1
|
Ma T, Jin L, Bai S, Liu Z, Wang S, Shen B, Cho Y, Cao S, Sun MJS, Fazli L, Zhang D, Wedderburn C, Zhang DY, Mugon G, Ungerleider N, Baddoo M, Zhang K, Schiavone LH, Burkhardt BR, Fan J, You Z, Flemington EK, Dong X, Dong Y. Loss of feedback regulation between FAM3B and androgen receptor driving prostate cancer progression. J Natl Cancer Inst 2024; 116:421-433. [PMID: 37847647 PMCID: PMC10919334 DOI: 10.1093/jnci/djad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Although the fusion of the transmembrane serine protease 2 gene (TMPRSS2) with the erythroblast transformation-specific-related gene (ERG), or TMPRSS2-ERG, occurs frequently in prostate cancer, its impact on clinical outcomes remains controversial. Roughly half of TMPRSS2-ERG fusions occur through intrachromosomal deletion of interstitial genes and the remainder via insertional chromosomal rearrangements. Because prostate cancers with deletion-derived TMPRSS2-ERG fusions are more aggressive than those with insertional fusions, we investigated the impact of interstitial gene loss on prostate cancer progression. METHODS We conducted an unbiased analysis of transcriptome data from large collections of prostate cancer samples and employed diverse in vitro and in vivo models combined with genetic approaches to characterize the interstitial gene loss that imposes the most important impact on clinical outcome. RESULTS This analysis identified FAM3B as the top-ranked interstitial gene whose loss is associated with a poor prognosis. The association between FAM3B loss and poor clinical outcome extended to fusion-negative prostate cancers where FAM3B downregulation occurred through epigenetic imprinting. Importantly, FAM3B loss drives disease progression in prostate cancer. FAM3B acts as an intermediator of a self-governing androgen receptor feedback loop. Specifically, androgen receptor upregulates FAM3B expression by binding to an intronic enhancer to induce an enhancer RNA and facilitate enhancer-promoter looping. FAM3B, in turn, attenuates androgen receptor signaling. CONCLUSION Loss of FAM3B in prostate cancer, whether through the TMPRSS2-ERG translocation or epigenetic imprinting, causes an exit from this autoregulatory loop to unleash androgen receptor activity and prostate cancer progression. These findings establish FAM3B loss as a new driver of prostate cancer progression and support the utility of FAM3B loss as a biomarker to better define aggressive prostate cancer.
Collapse
Affiliation(s)
- Tianfang Ma
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| | - Lianjin Jin
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| | - Shanshan Bai
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Zhan Liu
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Shuo Wang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Urological Department, Peking University Cancer Hospital & Institute, Beijing, China
| | - Beibei Shen
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yeyoung Cho
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| | - Subing Cao
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Meijuan J S Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ladan Fazli
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - David Zhang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Duke University, Durham, NC, USA
| | - Chiyaro Wedderburn
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Derek Y Zhang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- University of Southern California, Los Angeles, CA, USA
| | - Gavisha Mugon
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Nathan Ungerleider
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Melody Baddoo
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Kun Zhang
- Department of Computer Science, Bioinformatics Facility of Xavier RCMI Center of Cancer Research, Xavier University of Louisiana, New Orleans, LA, USA
| | | | - Brant R Burkhardt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Jia Fan
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Zongbing You
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| | - Erik K Flemington
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Xuesen Dong
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Yan Dong
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| |
Collapse
|
2
|
Bioactive glass selectively promotes cytotoxicity towards giant cell tumor of bone derived neoplastic stromal cells and induces MAPK signalling dependent autophagy. Bioact Mater 2022; 15:456-468. [PMID: 35386334 PMCID: PMC8958388 DOI: 10.1016/j.bioactmat.2022.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/27/2022] [Accepted: 02/18/2022] [Indexed: 12/20/2022] Open
Abstract
Giant cell tumors of bone (GCTB) are associated with massive bone destructions and high recurrence rates. In a previous study, we observed cytotoxic effects of three different compositions of bioactive glasses (BGs) towards GCTSC but not bone marrow derived stromal cells (BMSC) indicating that BGs represent promising candidates for the development of new therapeutic approaches. In the current study we aimed to investigate the molecular mechanisms that are involved in BG induced cytotoxicity. We observed, that BG treatment was not associated with any signs of apoptosis, but rather led to a strong induction of mitogen activated protein kinases (MAPK) and, as a consequence, upregulation of several transcription factors specifically in GCTSC. Genome wide gene expression profiling further revealed a set of fifteen genes that were exclusively induced in GCTSC or induced significantly stronger in GCTSC compared to BMSC. BG treatment further induced autophagy that was significantly more pronounced in GCTSC compared to BMSC and could be inhibited by MAPK inhibitors. Together with the known osteogenic properties of BGs our findings support the suitability of BGs as therapeutic agents for the treatment of GCTB. However, these data have to be verified under in vivo conditions. Bioactive glasses (BG) are selectively cytotoxic towards neoplastic stromal cells. BG induced cell death is independent from apoptosis. BG activates mitogen activated protein kinases and transcription factors. BG trigger differential gene expression in neoplastic versus normal cells. BG induce autophagy.
Collapse
|
3
|
Guo Z, Chen M, Chao Y, Cai C, Liu L, Zhao L, Li L, Bai QR, Xu Y, Niu W, Shi L, Bi Y, Ren D, Yuan F, Shi S, Zeng Q, Han K, Shi Y, Bian S, He G. RGCC balances self-renewal and neuronal differentiation of neural stem cells in the developing mammalian neocortex. EMBO Rep 2021; 22:e51781. [PMID: 34323349 DOI: 10.15252/embr.202051781] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 11/09/2022] Open
Abstract
During neocortical development, neural stem cells (NSCs) divide symmetrically to self-renew at the early stage and then divide asymmetrically to generate post-mitotic neurons. The molecular mechanisms regulating the balance between NSC self-renewal and neurogenesis are not fully understood. Using mouse in utero electroporation (IUE) technique and in vitro human NSC differentiation models including cerebral organoids (hCOs), we show here that regulator of cell cycle (RGCC) modulates NSC self-renewal and neuronal differentiation by affecting cell cycle regulation and spindle orientation. RGCC deficiency hampers normal cell cycle process and dysregulates the mitotic spindle, thus driving more cells to divide asymmetrically. These modulations diminish the NSC population and cause NSC pre-differentiation that eventually leads to brain developmental malformation in hCOs. We further show that RGCC might regulate NSC spindle orientation by affecting the organization of centrosome and microtubules. Our results demonstrate that RGCC is essential to maintain the NSC pool during cortical development and suggest that RGCC defects could have etiological roles in human brain malformations.
