1
|
Liu J, Wang H, Lu M, Tian Y, Hu T. The toxic effect of 2,6-di-tert-butylphenol on embryonic development in zebrafish (Danio rerio): Decreased survival rate, morphological abnormality, and abnormal vascular development. ENVIRONMENTAL RESEARCH 2024; 262:119881. [PMID: 39214490 DOI: 10.1016/j.envres.2024.119881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
2,6-di-tert-butylphenol (2,6-DTBP) has been used extensively in plastics, rubber and polymer phenolic antioxidants. It is discharged into the aquatic environment through industrial waste. However, the toxicity assessment of 2,6-DTBP is insufficient. Here, zebrafish embryos were used as an animal model to investigate the toxicological effects of 2,6-DTBP. The results showed that 2,6-DTBP induced mitochondrial dysfunction and reactive oxygen species accumulation, which caused apoptosis, and further led to developmental toxicity of zebrafish embryos, such as delayed incubation, reduced survival rate, and increased malformation rate and heart rate. 2,6-DTBP can also cause morphological changes in the zebrafish endothelial cell (zEC) nucleus, inhibit zEC migration, trigger abnormal angiogenesis and zEC sprouting angiogenesis, and ultimately affect vascular development. In addition, 2,6-DTBP interfered with the endogenous antioxidant system, causing changes in activities of superoxide dismutase, catalase, and glutathione S-transferase and contents of malondialdehyde and glutathione. Transcriptome sequencing showed that 2,6-DTBP altered the mRNA levels of genes associated with vascular development, oxidative stress, apoptosis, extracellular matrix components and receptors. Integrative biomarker response assessment found that 12 μM 2,6-DTBP had the highest toxicity. These results indicated that 2,6-DTBP induced apoptosis through oxidative stress, leading to toxicity of zebrafish embryo development. This study contributes to understanding the effects of environmental 2,6-DTBP exposure on early development of aquatic organisms and draws public attention to the health risks posed by chemicals in aquatic organisms.
Collapse
Affiliation(s)
- Juan Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Huiyun Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Mingyang Lu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yuan Tian
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
2
|
Wang J, Zhang Y, Tang Q, Zhang Y, Yin Y, Chen L. Application of Antioxidant Compounds in Bone Defect Repair. Antioxidants (Basel) 2024; 13:789. [PMID: 39061858 PMCID: PMC11273992 DOI: 10.3390/antiox13070789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Bone defects caused by trauma, tumor resection, and infections are significant clinical challenges. Excessive reactive oxygen species (ROS) usually accumulate in the defect area, which may impair the function of cells involved in bone formation, posing a serious challenge for bone repair. Due to the potent ROS scavenging ability, as well as potential anti-inflammatory and immunomodulatory activities, antioxidants play an indispensable role in the maintenance and protection of bone health and have gained increasing attention in recent years. This narrative review aims to give an overview of the main research directions on the application of antioxidant compounds in bone defect repair over the past decade. In addition, the positive effects of various antioxidants and their biomaterial delivery systems in bone repair are summarized to provide new insights for exploring antioxidant-based strategies for bone defect repair.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yubing Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yinan Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Yin
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
3
|
Huang L, Zhang S, Bian M, Xiang X, Xiao L, Wang J, Lu S, Chen W, Zhang C, Mo G, Jiang L, Li Y, Zhang J. Injectable, anti-collapse, adhesive, plastic and bioactive bone graft substitute promotes bone regeneration by moderating oxidative stress in osteoporotic bone defect. Acta Biomater 2024; 180:82-103. [PMID: 38621599 DOI: 10.1016/j.actbio.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/05/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
The treatment of osteoporotic bone defect remains a big clinical challenge because osteoporosis (OP) is associated with oxidative stress and high levels of reactive oxygen species (ROS), a condition detrimental for bone formation. Anti-oxidative nanomaterials such as selenium nanoparticles (SeNPs) have positive effect on osteogenesis owing to their pleiotropic pharmacological activity which can exert anti-oxidative stress functions to prevent bone loss and facilitate bone regeneration in OP. In the current study a strategy of one-pot method by introducing Poly (lactic acid-carbonate) (PDT) and β-Tricalcium Phosphate (β-TCP) with SeNPs, is developed to prepare an injectable, anti-collapse, shape-adaptive and adhesive bone graft substitute material (PDT-TCP-SE). The PDT-TCP-SE bone graft substitute exhibits sufficient adhesion in biological microenvironments and osteoinductive activity, angiogenic effect and anti-inflammatory as well as anti-oxidative effect in vitro and in vivo. Moreover, the PDT-TCP-SE can protect BMSCs from erastin-induced ferroptosis through the Sirt1/Nrf2/GPX4 antioxidant pathway, which, in together, demonstrated the bone graft substitute material as an emerging biomaterial with potential clinical application for the future treatment of osteoporotic bone defect. STATEMENT OF SIGNIFICANCE: Injectable, anti-collapse, adhesive, plastic and bioactive bone graft substitute was successfully synthesized. Incorporation of SeNPs with PDT into β-TCP regenerated new bone in-situ by moderating oxidative stress in osteoporotic bone defects area. The PDT-TCP-SE bone graft substitute reduced high ROS levels in osteoporotic bone defect microenvironment. The bone graft substitute could also moderate oxidative stress and inhibit ferroptosis via Sirt1/Nrf2/GPX4 pathway in vitro. Moreover, the PDT-TCP-SE bone graft substitute could alleviate the inflammatory environment and promote bone regeneration in osteoporotic bone defect in vivo. This biomaterial has the advantages of simple synthesis, biocompatibility, anti-collapse, injectable, and regulation of oxidative stress level, which has potential application value in bone tissue engineering.
