
- Zhouqi Wang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, People's Republic of China
| | - Xinxing Wan
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, People's Republic of China
| | - Md Asaduzzaman Khan
- Department of Biochemistry and Microbiology, School of Health & Life Sciences, North South University, Plot-15, Block-B, Bashundhara, Dhaka, 1229, Bangladesh
| | - Lin Peng
- Department of Nephrology, The First Hospital of Changsha, No. 311 Yingpan Road, Kaifu District, Changsha, Hunan, 410005, People's Republic of China
| | - Xiaoying Sun
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, People's Republic of China
| | - Xuan Yi
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, People's Republic of China
| | - Ke Chen
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, People's Republic of China.
| |
Collapse
|
5
|
Yuan J, Wang Z, Pan Z, Li A, Zhang Z, Cui F. DPNN-ac4C: a dual-path neural network with self-attention mechanism for identification of N4-acetylcytidine (ac4C) in mRNA. Bioinformatics 2024; 40:btae625. [PMID: 39418179 PMCID: PMC11549016 DOI: 10.1093/bioinformatics/btae625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024] Open
Abstract
MOTIVATION The modification of N4-acetylcytidine (ac4C) in RNA is a conserved epigenetic mark that plays a crucial role in post-transcriptional regulation, mRNA stability, and translation efficiency. Traditional methods for detecting ac4C modifications are laborious and costly, necessitating the development of efficient computational approaches for accurate identification of ac4C sites in mRNA. RESULTS We present DPNN-ac4C, a dual-path neural network with a self-attention mechanism for the identification of ac4C sites in mRNA. Our model integrates embedding modules, bidirectional GRU networks, convolutional neural networks, and self-attention to capture both local and global features of RNA sequences. Extensive evaluations demonstrate that DPNN-ac4C outperforms existing models, achieving an AUROC of 91.03%, accuracy of 82.78%, MCC of 65.78%, and specificity of 84.78% on an independent test set. Moreover, DPNN-ac4C exhibits robustness under the Fast Gradient Method attack, maintaining a high level of accuracy in practical applications. AVAILABILITY AND IMPLEMENTATION The model code and dataset are publicly available on GitHub (https://github.com/shock1ng/DPNN-ac4C).
Collapse
Affiliation(s)
- Jiahao Yuan
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
| | - Ziyi Wang
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
| | - Zhuoyu Pan
- International Business School, Hainan University, Haikou 570228, China
| | - Aohan Li
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Zilong Zhang
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
| | - Feifei Cui
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
6
|
Ouyang W, Huang Z, Wan K, Nie T, Chen H, Yao H. RNA ac 4C modification in cancer: Unraveling multifaceted roles and promising therapeutic horizons. Cancer Lett 2024; 601:217159. [PMID: 39128536 DOI: 10.1016/j.canlet.2024.217159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/18/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
RNA modifications play a crucial role in cancer development, profoundly influencing various stages of the RNA lifecycle. These stages encompass nuclear processing, nuclear export, splicing, and translation in the cytoplasm. Among RNA modifications, RNA ac4C modification, also known as N4-acetylcytidine, stands out for its unique role in acetylation processes. Specific proteins regulate RNA ac4C modification, maintaining the dynamic and reversible nature of these changes. This review explores the molecular mechanisms and biological functions of RNA ac4C modification. It examines the intricate ways in which RNA ac4C modification influences the pathogenesis and progression of cancer. Additionally, the review provides an integrated overview of the current methodologies for detecting RNA ac4C modification. Exploring the potential applications of manipulating this modification suggests avenues for novel therapeutic strategies, potentially leading to more effective cancer treatments in the future.
Collapse
Affiliation(s)
- Wenhao Ouyang
- Department of Oncology, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, 510120, China
| | - Zhenjun Huang
- Department of Oncology, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, 510120, China
| | - Keyu Wan
- The First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Tiantian Nie
- The First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Haizhu Chen
- Department of Oncology, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, 510120, China.
| | - Herui Yao
- Department of Oncology, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, 510120, China.