Collapse
Affiliation(s)
- Zhenming Guo
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Mengxia Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yiming Chao
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chunhai Cai
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Liangjie Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Li Zhao
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Linbo Li
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qing-Ran Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yanxin Xu
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Weibo Niu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Bi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Decheng Ren
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Yuan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Shuyue Shi
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qian Zeng
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ke Han
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Shan Bian
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Ansari I, Chaturvedi A, Chitkara D, Singh S. CRISPR/Cas mediated epigenome editing for cancer therapy. Semin Cancer Biol 2021; 83:570-583. [PMID: 33421620 DOI: 10.1016/j.semcancer.2020.12.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
The understanding of the relationship between epigenetic alterations, their effects on gene expression and the knowledge that these epigenetic alterations are reversible, have opened up new therapeutic pathways for treating various diseases, including cancer. This has led the research for a better understanding of the mechanism and pathways of carcinogenesis and provided the opportunity to develop the therapeutic approaches by targeting such pathways. Epi-drugs, DNA methyl transferase (DNMT) inhibitors and histone deacetylase (HDAC) inhibitors are the best examples of epigenetic therapies with clinical applicability. Moreover, precise genome editing technologies such as CRISPR/Cas has proven their efficacy in epigenome editing, including the alteration of epigenetic markers, such as DNA methylation or histone modification. The main disadvantage with DNA gene editing technologies is off-target DNA sequence alteration, which is not an issue with epigenetic editing. It is known that cancer is linked with epigenetic alteration, and thus CRISPR/Cas system shows potential for cancer therapy via epigenome editing. This review outlines the epigenetic therapeutic approach for cancer therapy using CRISPR/Cas, from the basic understanding of cancer epigenetics to potential applications of CRISPR/Cas in treating cancer.
Collapse
Affiliation(s)
- Imran Ansari
- Department of Pharmacy, Birla Institute of Technology and Science (BITS)-Pilani, Pilani Campus, Vidya Vihar, Pilani, 333 031, Rajasthan, India
| | | | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science (BITS)-Pilani, Pilani Campus, Vidya Vihar, Pilani, 333 031, Rajasthan, India.
| | - Saurabh Singh
- Novartis Healthcare Pvt Ltd., Hyderabad 500032, Telangana, India.
| |
Collapse
|
5
|
Yang ZH, Li J, Chen WZ, Kong FS. Oncogenic gene RGC-32 is a direct target of miR-26b and facilitates tongue squamous cell carcinoma aggressiveness through EMT and PI3K/AKT signalling. Cell Biochem Funct 2020; 38:943-954. [PMID: 32325539 DOI: 10.1002/cbf.3520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 11/12/2022]
Abstract
Growing data have recognized the significance of Response Gene to Complement (RGC)-32 in numerous tumour developments. Notwithstanding, the functional role and underlying mechanism of it in tongue squamous cell carcinoma (TSCC) remain enigmatic. Here, to identify the impact of RGC-32 in TSCC, its expression in multiple TSCC cells was measured and loss-of-function experiments in cell lines were performed to illuminate the function of it induced TSCC progression, via si-RNA knockdown, CCK-8, colony formation, wound-healing, transwell, flow cytometry and western blot assays. To clarify potential mechanism, expressions of hallmarks in epithelial-mesenchymal transition (EMT) process and PI3K/AKT signalling were assessed, and the upstream miR regulator of RGC-32 was predicted and verified by applying bioinformatic approaches and dual-luciferase reporter assay, respectively. Finally, the rescue experiments were applied to better elucidate the effect of miR-26b/RGC-32 axis in TSCC behaviours. As a result, RGC-32 was upregulated in TSCC cells and knocking down of it abrogated cell proliferation, trans-migration and invasion, whilst promoted apoptosis in TSCC, which was regulated through repressing EMT and inactivation of PI3K/AKT signalling. Subsequently, miR-26b was predicted and identified as an upstream regulator of RGC-32, and the pro-tumorigenic effect of RGC-32 was reversed by miR-26b overexpression. Collectively, our results demonstrated that RGC-32 facilitated TSCC progression, which was modulated by activations of PI3K/AKT pathway and EMT process, and reduction of its negative regulator of miR-26b. These findings highlight a novel role of miR-26b/RGC-32 axis in TSCC and underlying mechanism, encouraging a potent usage in TSCC treatment. SIGNIFICANCE OF THE STUDY: We first uncovered that Response Gene to Complement-32 played a significantly pro-tumorigenic role in tongue squamous cell carcinoma (TSCC), which was closely regulated by downregulation of miR-26b and activations of epithelial-mesenchymal transition process and PI3K/AKT signalling. These findings contribute to better understand the molecular mechanism in carcinogenesis of TSCC, and shed some light on promising strategy for TSCC therapeutics.
Collapse
Affiliation(s)
- Zhong-Heng Yang
- Department of Stomatology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Juan Li
- Department of Pathology, The Fourth Hospital of Jinan, Jinan, Shandong, China
| | - Wei-Zhi Chen
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Fan-Shuang Kong
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
6
|
Vlaicu SI, Tatomir A, Anselmo F, Boodhoo D, Chira R, Rus V, Rus H. RGC-32 and diseases: the first 20 years. Immunol Res 2019; 67:267-279. [DOI: 10.1007/s12026-019-09080-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Yu T, Wang L, Zhao C, Qian B, Yao C, He F, Zhu Y, Cai M, Li M, Zhao D, Zhang J, Wang Y, Qiu W. Sublytic C5b-9 induces proliferation of glomerular mesangial cells via ERK5/MZF1/RGC-32 axis activated by FBXO28-TRAF6 complex. J Cell Mol Med 2019; 23:5654-5671. [PMID: 31184423 PMCID: PMC6653533 DOI: 10.1111/jcmm.14473] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/06/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022] Open
Abstract
Mesangioproliferative glomerulonephritis (MsPGN) is characterized by the proliferation of glomerular mesangial cells (GMCs) and accumulation of extracellular matrix (ECM), followed by glomerulosclerosis and renal failure of patients. Although our previous studies have demonstrated that sublytic C5b‐9 complex formed on the GMC membrane could trigger GMC proliferation and ECM expansion of rat Thy‐1 nephritis (Thy‐1N) as an animal model of MsPGN, their mechanisms are still not fully elucidated. In the present studies, we found that the levels of response gene to complement 32 (RGC‐32), myeloid zinc finger 1 (MZF1), phosphorylated extracellular signal‐regulated kinase 5 (phosphorylated ERK5, p‐ERK5), F‐box only protein 28 (FBXO28) and TNF receptor‐associated factor 6 (TRAF6) were all markedly up‐regulated both in the renal tissues of rats with Thy‐1N (in vivo) and in the GMCs upon sublytic C5b‐9 stimulation (in vitro). Further in vitro experiments revealed that up‐regulated FBXO28 and TRAF6 could form protein complex binding to ERK5 and enhance ERK5 K63‐ubiquitination and subsequent phosphorylation. Subsequently, ERK5 activation contributed to MZF1 expression and MZF1‐dependent RGC‐32 up‐regulation, finally resulting in GMC proliferative response. Furthermore, the MZF1‐binding element within RGC‐32 promoter and the functions of FBXO28 domains were identified. Additionally, knockdown of renal FBXO28, TRAF6, ERK5, MZF1 and RGC‐32 genes respectively markedly reduced GMC proliferation and ECM production in Thy‐1N rats. Together, these findings indicate that sublytic C5b‐9 induces GMC proliferative changes in rat Thy‐1N through ERK5/MZF1/RGC‐32 axis activated by the FBXO28‐TRAF6 complex, which might provide a new insight into MsPGN pathogenesis.
