1
|
4-1BBL as a Mediator of Cross-Talk between Innate, Adaptive, and Regulatory Immunity against Cancer. Int J Mol Sci 2021; 22:ijms22126210. [PMID: 34207500 PMCID: PMC8227424 DOI: 10.3390/ijms22126210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/25/2023] Open
Abstract
The ability of tumor cells to evade the immune system is one of the main challenges we confront in the fight against cancer. Multiple strategies have been developed to counteract this situation, including the use of immunostimulant molecules that play a key role in the anti-tumor immune response. Such a response needs to be tumor-specific to cause as little damage as possible to healthy cells and also to track and eliminate disseminated tumor cells. Therefore, the combination of immunostimulant molecules and tumor-associated antigens has been implemented as an anti-tumor therapy strategy to eliminate the main obstacles confronted in conventional therapies. The immunostimulant 4-1BBL belongs to the tumor necrosis factor (TNF) family and it has been widely reported as the most effective member for activating lymphocytes. Hence, we will review the molecular, pre-clinical, and clinical applications in conjunction with tumor-associated antigens in antitumor immunotherapy, as well as the main molecular pathways involved in this association.
Collapse
|
2
|
Bowen WS, Svrivastava AK, Batra L, Barsoumian H, Shirwan H. Current challenges for cancer vaccine adjuvant development. Expert Rev Vaccines 2018; 17:207-215. [PMID: 29372660 DOI: 10.1080/14760584.2018.1434000] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Although much progress has been made in the last decade(s) toward development of effective cancer vaccines, there are still important obstacles to therapeutic successes. New generations of cancer vaccines will benefit from a combination adjuvant approach that targets multiple branches of the immune response. AREAS COVERED Herein we describe how combinatorial adjuvant strategies can help overcome important obstacles to cancer vaccine development, including antigen immunogenicity and tumor immune suppression. Tumor antigens may be both tolerogenic and may utilize active mechanisms to suppress host immunity, including downregulation of MHC molecules to evade recognition and upregulation of immune inhibitory receptors, to subvert an effective immune response. The current cancer vaccine literature was surveyed to identify advancements in the understanding of the biological mechanisms underlying poor antigen immunogenicity and tumor immune evasion, as well as adjuvant strategies designed to overcome them. EXPERT COMMENTARY Poor immunogenicity of tumor antigens and tumor immune evasion mechanisms make the design of cancer vaccines challenging. Growing understanding of the tumor microenvironment and associated immune responses indicate the importance of augmenting not only the effector response, but also overcoming the endogenous regulatory response and tumor evasion mechanisms. Therefore, new vaccines will benefit from multi-adjuvanted approaches that simultaneously stimulate immunity while preventing inhibition.
Collapse
Affiliation(s)
- William S Bowen
- a Institute for Cellular Therapeutics and Department of Microbiology and Immunology , University of Louisville , Louisville , KY , USA
| | | | - Lalit Batra
- a Institute for Cellular Therapeutics and Department of Microbiology and Immunology , University of Louisville , Louisville , KY , USA
| | - Hampartsoum Barsoumian
- c Radiation Oncology , University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Haval Shirwan
- a Institute for Cellular Therapeutics and Department of Microbiology and Immunology , University of Louisville , Louisville , KY , USA
| |
Collapse
|
3
|
Dinc G, Pennington JM, Yolcu ES, Lawrenz MB, Shirwan H. Improving the Th1 cellular efficacy of the lead Yersinia pestis rF1-V subunit vaccine using SA-4-1BBL as a novel adjuvant. Vaccine 2014; 32:5035-40. [PMID: 25045812 DOI: 10.1016/j.vaccine.2014.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/13/2014] [Accepted: 07/08/2014] [Indexed: 12/21/2022]
Abstract