| |
Collapse
|
7
|
Zou Y, Guo S, Wen L, Lv D, Tu J, Liao Y, Chen W, Chen Z, Li H, Chen J, Shen J, Xie X. Targeting NAT10 inhibits osteosarcoma progression via ATF4/ASNS-mediated asparagine biosynthesis. Cell Rep Med 2024; 5:101728. [PMID: 39293390 PMCID: PMC11525028 DOI: 10.1016/j.xcrm.2024.101728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/17/2024] [Accepted: 08/15/2024] [Indexed: 09/20/2024]
Abstract
Despite advances in treatment, the prognosis of patients with osteosarcoma remains unsatisfactory, and searching for potential targets is imperative. Here, we identify N4-acetylcytidine (ac4C) acetyltransferase 10 (NAT10) as a candidate therapeutic target in osteosarcoma through functional screening. NAT10 overexpression is correlated with a poor prognosis, and NAT10 knockout inhibits osteosarcoma progression. Mechanistically, NAT10 enhances mRNA stability of activating transcription factor 4 (ATF4) through ac4C modification. ATF4 induces the transcription of asparagine synthetase (ASNS), which catalyzes asparagine (Asn) biosynthesis, facilitating osteosarcoma progression. Utilizing virtual screening, we identify paliperidone and AG-401 as potential NAT10 inhibitors, and both inhibitors are found to bind to NAT10 proteins. Inhibiting NAT10 suppresses osteosarcoma progression in vivo. Combined treatment using paliperidone and AG-401 produces synergistic inhibition for osteosarcoma in patient-derived xenograft (PDX) models. Our findings demonstrate that NAT10 facilitates osteosarcoma progression through the ATF4/ASNS/Asn axis, and pharmacological inhibition of NAT10 may be a feasible therapeutic approach for osteosarcoma.
Collapse
Affiliation(s)
- Yutong Zou
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Siyao Guo
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lili Wen
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Dongming Lv
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian Tu
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Yan Liao
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Weidong Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Ziyun Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Hongbo Li
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Junkai Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Jingnan Shen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China.
| | - Xianbiao Xie
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Vázquez-Bellón N, Martínez-Bosch N, García de Frutos P, Navarro P. Hallmarks of pancreatic cancer: spotlight on TAM receptors. EBioMedicine 2024; 107:105278. [PMID: 39137571 PMCID: PMC11367522 DOI: 10.1016/j.ebiom.2024.105278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents the most prevalent type of pancreatic cancer and ranks among the most aggressive tumours, with a 5-year survival rate of less than 11%. Projections indicate that by 2030, it will become the second leading cause of cancer-related deaths. PDAC presents distinctive hallmarks contributing to its dismal prognosis: (i) late diagnosis, (ii) heterogenous and complex mutational landscape, (iii) high metastatic potential, (iv) dense fibrotic stroma, (v) immunosuppressive microenvironment, and (vi) high resistance to therapy. Mounting evidence has shown a role for TAM (Tyro3, AXL, MerTK) family of tyrosine kinase receptors in PDAC initiation and progression. This review aims to describe the impact of TAM receptors on the defining hallmarks of PDAC and discuss potential future directions using these proteins as novel biomarkers for early diagnosis and targets for precision therapy in PDAC, an urgent unmet clinical need.
Collapse
Affiliation(s)
- Núria Vázquez-Bellón
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB)-CSIC and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; PhD Program in Biomedicine, Facultat de Medicina (Campus Clínic), Universitat de Barcelona, Barcelona, Spain
| | - Neus Martínez-Bosch
- Cancer Research Program, Hospital del Mar Research Institute (HMRI), Unidad Asociada IIBB-CSIC, Barcelona, Spain
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, IIBB-CSIC, Unidad Asociada IMIM/IIBB-CSIC, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), and IDIBAPS, Barcelona, Spain.
| | - Pilar Navarro
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB)-CSIC and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Cancer Research Program, Hospital del Mar Research Institute (HMRI), Unidad Asociada IIBB-CSIC, Barcelona, Spain.