Collapse
Affiliation(s)
- Tianyi Yu
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Lulu Wang
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chenhui Zhao
- Department of Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Baomei Qian
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chunlei Yao
- Department of Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Fengxia He
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yufeng Zhu
- Clinical Medical Science of the First Clinical Medical College, Nanjing Medical University, Nanjing, People's Republic of China
| | - Mengyuan Cai
- Clinical Medical Science of the First Clinical Medical College, Nanjing Medical University, Nanjing, People's Republic of China
| | - Mei Li
- The Laboratory Center for Basic Medical Sciences, Nanjing medical University, Nanjing, People's Republic of China
| | - Dan Zhao
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jing Zhang
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yingwei Wang
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Wen Qiu
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China.,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing medical University, Nanjing, People's Republic of China
| |
Collapse
|
8
|
Vlaicu SI, Tatomir A, Rus V, Rus H. Role of C5b-9 and RGC-32 in Cancer. Front Immunol 2019; 10:1054. [PMID: 31156630 PMCID: PMC6530392 DOI: 10.3389/fimmu.2019.01054] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/24/2019] [Indexed: 01/13/2023] Open
Abstract
The complement system represents an effective arsenal of innate immunity as well as an interface between innate and adaptive immunity. Activation of the complement system culminates with the assembly of the C5b-9 terminal complement complex on cell membranes, inducing target cell lysis. Translation of this sequence of events into a malignant setting has traditionally afforded C5b-9 a strict antitumoral role, in synergy with antibody-dependent tumor cytolysis. However, in recent decades, a plethora of evidence has revised this view, highlighting the tumor-promoting properties of C5b-9. Sublytic C5b-9 induces cell cycle progression by activating signal transduction pathways (e.g., Gi protein/ phosphatidylinositol 3-kinase (PI3K)/Akt kinase and Ras/Raf1/ERK1) and modulating the activation of cancer-related transcription factors, while shielding malignant cells from apoptosis. C5b-9 also induces Response Gene to Complement (RGC)-32, a gene that contributes to cell cycle regulation by activating the Akt and CDC2 kinases. RGC-32 is expressed by tumor cells and plays a dual role in cancer, functioning as either a tumor promoter by endorsing malignancy initiation, progression, invasion, metastasis, and angiogenesis, or as a tumor suppressor. In this review, we present recent data describing the versatile, multifaceted roles of C5b-9 and its effector, RGC-32, in cancer.
Collapse
Affiliation(s)
- Sonia I Vlaicu
- Department of Internal Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Neurology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Alexandru Tatomir
- Department of Neurology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Violeta Rus
- Division of Rheumatology and Immunology, Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Horea Rus
- Department of Neurology, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
9
|
Liao WL, Lin JM, Liu SP, Chen SY, Lin HJ, Wang YH, Lei YJ, Huang YC, Tsai FJ. Loss of Response Gene to Complement 32 (RGC-32) in Diabetic Mouse Retina Is Involved in Retinopathy Development. Int J Mol Sci 2018; 19:ijms19113629. [PMID: 30453650 PMCID: PMC6275084 DOI: 10.3390/ijms19113629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
Diabetic retinopathy (DR) is a severe and recurrent microvascular complication in diabetes. The multifunctional response gene to complement 32 (RGC-32) is involved in the regulation of cell cycle, proliferation, and apoptosis. To investigate the role of RGC-32 in the development of DR, we used human retinal microvascular endothelial cells under high-glucose conditions and type 2 diabetes (T2D) mice (+Leprdb/ + Leprdb, db/db). The results showed that RGC-32 expression increased moderately in human retinal endothelial cells under hyperglycemic conditions. Histopathology and RGC-32 expression showed no significant changes between T2D and control mice retina at 16 and 24 weeks of age. However, RGC-32 expression was significantly decreased in T2D mouse retina compared to the control group at 32 weeks of age, which develop features of the early clinical stages of DR, namely reduced retinal thickness and increased ganglion cell death. Moreover, immunohistochemistry showed that RGC-32 was predominantly expressed in the photoreceptor inner segments of control mice, while the expression was dramatically lowered in the T2D retinas. Furthermore, we found that the level of anti-apoptotic protein Bcl-2 was decreased (approximately 2-fold) with a concomitant increase in cleaved caspase-3 (approximately 3-fold) in T2D retina compared to control. In summary, RGC-32 may lose its expression in T2D retina with features of DR, suggesting that it plays a critical role in DR pathogenesis.
Collapse
Affiliation(s)
- Wen-Ling Liao
- Center for Personalized Medicine, China Medical University Hospital and Graduate Institute of Integrated Medicine, China Medical University, Taichung 404, Taiwan.
| | - Jane-Ming Lin
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
- Department of Ophthalmology, China Medical University Hospital, Taichung 404, Taiwan.
| | - Shih-Ping Liu
- Center for Translational Medicine, China Medical University Hospital and Graduate Institute of Biomedical Science, China Medical University, Taichung 404, Taiwan and Department of Social Work, Asia University, Taichung 413, Taiwan.
| | - Shih-Yin Chen
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan.
| | - Hui-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
- Department of Ophthalmology, China Medical University Hospital, Taichung 404, Taiwan.
| | - Yeh-Han Wang
- Department of Anatomical Pathology, Taipei Institute of Pathology, Taipei 103, Taiwan and Institute of Public Health, National Yang-Ming University, Taipei 112, Taiwan.
| | - Yu-Jie Lei
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan.
| | - Yu-Chuen Huang
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan.
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan.
- Department of Medical Genetics, China Medical University Hospital and Children's Hospital of China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
10
|
Cui XB, Chen SY. Response Gene to Complement 32 in Vascular Diseases. Front Cardiovasc Med 2018; 5:128. [PMID: 30280101 PMCID: PMC6153333 DOI: 10.3389/fcvm.2018.00128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/28/2018] [Indexed: 11/16/2022] Open
Abstract
Response gene to complement 32 (RGC32) is a protein that was identified in rat oligodendrocytes after complement activation. It is expressed in most of the organs and tissues, such as brain, placenta, heart, and the liver. Functionally, RGC32 is involved in various physiological and pathological processes, including cell proliferation, differentiation, fibrosis, metabolic disease, and cancer. Emerging evidences support the roles of RGC32 in vascular diseases. RGC32 promotes injury-induced vascular neointima formation by mediating smooth muscle cell (SMC) proliferation and migration. Moreover, RGC32 mediates endothelial cell activation and facilitates atherosclerosis development. Its involvement in macrophage phagocytosis and activation as well as T-lymphocyte cell cycle activation also suggests that RGC32 is important for the development and progression of inflammatory vascular diseases. In this mini-review, we provide an overview on the roles of RGC32 in regulating functions of SMCs, endothelial cells, and immune cells, and discuss their contributions to vascular diseases.
Collapse
Affiliation(s)
- Xiao-Bing Cui
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA, United States
| | - Shi-You Chen
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA, United States
| |
Collapse
|
11
|
Narayanan S, Loganathan G, Mokshagundam S, Hughes MG, Williams SK, Balamurugan AN. Endothelial cell regulation through epigenetic mechanisms: Depicting parallels and its clinical application within an intra-islet microenvironment. Diabetes Res Clin Pract 2018; 143:120-133. [PMID: 29953914 DOI: 10.1016/j.diabres.2018.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/31/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
Abstract
The intra-islet endothelial cells (ECs), the building blocks of islet microvasculature, govern a number of cellular and pathophysiological processes associated with the pancreatic tissue. These cells are key to the angiogenic process and essential for islet revascularization after transplantation. Understanding fundamental mechanisms by which ECs regulate the angiogenic process is important as these cells maintain and regulate the intra-islet environment facilitated by a complex signaling crosstalk with the surrounding endocrine cells. In recent years, many studies have demonstrated the impact of epigenetic regulation on islet cell development and function. This review will present an overview of the reports involving endothelial epigenetic mechanisms particularly focusing on histone modifications which have been identified to play a critical role in governing EC functions by modifying the chromatin structure. A better understanding of epigenetic mechanisms by which these cells regulate gene expression and function to orchestrate cellular physiology and pathology is likely to offer improved insights on the functioning and regulation of an intra-islet endothelial microvascular environment.