The lead candidate plague subunit vaccine is the recombinant fusion protein rF1-V adjuvanted with alum. While alum generates Th2 regulated robust humoral responses, immune protection against Yersinia pestis has been shown to also involve Th1 driven cellular responses. Therefore, the rF1-V-based subunit vaccine may benefit from an adjuvant system that generates a mixed Th1 and humoral immune response. We herein assessed the efficacy of a novel SA-4-1BBL costimulatory molecule as a Th1 adjuvant to improve cellular responses generated by the rF1-V vaccine. SA-4-1BBL as a single adjuvant had better efficacy than alum in generating CD4(+) and CD8(+) T cells producing TNFα and IFNγ, signature cytokines for Th1 responses. The combination of SA-4-1BBL with alum further increased this Th1 response as compared with the individual adjuvants. Analysis of the humoral response revealed that SA-4-1BBL as a single adjuvant did not generate a significant Ab response against rF1-V, and SA-4-1BBL in combination with alum did not improve Ab titers. However, the combined adjuvants significantly increased the ratio of Th1 regulated IgG2c in C57BL/6 mice to the Th2 regulated IgG1. Finally, a single vaccination with rF1-V adjuvanted with SA-4-1BBL+alum had better protective efficacy than vaccines containing individual adjuvants. Taken together, these results demonstrate that SA-4-1BBL improves the protective efficacy of the alum adjuvanted lead rF1-V subunit vaccine by generating a more balanced Th1 cellular and humoral immune response. As such, this adjuvant platform may prove efficacious not only for the rF1-V vaccine but also against other infections that require both cellular and humoral immune responses for protection.
Collapse
Affiliation(s)
- Gunes Dinc
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY 40202, United States; Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, United States
| | - Jarrod M Pennington
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, United States; Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40202, United States
| | - Esma S Yolcu
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY 40202, United States; Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, United States
| | - Matthew B Lawrenz
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, United States; Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40202, United States.
| | - Haval Shirwan
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY 40202, United States; Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, United States.
| |
Collapse
|
4
|
Sharma RK, Yolcu ES, Srivastava AK, Shirwan H. CD4+ T cells play a critical role in the generation of primary and memory antitumor immune responses elicited by SA-4-1BBL and TAA-based vaccines in mouse tumor models. PLoS One 2013; 8:e73145. [PMID: 24066030 PMCID: PMC3774737 DOI: 10.1371/journal.pone.0073145] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/17/2013] [Indexed: 12/20/2022] Open
Abstract
The role of CD4+ T cells in the generation of therapeutic primary and memory immune responses in cancer diverse immunotherapy settings remains ambiguous. We herein investigated this issue using two vaccine formulations containing a novel costimulatory molecule, SA-4-1BBL, as adjuvant and HPV E7 or survivin (SVN) as tumor associated antigens (TAAs) in two mouse transplantable tumor models; the TC-1 cervical cancer expressing xenogeneic HPV E7 and 3LL lung carcinoma overexpressing autologous SVN. Single vaccination with optimized SA-4-1BBL/TAA formulations resulted in the eradication of 6-day established TC-1 and 3LL tumors in >70% of mice in both models. The in vivo depletion of CD4+ T cells one day before tumor challenge resulted in compromised vaccine efficacy in both TC-1 (25%) and 3LL (12.5%) tumor models. In marked contrast, depletion of CD4+ T cells 5 days post-tumor challenge and one day prior to vaccination did not significantly alter the therapeutic efficacy of these vaccines. However, long-term immunological memory was compromised in the 3LL, but not in TC-1 model as a significant number (85.7%) of tumor free-mice succumbed to tumor growth when rechallenged with 3LL cells 60 days after the initial tumor inoculation. Collectively, these results demonstrate the indispensable role CD4+ T cells play in the generation of therapeutic primary immune responses elicited by SA-4-1BBL/TAA-based vaccines irrespective of the nature of TAAs and establish the importance of CD4+ T cells for long-term immune memory against 3LL tumor expressing self-antigen SVN, but not TC-1 expressing xenogeneic viral antigen E7.