| |
Collapse
|
9
|
Dalhat MH, Narayan S, Serio H, Arango D. Dissecting the oncogenic properties of essential RNA-modifying enzymes: a focus on NAT10. Oncogene 2024; 43:1077-1086. [PMID: 38409550 PMCID: PMC11092965 DOI: 10.1038/s41388-024-02975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
Chemical modifications of ribonucleotides significantly alter the physicochemical properties and functions of RNA. Initially perceived as static and essential marks in ribosomal RNA (rRNA) and transfer RNA (tRNA), recent discoveries unveiled a dynamic landscape of RNA modifications in messenger RNA (mRNA) and other regulatory RNAs. These findings spurred extensive efforts to map the distribution and function of RNA modifications, aiming to elucidate their distribution and functional significance in normal cellular homeostasis and pathological states. Significant dysregulation of RNA modifications is extensively documented in cancers, accentuating the potential of RNA-modifying enzymes as therapeutic targets. However, the essential role of several RNA-modifying enzymes in normal physiological functions raises concerns about potential side effects. A notable example is N-acetyltransferase 10 (NAT10), which is responsible for acetylating cytidines in RNA. While emerging evidence positions NAT10 as an oncogenic factor and a potential target in various cancer types, its essential role in normal cellular processes complicates the development of targeted therapies. This review aims to comprehensively analyze the essential and oncogenic properties of NAT10. We discuss its crucial role in normal cell biology and aging alongside its contribution to cancer development and progression. We advocate for agnostic approaches to disentangling the intertwined essential and oncogenic functions of RNA-modifying enzymes. Such approaches are crucial for understanding the full spectrum of RNA-modifying enzymes and imperative for designing effective and safe therapeutic strategies.
Collapse
Affiliation(s)
- Mahmood H Dalhat
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | - Sharath Narayan
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Driskill Graduate Program in Life Sciences, Northwestern University, Chicago, IL, USA
| | - Hannah Serio
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | - Daniel Arango
- Department of Pharmacology, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
10
|
Ge J, Wang Z, Wu J. NAT10-mediated ac 4C modification promotes ectoderm differentiation of human embryonic stem cells via acetylating NR2F1 mRNA. Cell Prolif 2024; 57:e13577. [PMID: 38041497 PMCID: PMC10984107 DOI: 10.1111/cpr.13577] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/11/2023] [Accepted: 11/01/2023] [Indexed: 12/03/2023] Open
Abstract
Cell fate determination in mammalian development is complex and precisely controlled and accumulating evidence indicates that epigenetic mechanisms are crucially involved. N4-acetylcytidine (ac4C) is a recently identified modification of messenger RNA (mRNA); however, its functions are still elusive in mammalian. Here, we show that N-acetyltransferase 10 (NAT10)-mediated ac4C modification promotes ectoderm differentiation of human embryonic stem cells (hESCs) by acetylating nuclear receptor subfamily 2 group F member 1 (NR2F1) mRNA to enhance translation efficiency (TE). Acetylated RNA immunoprecipitation sequencing (acRIP-seq) revealed that levels of ac4C modification were higher in ectodermal neuroepithelial progenitor (NEP) cells than in hESCs or mesoendoderm cells. In addition, integrated analysis of acRIP-seq and ribosome profiling sequencing revealed that NAT10 catalysed ac4C modification to improve TE in NEP cells. RIP-qRT-PCR analysis identified an interaction between NAT10 and NR2F1 mRNA in NEP cells and NR2F1 accelerated the nucleus-to-cytoplasm translocation of yes-associated protein 1, which contributed to ectodermal differentiation of hESCs. Collectively, these findings point out the novel regulatory role of ac4C modification in the early ectodermal differentiation of hESCs and will provide a new strategy for the treatment of neuroectodermal defects diseases.
Collapse
Affiliation(s)
- Junbang Ge
- Bio‐X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina
| | - Zhaoxia Wang
- Laboratory Animal Center of Instrumental Analysis CenterShanghai Jiao Tong UniversityShanghaiChina
| | - Ji Wu
- Bio‐X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- Shanghai Key Laboratory of Reproductive MedicineShanghaiChina
| |
Collapse
|
11
|
Yang HZ, Zhuo D, Huang Z, Luo G, Liang S, Fan Y, Zhao Y, Lv X, Qiu C, Zhang L, Liu Y, Sun T, Chen X, Li SS, Jin X. Deficiency of Acetyltransferase nat10 in Zebrafish Causes Developmental Defects in the Visual Function. Invest Ophthalmol Vis Sci 2024; 65:31. [PMID: 38381411 PMCID: PMC10893899 DOI: 10.1167/iovs.65.2.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/19/2024] [Indexed: 02/22/2024] Open
Abstract