Collapse
Affiliation(s)
- Siddharth Narayanan
- Clinical Islet Cell Laboratory, Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY 40202, United States
| | - Gopalakrishnan Loganathan
- Clinical Islet Cell Laboratory, Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY 40202, United States
| | | | - Michael G Hughes
- Clinical Islet Cell Laboratory, Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY 40202, United States
| | - Stuart K Williams
- Department of Physiology, University of Louisville, Louisville, KY 40202, United States
| | - Appakalai N Balamurugan
- Clinical Islet Cell Laboratory, Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY 40202, United States.
| |
Collapse
|
12
|
Chromatin dynamics at the core of kidney fibrosis. Matrix Biol 2018; 68-69:194-229. [DOI: 10.1016/j.matbio.2018.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 02/06/2023]
|
13
|
The complement system as a biomarker of disease activity and response to treatment in multiple sclerosis. Immunol Res 2018; 65:1103-1109. [PMID: 29116612 DOI: 10.1007/s12026-017-8961-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system. The complement system has an established role in the pathogenesis of MS, and evidence suggests that its components can be used as biomarkers of disease-state activity and response to treatment in MS. Plasma C4a levels have been found to be significantly elevated in patients with active relapsing-remitting MS (RRMS), as compared to both controls and patients with stable RRMS. C3 levels are also significantly elevated in the cerebrospinal fluid (CSF) of patients with RRMS, and C3 levels are correlated with clinical disability. Furthermore, increased levels of factor H can predict the transition from relapsing to progressive disease, since factor H levels have been found to increase progressively with disease progression over a 2-year period in patients transitioning from RRMS to secondary progressive (SP) MS. In addition, elevations in C3 are seen in primary progressive (PP) MS. Complement components can also differentiate RRMS from neuromyelitis optica. Response gene to complement (RGC)-32, a novel molecule induced by complement activation, is a possible biomarker of relapse and response to glatiramer acetate (GA) therapy, since RGC-32 mRNA expression is significantly decreased during relapse and increased in responders to GA treatment. The predictive accuracy of RGC-32 as a potential biomarker (by ROC analysis) is 90% for detecting relapses and 85% for detecting a response to GA treatment. Thus, complement components can serve as biomarkers of disease activity to differentiate MS subtypes and to measure response to therapy.
Collapse
|
14
|
Zhu L, Ding Y. RGC-32 induces transition of pancreatic cancer to epithelial mesenchyme in vivo. Pancreatology 2018; 18:572-576. [PMID: 29886073 DOI: 10.1016/j.pan.2018.05.480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVES This study was undertaken to investigate the induction of transition of pancreatic cancer to epithelial mesenchyme by RGC-32. METHODS Primary human pancreatic cancer cell line BXPC-3 was transfected with lentivirus overexpressing the response gene to complement-32 gene (RGC-32) and used to induce tumor in mice. The tumor sizes were measured and the expression of cytokeratin, e-cadherin and vimentin at mRNA using real time PCR and at protein levels by Western blot. RESULTS Compared with the control, mice inoculated with the cells transfected with empty vector had similar tumor size while those inoculated with the cells transfected with RGC-32 expressing virus had significantly greater tumor size. HE staining showed that tumors were formed in all treatments. Molecular analyses showed that there was no difference in the expression of the cytokeratin, e-cadherin and vimentin genes at mRNA and protein levels between control and empty vector groups. However, mice derived from cells transfected with RGC-32 expressing virus had reduced cytokeratin and e-cadherin expression and increased vimentin expression. CONCLUSIONS These data suggest that RGC-32 promotes the proliferation of pancreatic cancer and induces the epithelial-mesenchymal transition (EMT). It would be a future direction of research to investigate the regulatory mechanism of signal molecules downstream RGC-32 on EMT-related transcription factors and deliberate the role of RGC-32 in tumorigenicity. As a result, RGC-32 may become a new therapeutic target for cancers.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Ying Ding
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| |
Collapse
|
15
|
Hu YJ, Zhou Q, Li ZY, Feng D, Sun L, Shen YL, Huang WY. Renal proteomic analysis of RGC-32 knockout mice reveals the potential mechanism of RGC-32 in regulating cell cycle. Am J Transl Res 2018; 10:847-856. [PMID: 29636874 PMCID: PMC5883125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to investigate the exact function of RGC-32 in kidney diseases and explore the potential mechanism of RGC-32 in regulating cell cycle. RGC-32 knockout (RGC-32-/-) mice were generated from C57BL/6 embryonic stem cells. Differentially expressed proteins in the kidney were investigated with the isobaric tags for relative and absolute quantification (iTRAQ) technique. Gene ontology analyses (GO), Kyoto encyclopedia of genes and genomes (KEGG) pathway mapping analysis and functional network analysis were also performed. The expressions of Smc3, Smad 2-3, DNA-PK were further confirmed by qPCR. Results showed that 4690 proteins were quantified on the basis of 25165 unique peptides. Comparative proteomic analysis revealed 361 differentially expressed proteins in RGC-32-/- mice (knockout/wild ratio >+/- 1.2 and P<0.05). GO and KEGG pathway mapping analyses showed differentially expressed proteins were involved in spliceosome, fluid shear stress and atherosclerosis protein processing in endoplasmic reticulum, pathways in cancer, viral carcinogenesis, epithelial cell signaling in Helicobacter pylori infection, HTLV-I infection, PI3K-Akt signaling pathway, ubiquitin mediated proteolysis, Parkinson's disease, MAPK signaling pathway, carbon metabolism, Alzheimer's disease, NOD-like receptor signaling pathway, tight junction, Proteoglycans in cancer, phagosome, ribosome, mTOR signaling pathway, and AMPK signaling pathway. Differentially expressed proteins Smc3 (0.821), DNA-PK (0.761), Smad 2-3 (0.631) were involved in cell cycle regulation. mRNA expression of Smad2-3, DNA-PK, and Smc3 was consistent with that from iTRAQ. It is concluded that RGC-32 may affect the expression of many proteins (76 up-regulated and 285 down-regulated) in the kidney, and may regulate the expression of Smc3, DNA-PK and Smad 2-3 to affect the cell cycle.