Collapse
Affiliation(s)
- Rajesh K. Sharma
- Institute for Cellular Therapeutics, Department of Microbiology and Immunology and James Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Esma S. Yolcu
- Institute for Cellular Therapeutics, Department of Microbiology and Immunology and James Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Abhishek K. Srivastava
- Institute for Cellular Therapeutics, Department of Microbiology and Immunology and James Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Haval Shirwan
- Institute for Cellular Therapeutics, Department of Microbiology and Immunology and James Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
5
|
Cancer therapy and vaccination. J Immunol Methods 2012; 382:1-23. [PMID: 22658969 DOI: 10.1016/j.jim.2012.05.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 04/01/2012] [Accepted: 05/24/2012] [Indexed: 12/18/2022]
Abstract
Cancer remains one of the leading causes of death worldwide, both in developed and in developing nations. It may affect people at all ages, even fetuses, but the risk for most varieties increases with age. Current therapeutic approaches which include surgery, chemotherapy and radiotherapy are associated with adverse side effects arising from lack of specificity for tumors. The goal of any therapeutic strategy is to impact on the target tumor cells with limited detrimental effect to normal cell function. Immunotherapy is cancer specific and can target the disease with minimal impact on normal tissues. Cancer vaccines are capable of generating an active tumor-specific immune response and serve as an ideal treatment due to their specificity for tumor cells and long lasting immunological memory that may safeguard against recurrences. Cancer vaccines are designed to either prevent (prophylactic) or treat established cancer (therapeutic). Identification of tumor-associated antigens (TAAs) and tumor-specific antigens (TSAs) has led to increased efforts to develop vaccination strategies. Vaccines may be composed of whole cells or cell extracts, genetically modified tumor cells to express costimulatory molecules, dendritic cells (DCs) loaded with TAAs, immunization with soluble proteins or synthetic peptides, recombinant viruses or bacteria encoding tumor-associated antigens, and plasmid DNA encoding TSAs or TAAs in conjunction with appropriate immunomodulators. All of these antitumor vaccination approaches aim to induce specific immunological responses and localized to TAAs, destroying tumor cells alone and leaving the vast majority of other healthy cells of the body untouched.
Collapse
|
6
|
Sharma RK, Schabowsky RH, Srivastava AK, Elpek KG, Madireddi S, Zhao H, Zhong Z, Miller RW, Macleod KJ, Yolcu ES, Shirwan H. 4-1BB ligand as an effective multifunctional immunomodulator and antigen delivery vehicle for the development of therapeutic cancer vaccines. Cancer Res 2010; 70:3945-54. [PMID: 20406989 DOI: 10.1158/0008-5472.can-09-4480] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Therapeutic subunit vaccines based on tumor-associated antigens (TAA) represent an attractive approach for the treatment of cancer. However, poor immunogenicity of TAAs requires potent adjuvants for therapeutic efficacy. We recently proposed the tumor necrosis factor family costimulatory ligands as potential adjuvants for therapeutic vaccines and, hence, generated a soluble form of 4-1BBL chimeric with streptavidin (SA-4-1BBL) that has pleiotropic effects on cells of innate, adaptive, and regulatory immunity. We herein tested whether these effects can translate into effective cancer immunotherapy when SA-4-1BBL was also used as a vehicle to deliver TAAs in vivo to dendritic cells (DCs) constitutively expressing the 4-1BB receptor. SA-4-1BBL was internalized by DCs upon receptor binding and immunization with biotinylated antigens conjugated to SA-4-1BBL resulted in increased antigen uptake and cross-presentation by DCs, leading to the generation of effective T-cell immune responses. Conjugate vaccines containing human papillomavirus 16 E7 oncoprotein or survivin as a self-TAA had potent therapeutic efficacy against TC-1 cervical and 3LL lung carcinoma tumors, respectively. Therapeutic efficacy of the vaccines was associated with increased CD4(+) T and CD8(+) T-cell effector and memory responses and higher intratumoral CD8(+) T effector/CD4(+)CD25(+)Foxp3(+) T regulatory cell ratio. Thus, potent pleiotropic immune functions of SA-4-1BBL combined with its ability to serve as a vehicle to increase the delivery of antigens to DCs in vivo endow this molecule with the potential to serve as an effective immunomodulatory component of therapeutic vaccines against cancer and chronic infections.
Collapse
Affiliation(s)
- Rajesh K Sharma
- Department of Microbiology and Immunology, James Brown Cancer Center, Institute for Cellular Therapeutics, University of Louisville and ApoImmune, Inc, Louisville, Kentucky, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|