Purpose N4-acetylcytidine (ac4C) is a post-transcriptional RNA modification catalyzed by N-acetyltransferase 10 (NAT10), a critical factor known to influence mRNA stability. However, the role of ac4C in visual development remains unexplored. Methods Analysis of public datasets and immunohistochemical staining were conducted to assess the expression pattern of nat10 in zebrafish. We used CRISPR/Cas9 and RNAi technologies to knockout (KO) and knockdown (KD) nat10, the zebrafish ortholog of human NAT10, and evaluated its effects on early development. To assess the impact of nat10 knockdown on visual function, we performed comprehensive histological evaluations and behavioral analyses. Transcriptome profiling and real-time (RT)-PCR were utilized to detect alterations in gene expression resulting from the nat10 knockdown. Dot-blot and RNA immunoprecipitation (RIP)-PCR analyses were conducted to verify changes in ac4C levels in both total RNA and opsin mRNA specifically. Additionally, we used the actinomycin D assay to examine the stability of opsin mRNA following the nat10 KD. Results Our study found that the zebrafish NAT10 protein shares similar structural properties with its human counterpart. We observed that the nat10 gene was prominently expressed in the visual system during early zebrafish development. A deficiency of nat10 in zebrafish embryos resulted in increased mortality and developmental abnormalities. Behavioral and histological assessments indicated significant vision impairment in nat10 KD zebrafish. Transcriptomic analysis and RT-PCR identified substantial downregulation of retinal transcripts related to phototransduction, light response, photoreceptors, and visual perception in the nat10 KD group. Dot-blot and RIP-PCR analyses confirmed a pronounced reduction in ac4C levels in both total RNA and specifically in opsin messenger RNA (mRNA). Additionally, by evaluating mRNA decay in zebrafish treated with actinomycin D, we observed a significant decrease in the stability of opsin mRNA in the nat10 KD group. Conclusions The ac4C-mediated mRNA modification plays an essential role in maintaining visual development and retinal function. The loss of NAT10-mediated ac4C modification results in significant disruptions to these processes, underlining the importance of this RNA modification in ocular development.
Collapse
Affiliation(s)
| | - Donghai Zhuo
- School of Medicine, Nankai University, Tianjin, China
| | | | - Gan Luo
- Tianjin Medical University, Tianjin, China
- Department of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shuang Liang
- Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin, China
| | - Yonggang Fan
- School of Medicine, Nankai University, Tianjin, China
| | - Ying Zhao
- School of Medicine, Nankai University, Tianjin, China
| | - Xinxin Lv
- School of Medicine, Nankai University, Tianjin, China
| | - Caizhen Qiu
- School of Medicine, Nankai University, Tianjin, China
| | - Lingzhu Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Yang Liu
- Department of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Tianwei Sun
- Tianjin Medical University, Tianjin, China
- Department of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Xu Chen
- Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
| | - Shan-Shan Li
- School of Medicine, Nankai University, Tianjin, China
| | - Xin Jin
- School of Medicine, Nankai University, Tianjin, China
- Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
| |
Collapse
|
12
|
Amin R, Ha NH, Qiu T, Holewinski R, Lam KC, Lopès A, Liu H, Tran AD, Lee MP, Gamage ST, Andresson T, Goldszmid RS, Meier JL, Hunter KW. Loss of NAT10 disrupts enhancer organization via p300 mislocalization and suppresses transcription of genes necessary for metastasis progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577116. [PMID: 38410432 PMCID: PMC10896336 DOI: 10.1101/2024.01.24.577116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Acetylation of protein and RNA represent a critical event for development and cancer progression. NAT10 is the only known RNA acetylase that catalyzes the N4-actylcytidine (ac4C) modification of RNAs. Here, we show that the loss of NAT10 significantly decreases lung metastasis in allograft and genetically engineered mouse models of breast cancer. NAT10 interacts with a mechanosensitive, metastasis susceptibility protein complex at the nuclear pore. In addition to its canonical role in RNA acetylation, we find that NAT10 interacts with p300 at gene enhancers. NAT10 loss is associated with p300 mislocalization into heterochromatin regions. NAT10 depletion disrupts enhancer organization, leading to alteration of gene transcription necessary for metastatic progression, including reduced myeloid cell-recruiting chemokines that results in a less metastasis-prone tumor microenvironment. Our study uncovers a distinct role of NAT10 in enhancer organization of metastatic tumor cells and suggests its involvement in the tumor-immune crosstalk dictating metastatic outcomes.