Collapse
Affiliation(s)
- Yu-Jie Hu
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong UniversityShanghai 200062, China
| | - Qian Zhou
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong UniversityShanghai 200062, China
| | - Zhu-Yin Li
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong UniversityShanghai 200062, China
| | - Dan Feng
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong UniversityShanghai 200062, China
| | - Lei Sun
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong UniversityShanghai 200062, China
| | - Yun-Lin Shen
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong UniversityShanghai 200062, China
| | - Wen-Yan Huang
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong UniversityShanghai 200062, China
| |
Collapse
|
16
|
Cui XB, Luan JN, Dong K, Chen S, Wang Y, Watford WT, Chen SY. RGC-32 (Response Gene to Complement 32) Deficiency Protects Endothelial Cells From Inflammation and Attenuates Atherosclerosis. Arterioscler Thromb Vasc Biol 2018; 38:e36-e47. [PMID: 29449334 DOI: 10.1161/atvbaha.117.310656] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 02/05/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The objective of this study is to determine the role and underlying mechanisms of RGC-32 (response gene to complement 32 protein) in atherogenesis. APPROACH AND RESULTS RGC-32 was mainly expressed in endothelial cells of atherosclerotic lesions in both ApoE-/- (apolipoprotein E deficient) mice and human patients. Rgc-32 deficiency (Rgc32-/-) attenuated the high-fat diet-induced and spontaneously developed atherosclerotic lesions in ApoE-/- mice without affecting serum cholesterol concentration. Rgc32-/- seemed to decrease the macrophage content without altering collagen and smooth muscle contents or lesional macrophage proliferation in the lesions. Transplantation of WT (wild type) mouse bone marrow to lethally irradiated Rgc32-/- mice did not alter Rgc32-/--caused reduction of lesion formation and macrophage accumulation, suggesting that RGC-32 in resident vascular cells, but not the macrophages, plays a critical role in the atherogenesis. Of importance, Rgc32-/- decreased the expression of ICAM-1 (intercellular adhesion molecule-1) and VCAM-1 (vascular cell adhesion molecule-1) in endothelial cells both in vivo and in vitro, resulting in a decrease in TNF-α (tumor necrosis factor-α)-induced monocyte-endothelial cell interaction. Mechanistically, RGC-32 mediated the ICAM-1 and VCAM-1 expression, at least partially, through NF (nuclear factor)-κB signaling pathway. RGC-32 directly interacted with NF-κB and facilitated its nuclear translocation and enhanced TNF-α-induced NF-κB binding to ICAM-1 and VCAM-1 promoters. CONCLUSIONS RGC-32 mediates atherogenesis by facilitating monocyte-endothelial cell interaction via the induction of endothelial ICAM-1 and VCAM-1 expression, at least partially, through NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiao-Bing Cui
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.)
| | - Jun-Na Luan
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.)
| | - Kun Dong
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.)
| | - Sisi Chen
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.)
| | - Yongyi Wang
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.)
| | - Wendy T Watford
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.)
| | - Shi-You Chen
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.).
| |
Collapse
|
17
|
Wang XY, Li SN, Zhu HF, Hu ZY, Zhong Y, Gu CS, Chen SY, Liu TF, Li ZG. RGC32 induces epithelial-mesenchymal transition by activating the Smad/Sip1 signaling pathway in CRC. Sci Rep 2017; 7:46078. [PMID: 28470188 PMCID: PMC5415763 DOI: 10.1038/srep46078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/10/2017] [Indexed: 01/01/2023] Open
Abstract
Response gene to complement 32 (RGC32) is a transcription factor that regulates the expression of multiple genes involved in cell growth, viability and tissue-specific differentiation. However, the role of RGC32 in tumorigenesis and tumor progression in colorectal cancer (CRC) has not been fully elucidated. Here, we showed that the expression of RGC32 was significantly up-regulated in human CRC tissues versus adjacent normal tissues. RGC32 expression was significantly correlated with invasive and aggressive characteristics of tumor cells, as well as poor survival of CRC patients. We also demonstrated that RGC32 overexpression promoted proliferation, migration and tumorigenic growth of human CRC cells in vitro and in vivo. Functionally, RGC32 facilitated epithelial-mesenchymal transition (EMT) in CRC via the Smad/Sip1 signaling pathway, as shown by decreasing E-cadherin expression and increasing vimentin expression. In conclusion, our findings suggested that overexpression of RGC32 facilitates EMT of CRC cells by activating Smad/Sip1 signaling.
Collapse
Affiliation(s)
- Xiao-Yan Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sheng-Nan Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hui-Fang Zhu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhi-Yan Hu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yan Zhong
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chuan-Sha Gu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shi-You Chen
- Department of Physiology &Pharmacology, University of Georgia, Athens, GA, United States
| | - Teng-Fei Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zu-Guo Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
18
|
Rus V, Nguyen V, Tatomir A, Lees JR, Mekala AP, Boodhoo D, Tegla CA, Luzina IG, Antony PA, Cudrici CD, Badea TC, Rus HG. RGC-32 Promotes Th17 Cell Differentiation and Enhances Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2017; 198:3869-3877. [PMID: 28356385 DOI: 10.4049/jimmunol.1602158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/09/2017] [Indexed: 01/08/2023]
Abstract
Th17 cells play a critical role in autoimmune diseases, including multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis. Response gene to complement (RGC)-32 is a cell cycle regulator and a downstream target of TGF-β that mediates its profibrotic activity. In this study, we report that RGC-32 is preferentially upregulated during Th17 cell differentiation. RGC-32-/- mice have normal Th1, Th2, and regulatory T cell differentiation but show defective Th17 differentiation in vitro. The impaired Th17 differentiation is associated with defects in IFN regulatory factor 4, B cell-activating transcription factor, retinoic acid-related orphan receptor γt, and SMAD2 activation. In vivo, RGC-32-/- mice display an attenuated experimental autoimmune encephalomyelitis phenotype accompanied by decreased CNS inflammation and reduced frequency of IL-17- and GM-CSF-producing CD4+ T cells. Collectively, our results identify RGC-32 as a novel regulator of Th17 cell differentiation in vitro and in vivo and suggest that RGC-32 is a potential therapeutic target in multiple sclerosis and other Th17-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Violeta Rus
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201; .,Research Service, Veteran Affairs Medical Center, Baltimore, MD 21201
| | - Vinh Nguyen
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201.,Research Service, Veteran Affairs Medical Center, Baltimore, MD 21201
| | - Alexandru Tatomir
- Research Service, Veteran Affairs Medical Center, Baltimore, MD 21201.,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Jason R Lees
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Armugam P Mekala
- Research Service, Veteran Affairs Medical Center, Baltimore, MD 21201.,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Dallas Boodhoo
- Research Service, Veteran Affairs Medical Center, Baltimore, MD 21201.,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Cosmin A Tegla
- Research Service, Veteran Affairs Medical Center, Baltimore, MD 21201.,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Irina G Luzina
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201.,Research Service, Veteran Affairs Medical Center, Baltimore, MD 21201
| | - Paul A Antony
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Cornelia D Cudrici
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Tudor C Badea
- Retinal Circuit Development and Genetics Unit, Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Horea G Rus
- Research Service, Veteran Affairs Medical Center, Baltimore, MD 21201.,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
19
|
Shen YL, Liu HJ, Sun L, Niu XL, Kuang XY, Wang P, Hao S, Huang WY. Response gene to complement 32 regulates the G2/M phase checkpoint during renal tubular epithelial cell repair. Cell Mol Biol Lett 2016; 21:19. [PMID: 28536621 PMCID: PMC5415738 DOI: 10.1186/s11658-016-0021-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/10/2016] [Indexed: 12/17/2022] Open
Abstract
Background The aim of this study was to evaluate the influence of RGC-32 (response gene to complement 32) on cell cycle progression in renal tubular epithelial cell injury. Methods NRK-52E cells with overexpressed or silenced RGC-32 were constructed via transient transfection with RGC-32 expression plasmid and RGC-32 siRNA plasmid, and the cell cycle distribution was determined. The expression levels of fibrosis factors, including smooth muscle action (α-SMA), fibronectin (FN) and E-cadherin, were assessed in cells with silenced RGC-32. Results The cells were injured via TNF-α treatment, and the injury was detectable by the enhanced expression of neutrophil gelatinase-associated lipocalin (NGAL). RGC-32 expression also increased significantly. The number of cells at G2/M phase increased dramatically in RGC-32 silenced cells, indicating that RGC-32 silencing induced G2/M arrest. In addition, after treatment with TNF-α, the NRK-52E cells with silenced RGC-32 showed significantly increased expression of α-SMA and FN, but decreased expression of E-cadherin. Conclusions The results of this study suggest that RGC-32 probably has an important impact on the repair process of renal tubular epithelial cells in vitro by regulating the G2/M phase checkpoint, cell fibrosis and cell adhesion. However, the exact mechanism needs to be further elucidated.