Collapse
Affiliation(s)
- Lei Huang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shihao Zhang
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Mengxuan Bian
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xingdong Xiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lan Xiao
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia
| | - Jiayi Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shunyi Lu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Weisin Chen
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Cheng Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guokang Mo
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Libo Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yulin Li
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Jian Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Huang L, Song Z, Wang J, Bian M, Zou J, Zou Y, Ge J, Lu S. Absorbable calcium and phosphorus bioactive membranes promote bone marrow mesenchymal stem cells osteogenic differentiation for bone regeneration. Open Life Sci 2024; 19:20220854. [PMID: 38633414 PMCID: PMC11022123 DOI: 10.1515/biol-2022-0854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/29/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Large segmental bone defects are commonly operated with autologous bone grafting, which has limited bone sources and poses additional surgical risks. In this study, we fabricated poly(lactide-co-glycolic acid) (PLGA)/β-tricalcium phosphate (β-TCP) composite membranes by electrostatic spinning and further promoted osteogenesis by regulating the release of β-TCP in the hope of replacing autologous bone grafts in the clinical practice. The addition of β-TCP improved the mechanical strength of PLGA by 2.55 times. Moreover, β-TCP could accelerate the degradation of PLGA and neutralize the negative effects of acidification of the microenvironment caused by PLGA degradation. In vitro experiments revealed that PLGA/TCP10 membranes are biocompatible and the released β-TCP can modulate the activity of osteoblasts by enhancing the calcium ions concentration in the damaged area and regulating the pH of the local microenvironment. Simultaneously, an increase in β-TCP can moderate the lactate content of the local microenvironment, synergistically enhancing osteogenesis by promoting the tube-forming effect of human umbilical vein endothelial cells. Therefore, it is potential to utilize PLGA/TCP bioactive membranes to modulate the microenvironment at the site of bone defects to promote bone regeneration.
Collapse
Affiliation(s)
- Lei Huang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhuorun Song
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jiayi Wang
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai200233, China
| | - Mengxuan Bian
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiapeng Zou
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yanpei Zou
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jun Ge
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Shunyi Lu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| |
Collapse
|
5
|
Choukroun E, Parnot M, Surmenian J, Gruber R, Cohen N, Davido N, Simonpieri A, Savoldelli C, Afota F, El Mjabber H, Choukroun J. Bone Formation and Maintenance in Oral Surgery: The Decisive Role of the Immune System-A Narrative Review of Mechanisms and Solutions. Bioengineering (Basel) 2024; 11:191. [PMID: 38391677 PMCID: PMC10886049 DOI: 10.3390/bioengineering11020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Based on the evidence of a significant communication and connection pathway between the bone and immune systems, a new science has emerged: osteoimmunology. Indeed, the immune system has a considerable impact on bone health and diseases, as well as on bone formation during grafts and its stability over time. Chronic inflammation induces the excessive production of oxidants. An imbalance between the levels of oxidants and antioxidants is called oxidative stress. This physio-pathological state causes both molecular and cellular damage, which leads to DNA alterations, genetic mutations and cell apoptosis, and thus, impaired immunity followed by delayed or compromised wound healing. Oxidative stress levels experienced by the body affect bone regeneration and maintenance around teeth and dental implants. As the immune system and bone remodeling are interconnected, bone loss is a consequence of immune dysregulation. Therefore, oral tissue deficiencies such as periodontitis and peri-implantitis should be regarded as immune diseases. Bone management strategies should include both biological and surgical solutions. These protocols tend to improve immunity through antioxidant production to enhance bone formation and prevent bone loss. This narrative review aims to highlight the relationship between inflammation, oxidation, immunity and bone health in the oral cavity. It intends to help clinicians to detect high-risk situations in oral surgery and to propose biological and clinical solutions that will enhance patients' immune responses and surgical treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | | | | | | | | | - Franck Afota
- Private Practice, 06000 Nice, France
- Head and Neck Institute, CHU, 06000 Nice, France
| | | | | |
Collapse
|