Collapse
|
13
|
Zhu R, Chen M, Luo Y, Cheng H, Zhao Z, Zhang M. The role of N-acetyltransferases in cancers. Gene 2024; 892:147866. [PMID: 37783298 DOI: 10.1016/j.gene.2023.147866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Cancer is a major global health problem that disrupts the balance of normal cellular growth and behavior. Mounting evidence has shown that epigenetic modification, specifically N-terminal acetylation, play a crucial role in the regulation of cell growth and function. Acetylation is a co- or post-translational modification to regulate important cellular progresses such as cell proliferation, cell cycle progress, and energy metabolism. Recently, N-acetyltransferases (NATs), enzymes responsible for acetylation, regulate signal transduction pathway in various cancers including hepatocellular carcinoma, breast cancer, lung cancer, colorectal cancer and prostate cancer. In this review, we clarify the regulatory role of NATs in cancer progression, such as cell proliferation, metastasis, cell apoptosis, autophagy, cell cycle arrest and energy metabolism. Furthermore, the mechanism of NATs on cancer remains to be further studied, and few drugs have been developed. This provides us with a new idea that targeting acetylation, especially NAT-mediated acetylation, may be an attractive way for inhibiting cancer progression.
Collapse
Affiliation(s)
- Rongrong Zhu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Bioinformatics and Medical Big Data, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Mengjiao Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Bioinformatics and Medical Big Data, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Yongjia Luo
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Bioinformatics and Medical Big Data, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Department of Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Haipeng Cheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zhenwang Zhao
- Department of Pathology and Pathophysiology, School of Basic Medicine, Health Science Center, Hubei University of Arts and Science, Xiangyang, Hubei 441053, PR China.
| | - Min Zhang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Bioinformatics and Medical Big Data, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
14
|
Zhang Y, Lei Y, Dong Y, Chen S, Sun S, Zhou F, Zhao Z, Chen B, Wei L, Chen J, Meng Z. Emerging roles of RNA ac4C modification and NAT10 in mammalian development and human diseases. Pharmacol Ther 2024; 253:108576. [PMID: 38065232 DOI: 10.1016/j.pharmthera.2023.108576] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
RNA ac4C modification is a novel and rare chemical modification observed in mRNA. Traditional biochemical studies had primarily associated ac4C modification with tRNA and rRNA until in 2018, Arango D et al. first reported the presence of ac4C modification on mRNA and demonstrated its critical role in mRNA stability and translation regulation. Furthermore, they established that the ac4C modification on mRNA is mediated by the classical N-acetyltransferase NAT10. Subsequent studies have underscored the essential implications of NAT10 and mRNA ac4C modification across both physiological and pathological regulatory processes. In this review, we aimed to explore the discovery history of RNA ac4C modification, its detection methods, and its regulatory mechanisms in disease and physiological development. We offer a forward-looking examination and discourse concerning the employment of RNA ac4C modification as a prospective therapeutic strategy across diverse diseases. Furthermore, we comprehensively summarize the functions and mechanisms of NAT10 in gene expression regulation and pathogenesis independent of RNA ac4C modification.
Collapse
Affiliation(s)
- Yigan Zhang
- Institute of Biomedical Research, Department of Infectious Diseases, Regulatory Mechanism and Targeted Therapy for Liver Cancer Shiyan Key Laboratory, Hubei rovincial Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Yumei Lei
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yanbin Dong
- Institute of Biophysics, Chinese Academy of Sciences, Key Laboratory of Nucleic Acid Biology, Chinese Academy of Sciences, Beijing, China
| | - Shuwen Chen
- School of Biomedical Engineering, Hubei University of Medicine, Shiyan, China
| | - Siyuan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Fange Zhou
- The First Clinical School of Hubei University of Medicine, Shiyan, China
| | - Zhiwen Zhao
- Department of Emergency Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Lv Wei
- Institute of Biophysics, Chinese Academy of Sciences, Key Laboratory of Nucleic Acid Biology, Chinese Academy of Sciences, Beijing, China.
| | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| | - Zhongji Meng
- Institute of Biomedical Research, Department of Infectious Diseases, Regulatory Mechanism and Targeted Therapy for Liver Cancer Shiyan Key Laboratory, Hubei rovincial Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
| |
Collapse
|
15
|
Wang L, Tao Y, Zhai J, Xue M, Zheng C, Hu H. The emerging roles of ac4C acetylation "writer" NAT10 in tumorigenesis: A comprehensive review. Int J Biol Macromol 2024; 254:127789. [PMID: 37926318 DOI: 10.1016/j.ijbiomac.2023.127789] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
The quick progress of epigenetic study has kindled new hope for treating many cancers. When it comes to RNA epigenetics, the ac4C acetylation modification is showing promise, whereas N-acetyltransferase 10 plays a wide range of biological functions, has a significant impact on cellular life events, and is frequently highly expressed in many malignant tumors. N-acetyltransferase 10 is an acetyltransferase with important biological involvement in cellular processes and lifespan. Because it is highly expressed in many malignant tumors, it is considered a pro-carcinogenic gene. The review aims to introduce NAT10, summarize the effects of ac4C acetylation on tumor growth from multiple angles, and discuss the possible therapeutic targeting of NAT10 and the future directions of ac4C acetylation investigations.