Collapse
Affiliation(s)
- Yun-Lin Shen
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Hua-Jie Liu
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Lei Sun
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Xiao-Ling Niu
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Xin-Yu Kuang
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Ping Wang
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Sheng Hao
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Wen-Yan Huang
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062 China
| |
Collapse
|
20
|
|
21
|
Promoter Methylation and mRNA Expression of Response Gene to Complement 32 in Breast Carcinoma. J Cancer Epidemiol 2016; 2016:7680523. [PMID: 27118972 PMCID: PMC4828546 DOI: 10.1155/2016/7680523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/23/2015] [Accepted: 03/08/2016] [Indexed: 12/21/2022] Open
Abstract
Background. Response gene to complement 32 (RGC32), induced by activation of complements, has been characterized as a cell cycle regulator; however, its role in carcinogenesis is still controversial. In the present study we compared RGC32 promoter methylation patterns and mRNA expression in breast cancerous tissues and adjacent normal tissues. Materials and Methods. Sixty-three breast cancer tissues and 63 adjacent nonneoplastic tissues were included in our study. Design. Nested methylation-specific polymerase chain reaction (Nested-MSP) and quantitative PCR (qPCR) were used to determine RGC32 promoter methylation status and its mRNA expression levels, respectively. Results. RGC32 methylation pattern was not different between breast cancerous tissue and adjacent nonneoplastic tissue (OR = 2.30, 95% CI = 0.95–5.54). However, qPCR analysis displayed higher levels of RGC32 mRNA in breast cancerous tissues than in noncancerous tissues (1.073 versus 0.959; P = 0.001), irrespective of the promoter methylation status. The expression levels and promoter methylation of RGC32 were not correlated with any of patients' clinical characteristics (P > 0.05). Conclusion. Our findings confirmed upregulation of RGC32 in breast cancerous tumors, but it was not associated with promoter methylation patterns.
Collapse
|
22
|
Wang F, Zhang YH. [Relationship of cystatin C, fibrinogen, and 24-hour urinary protein with renal pathological grade in children with Henoch-Schönlein purpura nephritis]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:233-7. [PMID: 26975821 PMCID: PMC7389999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/21/2016] [Indexed: 11/12/2023]
Abstract
OBJECTIVE To study the relationship of cystatin C (CysC), fibrinogen (Fbg), and 24-hour urinary protein with renal pathological grade in children with Henoch-Schönlein purpura nephritis (HSPN), and to explore their values. METHODS The clinical data of 48 children diagnosed with HSPN by renal biopsy from January 2011 to January 2015 were reviewed. According to renal pathological grading, in the 48 children with HSPN, 12 had stage IIa or lower, 12 stage IIb, 17 stage IIIa, and 7 stage IIIb or higher. The latex-enhanced immunoturbidimetric assay, turbidimetric measurement, and end-point method were used to determine the levels of serum CysC, Fbg, and 24-hour urinary protein, respectively. Pearson and Spearman correlation analyses were used to test the correlations between the indices and between the indices and renal pathological grade. RESULTS There were significant differences in the levels of serum CysC, Fbg, and 24-hour urinary protein between patients with different pathological grades (P<0.05). The level of each index increased with increasing pathological grade (P<0.05). In the 48 children with HSPN, the level of 24-hour urine protein was positively correlated with the levels of serum CysC (r=0.51, P<0.05) and Fbg (r=0.63, P<0.05). The level of Fbg was positively correlated with that of serum CysC (r=0.55, P<0.05). The levels of CysC, Fbg, and 24-hour urinary protein were all positively correlated with renal pathological grade (r=0.66, 0.64 and 0.68; respectively, P<0.05). CONCLUSIONS The levels of CysC, Fbg, and 24-hour urine protein can reflect the severity of renal injury, providing satisfactory prediction of the severity of renal injury in children with HSPN.
Collapse
Affiliation(s)
- Fang Wang
- Graduate School, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | | |
Collapse
|
23
|
Wang F, Zhang YH. [Relationship of cystatin C, fibrinogen, and 24-hour urinary protein with renal pathological grade in children with Henoch-Schönlein purpura nephritis]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:233-237. [PMID: 26975821 PMCID: PMC7389999 DOI: 10.7499/j.issn.1008-8830.2016.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/21/2016] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To study the relationship of cystatin C (CysC), fibrinogen (Fbg), and 24-hour urinary protein with renal pathological grade in children with Henoch-Schönlein purpura nephritis (HSPN), and to explore their values. METHODS The clinical data of 48 children diagnosed with HSPN by renal biopsy from January 2011 to January 2015 were reviewed. According to renal pathological grading, in the 48 children with HSPN, 12 had stage IIa or lower, 12 stage IIb, 17 stage IIIa, and 7 stage IIIb or higher. The latex-enhanced immunoturbidimetric assay, turbidimetric measurement, and end-point method were used to determine the levels of serum CysC, Fbg, and 24-hour urinary protein, respectively. Pearson and Spearman correlation analyses were used to test the correlations between the indices and between the indices and renal pathological grade. RESULTS There were significant differences in the levels of serum CysC, Fbg, and 24-hour urinary protein between patients with different pathological grades (P<0.05). The level of each index increased with increasing pathological grade (P<0.05). In the 48 children with HSPN, the level of 24-hour urine protein was positively correlated with the levels of serum CysC (r=0.51, P<0.05) and Fbg (r=0.63, P<0.05). The level of Fbg was positively correlated with that of serum CysC (r=0.55, P<0.05). The levels of CysC, Fbg, and 24-hour urinary protein were all positively correlated with renal pathological grade (r=0.66, 0.64 and 0.68; respectively, P<0.05). CONCLUSIONS The levels of CysC, Fbg, and 24-hour urine protein can reflect the severity of renal injury, providing satisfactory prediction of the severity of renal injury in children with HSPN.
Collapse
Affiliation(s)
- Fang Wang
- Graduate School, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | | |
Collapse
|
24
|
Martin A, Tegla CA, Cudrici CD, Kruszewski AM, Azimzadeh P, Boodhoo D, Mekala AP, Rus V, Rus H. Role of SIRT1 in autoimmune demyelination and neurodegeneration. Immunol Res 2015; 61:187-97. [PMID: 25281273 DOI: 10.1007/s12026-014-8557-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis (MS) is a demyelinating disease characterized by chronic inflammation of the central nervous system, in which many factors can act together to influence disease susceptibility and progression. SIRT1 is a member of the histone deacetylase class III family of proteins and is an NAD(+)-dependent histone and protein deacetylase. SIRT1 can induce chromatin silencing through the deacetylation of histones and plays an important role as a key regulator of a wide variety of cellular and physiological processes including DNA damage, cell survival, metabolism, aging, and neurodegeneration. It has gained a lot of attention recently because many studies in animal models of demyelinating and neurodegenerative diseases have shown that SIRT1 induction can ameliorate the course of the disease. SIRT1 expression was found to be decreased in the peripheral blood mononuclear cells of MS patients during relapses. SIRT1 represents a possible biomarker of relapses and a potential new target for therapeutic intervention in MS. Modulation of SIRT1 may be a valuable strategy for treating or preventing MS and neurodegenerative central nervous system disorders.
Collapse
Affiliation(s)
- Alvaro Martin
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sun L, Shen YL, Liu HJ, Hu YJ, Kang YL, Huang WY. The expression of response gene to complement 32 on renal ischemia reperfusion injury in rat. Ren Fail 2015; 38:276-81. [PMID: 26652201 DOI: 10.3109/0886022x.2015.1120118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
To investigate the expression of response gene to complement 32 (RGC32) in rat with acute kidney injury (AKI) and to explore the role of RGC32 in renal injury and repair induced by ischemia reperfusion. Rats were randomly divided into two groups, including sham operation group (n = 48) and acute ischemia reperfusion injury (IRI) group (n = 48). Rats were sacrificed following reperfusion 2 h, 6 h, 24 h, 48 h, 72 h, 1 week (w), 2 w, and 4 w. The distribution and expression of RGC32 in renal tissue were observed by means of immunohistochemistry. The mean density of the images detected by Image-Pro Plus 6 was designated as the representative RGC32 expression levels. Meanwhile, RGC32 mRNA expression was measured by qPCR. RGC32 mainly expressed in cytoplasm of proximal tubular epithelial cells. However, RGC32 did not express in renal interstitium and vessels. The expression levels of RGC32 measured by immunohistochemistry at different reperfusion time were 0.0168 ± 0.0029, 0.0156 ± 0.0021, 0.0065 ± 0.0013, 0.0075 ± 0.0013, 0.0096 ± 0.0014, 0.0132 ± 0.0016, 0.0169 ± 0.0014, 0.0179 ± 0.0022, respectively. Compared with the sham group, the level of RGC32 expression in IRI group was significant lower at 24 h, 48 h, 72 h after IRI (p < 0.05). The expression levels of RGC32 mRNA at different reperfusion time measured by qPCR were corroborated the immunohistochemistry finding. The in vitro experiments show the expression of α-SMA and extracellular matrix expression increased signification when the RGC32 was silenced. Our data showed that the RGC32 expression in AKI rat decreased significantly reduces with different reperfusion time and performs a time-dependent manner. RGC32 may play an important role in the pathogenesis of AKI following IRI and repair in rat.
Collapse
Affiliation(s)
- Lei Sun
- a Department of Nephrology and Rheumatology , Shanghai Children's Hospital, Children's Hospital of Shanghai Jiaotong University , Shanghai , P.R. China
| | - Yun-Lin Shen
- a Department of Nephrology and Rheumatology , Shanghai Children's Hospital, Children's Hospital of Shanghai Jiaotong University , Shanghai , P.R. China
| | - Hua-Jie Liu
- a Department of Nephrology and Rheumatology , Shanghai Children's Hospital, Children's Hospital of Shanghai Jiaotong University , Shanghai , P.R. China
| | - Yu-Jie Hu
- a Department of Nephrology and Rheumatology , Shanghai Children's Hospital, Children's Hospital of Shanghai Jiaotong University , Shanghai , P.R. China
| | - Yu-Lin Kang
- a Department of Nephrology and Rheumatology , Shanghai Children's Hospital, Children's Hospital of Shanghai Jiaotong University , Shanghai , P.R. China
| | - Wen-Yan Huang
- a Department of Nephrology and Rheumatology , Shanghai Children's Hospital, Children's Hospital of Shanghai Jiaotong University , Shanghai , P.R. China
| |
Collapse
|
26
|
Cui XB, Luan JN, Chen SY. RGC-32 Deficiency Protects against Hepatic Steatosis by Reducing Lipogenesis. J Biol Chem 2015; 290:20387-95. [PMID: 26134570 DOI: 10.1074/jbc.m114.630186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Indexed: 12/20/2022] Open
Abstract
Hepatic steatosis is associated with insulin resistance and metabolic syndrome because of increased hepatic triglyceride content. We have reported previously that deficiency of response gene to complement 32 (RGC-32) prevents high-fat diet (HFD)-induced obesity and insulin resistance in mice. This study was conducted to determine the role of RGC-32 in the regulation of hepatic steatosis. We observed that hepatic RGC-32 was induced dramatically by both HFD challenge and ethanol administration. RGC-32 knockout (RGC32(-/-)) mice were resistant to HFD- and ethanol-induced hepatic steatosis. The hepatic triglyceride content of RGC32(-/-) mice was decreased significantly compared with WT controls even under normal chow conditions. Moreover, RGC-32 deficiency decreased the expression of lipogenesis-related genes, sterol regulatory element binding protein 1c (SREBP-1c), fatty acid synthase, and stearoyl-CoA desaturase 1 (SCD1). RGC-32 deficiency also decreased SCD1 activity, as indicated by decreased desaturase indices of the liver and serum. Mechanistically, insulin and ethanol induced RGC-32 expression through the NF-κB signaling pathway, which, in turn, increased SCD1 expression in a SREBP-1c-dependent manner. RGC-32 also promoted SREBP-1c expression through activating liver X receptor. These results demonstrate that RGC-32 contributes to the development of hepatic steatosis by facilitating de novo lipogenesis through activating liver X receptor, leading to the induction of SREBP-1c and its target genes. Therefore, RGC-32 may be a potential novel drug target for the treatment of hepatic steatosis and its related diseases.