Collapse
Affiliation(s)
- Leisheng Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Wuxi Medical College, Jiangnan University, Wuxi, 214122, China
| | - Yue Tao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Wuxi Medical College, Jiangnan University, Wuxi, 214122, China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, Henan, China, 450001
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Hao Hu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Wuxi Medical College, Jiangnan University, Wuxi, 214122, China; Medical Oncology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China; Hepatobiliary and Pancreatic Surgery, The Third Hospital Affiliated to Nantong University, Wuxi, 214041, China; Medical School, Nantong University, Nantong, 226001, China; Wuxi Institute of Hepatobiliary Surgery, Wuxi, 214122, China
| |
Collapse
|
16
|
Rodrigues P, Bangali H, Ali E, Nauryzbaevish AS, Hjazi A, Fenjan MN, Alawadi A, Alsaalamy A, Alasheqi MQ, Mustafa YF. The mechanistic role of NAT10 in cancer: Unraveling the enigmatic web of oncogenic signaling. Pathol Res Pract 2024; 253:154990. [PMID: 38056132 DOI: 10.1016/j.prp.2023.154990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
N-acetyltransferase 10 (NAT10), a versatile enzyme, has gained considerable attention as a significant player in the complex realm of cancer biology. Its enigmatic role in tumorigenesis extends across a wide array of cellular processes, impacting cell growth, differentiation, survival, and genomic stability. Within the intricate network of oncogenic signaling, NAT10 emerges as a crucial agent in multiple cancer types, such as breast, lung, colorectal, and leukemia. This compelling research addresses the intricate complexity of the mechanistic role of NAT10 in cancer development. By elucidating its active participation in essential physiological processes, we investigate the regulatory role of NAT10 in cell cycle checkpoints, coordination of chromatin remodeling, and detailed modulation of the delicate balance between apoptosis and cell survival. Perturbations in NAT10 expression and function have been linked to oncogenesis, metastasis, and drug resistance in a variety of cancer types. Furthermore, the bewildering interactions between NAT10 and key oncogenic factors, such as p53 and c-Myc, are deciphered, providing profound insights into the molecular underpinnings of cancer pathogenesis. Equally intriguing, the paradoxical role of NAT10 as a potential tumor suppressor or oncogene is influenced by context-dependent factors and the cellular microenvironment. This study explores the fascinating interplay of genetic changes, epigenetic changes, and post-translational modifications that shape the dual character of NAT10, revealing the delicate balance between cancer initiation and suppression. Taken together, this overview delves deeply into the enigmatic role of NAT10 in cancer, elucidating its multifaceted roles and its complex interplay with oncogenic networks.
Collapse
Affiliation(s)
- Paul Rodrigues
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia.
| | - Harun Bangali
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia
| | - Eyhab Ali
- College of Chemistry, Al-Zahraa University for Women, Karbala, Iraq
| | - Abdreshov Serik Nauryzbaevish
- Institute of Genetics and Physiology SC MSHE RK, Laboratory of Physiology Lymphatic System, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
17
|
Yang Z, Wilkinson E, Cui YH, Li H, He YY. NAT10 regulates the repair of UVB-induced DNA damage and tumorigenicity. Toxicol Appl Pharmacol 2023; 477:116688. [PMID: 37716414 PMCID: PMC10591715 DOI: 10.1016/j.taap.2023.116688] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Chemical modifications in messenger RNA (mRNA) regulate gene expression and play critical roles in stress responses and diseases. Recently we have shown that N6-methyladenosine (m6A), the most abundant mRNA modification, promotes the repair of UVB-induced DNA damage by regulating global genome nucleotide excision repair (GG-NER). However, the roles of other mRNA modifications in the UVB-induced damage response remain understudied. N4-acetylcytidine (ac4C) is deposited in mRNA by the RNA-binding acetyltransferase NAT10. This NAT10-mediated ac4C in mRNA has been reported to increase both mRNA stability and translation. However, the role of ac4C and NAT10 in the UVB-induced DNA damage response remains poorly understood. Here we show that NAT10 plays a critical role in the repair of UVB-induced DNA damage lesions through regulating the expression of the key GG-NER gene DDB2. We found that knockdown of NAT10 enhanced the repair of UVB-induced DNA damage lesions by promoting the mRNA stability of DDB2. Our findings are in contrast to the previously reported role of NAT10-mediated ac4C deposition in promoting mRNA stability and may represent a novel mechanism for ac4C in the UVB damage response. Furthermore, NAT10 knockdown in skin cancer cells decreased skin cancer cell proliferation in vitro and tumorigenicity in vivo. Chronic UVB irradiation increases NAT10 protein levels in mouse skin. Taken together, our findings demonstrate a novel role for NAT10 in the repair of UVB-induced DNA damage products by decreasing the mRNA stability of DDB2 and suggest that NAT10 is a potential novel target for preventing and treating skin cancer.
Collapse
Affiliation(s)
- Zizhao Yang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Emma Wilkinson
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA; Committee on Cancer Biology, University of Chicago, Chicago, IL, USA
| | - Yan-Hong Cui
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Haixia Li
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
18
|
Yan S, Lu Z, Yang W, Xu J, Wang Y, Xiong W, Zhu R, Ren L, Chen Z, Wei Q, Liu SM, Feng T, Yuan B, Weng X, Du Y, Zhou X. Antibody-Free Fluorine-Assisted Metabolic Sequencing of RNA N4-Acetylcytidine. J Am Chem Soc 2023; 145:22232-22242. [PMID: 37772932 DOI: 10.1021/jacs.3c08483] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
N4-Acetylcytidine (ac4C) has been found to affect a variety of cellular and biological processes. For a mechanistic understanding of the roles of ac4C in biology and disease, we present an antibody-free, fluorine-assisted metabolic sequencing method to detect RNA ac4C, called "FAM-seq". We successfully applied FAM-seq to profile ac4C landscapes in human 293T, HeLa, and MDA cell lines in parallel with the reported acRIP-seq method. By comparison with the classic ac4C antibody sequencing method, we found that FAM-seq is a convenient and reliable method for transcriptome-wide mapping of ac4C. Because this method holds promise for detecting nascent RNA ac4C modifications, we further investigated the role of ac4C in regulating chemotherapy drug resistance in chronic myeloid leukemia. The results indicated that drug development or combination therapy could be enhanced by appreciating the key role of ac4C modification in cancer therapy.
Collapse
Affiliation(s)
- Shen Yan
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Ziang Lu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Wei Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Jinglei Xu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Yafen Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Wei Xiong
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Rongjie Zhu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Linao Ren
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Zhaoxin Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Qi Wei
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Song-Mei Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China
| | - Tian Feng
- School of Public Health, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Bifeng Yuan
- School of Public Health, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Yuhao Du
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, Hubei, PR China
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan 430072, Hubei, PR China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, PR China
| |
Collapse
|
19
|
Luo J, Cao J, Chen C, Xie H. Emerging role of RNA acetylation modification ac4C in diseases: Current advances and future challenges. Biochem Pharmacol 2023; 213:115628. [PMID: 37247745 DOI: 10.1016/j.bcp.2023.115628] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
The oldest known highly conserved modification of RNA, N4-acetylcytidine, is widely distributed from archaea to eukaryotes and acts as a posttranscriptional chemical modification of RNA, contributing to the correct reading of specific nucleotide sequences during translation, stabilising mRNA and improving transcription efficiency. Yeast Kre33 and human NAT10, the only known authors of ac4C, modify tRNA with the help of the Tan1/THUMPD1 adapter to stabilise its structure. Currently, the mRNA for N4-acetylcytidine (ac4C), catalysed by NAT10 (N-acetyltransferase 10), has been implicated in a variety of human diseases, particularly cancer. This article reviews advances in the study of ac4C modification of RNA and the ac4C-related gene NAT10 in normal physiological cell development, cancer, premature disease and viral infection and discusses its therapeutic promise and future research challenges.
Collapse
Affiliation(s)
- Jie Luo
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jingsong Cao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Institute of Clinical Medicine, University of South China, Hengyang 421001, China
| | - Cong Chen
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Haitao Xie
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|