Collapse
Affiliation(s)
- Xiao-Bing Cui
- From the Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia 30602 and
| | - Jun-Na Luan
- From the Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia 30602 and
| | - Shi-You Chen
- From the Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia 30602 and the Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei Medical University, Shiyan, 442000 Hubei, China
| |
Collapse
|
27
|
Molden RC, Bhanu NV, LeRoy G, Arnaudo AM, Garcia BA. Multi-faceted quantitative proteomics analysis of histone H2B isoforms and their modifications. Epigenetics Chromatin 2015; 8:15. [PMID: 25922622 PMCID: PMC4411797 DOI: 10.1186/s13072-015-0006-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/25/2015] [Indexed: 01/01/2023] Open
Abstract
Background Histone isoforms and their post-translational modifications (PTMs) play an important role in the control of many chromatin-related processes including transcription and DNA damage. Variants of histones H2A and H3 have been studied in depth and have been found to have distinct functions. Although 13 somatic histone H2B isoforms have been identified by various biochemical and mass spectrometric (MS) approaches, the distinct roles of these isoforms within human cells are as yet unknown. Here, we have developed quantitative MS techniques to characterize isoform-specific H2B expression across the cell cycle, in differentiated myogenic cells, and in different cancer cell lines to illuminate potential functional roles. Results Using the MS strategies that we developed, we identified differences in H2B isoform levels between different cancer cell types, suggesting cancer or tissue-specific H2B isoform regulation. In particular, we found large variations in the levels of isoforms H2B1B and H2B1M across the panel of cell lines. We also found that, while individual H2B isoforms do not differ in their acetylation levels, trends in the acetylation on all H2B isoforms correlated with acetylation on other histone family members in the cancer cell line panel. We also used the MS strategies to study H2B protein expression across the cell cycle and determined that H2B isoforms that are alternatively spliced to carry a polyadenylation signal rather than the standard histone downstream element are expressed independently of the cell cycle. However, the level of protein produced from the polyadenylated transcripts does not contribute significantly to the total pool of H2B isoforms translated across the cell cycle or in non-cycling myogenic cells. Conclusions Our results show that H2B isoforms are expressed at varying levels in different cells, suggesting isoform-specific, and possibly cell-type-specific, H2B gene regulation. The bottom-up mass spectrometry technique we developed for H2B quantification is compatible with the current standard histone H3 and H4 bottom-up ‘one-pot’ analysis platform so that H2B isoforms and their modifications can be studied in future experiments at the same time as histone H3 and H4 modifications. Therefore, we have expanded the histone landscape that can be interrogated in future experiments. Electronic supplementary material The online version of this article (doi:10.1186/s13072-015-0006-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rosalynn C Molden
- Department of Chemistry, Princeton University, Princeton, NJ 08544 USA
| | - Natarajan V Bhanu
- Department of Biochemistry and Biophysics, Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Room 9-124, 3400 Civic Center Blvd., Bldg. 421, Philadelphia, PA 19104 USA
| | - Gary LeRoy
- Department of Chemistry, Princeton University, Princeton, NJ 08544 USA
| | - Anna M Arnaudo
- Department of Chemistry, Princeton University, Princeton, NJ 08544 USA ; Department of Biochemistry and Biophysics, Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Room 9-124, 3400 Civic Center Blvd., Bldg. 421, Philadelphia, PA 19104 USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Room 9-124, 3400 Civic Center Blvd., Bldg. 421, Philadelphia, PA 19104 USA
| |
Collapse
|
28
|
Tegla CA, Cudrici CD, Nguyen V, Danoff J, Kruszewski AM, Boodhoo D, Mekala AP, Vlaicu SI, Chen C, Rus V, Badea TC, Rus H. RGC-32 is a novel regulator of the T-lymphocyte cell cycle. Exp Mol Pathol 2015; 98:328-37. [PMID: 25770350 DOI: 10.1016/j.yexmp.2015.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
Abstract
We have previously shown that RGC-32 is involved in cell cycle regulation in vitro. To define the in vivo role of RGC-32, we generated RGC-32 knockout mice. These mice developed normally and did not spontaneously develop overt tumors. To assess the effect of RGC-32 deficiency on cell cycle activation in T cells, we determined the proliferative rates of CD4(+) and CD8(+) T cells from the spleens of RGC-32(-/-) mice, as compared to wild-type (WT, RGC-32(+/+)) control mice. After stimulation with anti-CD3/anti-CD28, CD4(+) T cells from RGC-32(-/-) mice displayed a significant increase in [(3)H]-thymidine incorporation when compared to WT mice. In addition, both CD4(+) and CD8(+) T cells from RGC-32(-/-) mice displayed a significant increase in the proportion of proliferating Ki67(+) cells, indicating that in T cells, RGC-32 has an inhibitory effect on cell cycle activation induced by T-cell receptor/CD28 engagement. Furthermore, Akt and FOXO1 phosphorylation induced in stimulated CD4(+) T-cells from RGC-32(-/-) mice were significantly higher, indicating that RGC-32 inhibits cell cycle activation by suppressing FOXO1 activation. We also found that IL-2 mRNA and protein expression were significantly increased in RGC-32(-/-) CD4(+) T cells when compared to RGC-32(+/+) CD4(+) T cells. In addition, the effect of RGC-32 on the cell cycle and IL-2 expression was inhibited by pretreatment of the samples with LY294002, indicating a role for phosphatidylinositol 3-kinase (PI3K). Thus, RGC-32 is involved in controlling the cell cycle of T cells in vivo, and this effect is mediated by IL-2 in a PI3K-dependent fashion.
Collapse
Affiliation(s)
- Cosmin A Tegla
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, USA; Research Service, Veterans Administration Maryland Health Care System, Baltimore, MD, USA
| | - Cornelia D Cudrici
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Vinh Nguyen
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Jacob Danoff
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Adam M Kruszewski
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Dallas Boodhoo
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Armugam P Mekala
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Sonia I Vlaicu
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, USA; Department of Internal Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ching Chen
- Department of Pathology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Violeta Rus
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Tudor C Badea
- Retinal Circuit Development and Genetics Unit, N-NRL, National Eye Institute, Bethesda, MD, USA
| | - Horea Rus
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, USA; Research Service, Veterans Administration Maryland Health Care System, Baltimore, MD, USA; Veterans Administration Multiple Sclerosis Center of Excellence, Baltimore, MD, USA.
| |
Collapse
|
29
|
Cui XB, Luan JN, Ye J, Chen SY. RGC32 deficiency protects against high-fat diet-induced obesity and insulin resistance in mice. J Endocrinol 2015; 224:127-37. [PMID: 25385871 PMCID: PMC4293277 DOI: 10.1530/joe-14-0548] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Obesity is an important independent risk factor for type 2 diabetes, cardiovascular diseases and many other chronic diseases. Adipose tissue inflammation is a critical link between obesity and insulin resistance and type 2 diabetes and a contributor to disease susceptibility and progression. The objective of this study was to determine the role of response gene to complement 32 (RGC32) in the development of obesity and insulin resistance. WT and RGC32 knockout (Rgc32(-/-) (Rgcc)) mice were fed normal chow or high-fat diet (HFD) for 12 weeks. Metabolic, biochemical, and histologic analyses were performed. 3T3-L1 preadipocytes were used to study the role of RGC32 in adipocytes in vitro. Rgc32(-/-) mice fed with HFD exhibited a lean phenotype with reduced epididymal fat weight compared with WT controls. Blood biochemical analysis and insulin tolerance test showed that RGC32 deficiency improved HFD-induced dyslipidemia and insulin resistance. Although it had no effect on adipocyte differentiation, RGC32 deficiency ameliorated adipose tissue and systemic inflammation. Moreover, Rgc32(-/-) induced browning of adipose tissues and increased energy expenditure. Our data indicated that RGC32 plays an important role in diet-induced obesity and insulin resistance, and thus it may serve as a potential novel drug target for developing therapeutics to treat obesity and metabolic disorders.
Collapse
Affiliation(s)
- Xiao-Bing Cui
- Department of Physiology and PharmacologyUniversity of Georgia, 501 D.W. Brooks Drive, Athens, Georgia 30602, USARenmin HospitalHubei University of Medicine, Shiyan, Hubei 442000, ChinaAntioxidant and Gene Regulation LaboratoryPennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Jun-Na Luan
- Department of Physiology and PharmacologyUniversity of Georgia, 501 D.W. Brooks Drive, Athens, Georgia 30602, USARenmin HospitalHubei University of Medicine, Shiyan, Hubei 442000, ChinaAntioxidant and Gene Regulation LaboratoryPennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Jianping Ye
- Department of Physiology and PharmacologyUniversity of Georgia, 501 D.W. Brooks Drive, Athens, Georgia 30602, USARenmin HospitalHubei University of Medicine, Shiyan, Hubei 442000, ChinaAntioxidant and Gene Regulation LaboratoryPennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Shi-You Chen
- Department of Physiology and PharmacologyUniversity of Georgia, 501 D.W. Brooks Drive, Athens, Georgia 30602, USARenmin HospitalHubei University of Medicine, Shiyan, Hubei 442000, ChinaAntioxidant and Gene Regulation LaboratoryPennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA Department of Physiology and PharmacologyUniversity of Georgia, 501 D.W. Brooks Drive, Athens, Georgia 30602, USARenmin HospitalHubei University of Medicine, Shiyan, Hubei 442000, ChinaAntioxidant and Gene Regulation LaboratoryPennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| |
Collapse
|
30
|
Lu Y, Hu XB. C5a stimulates the proliferation of breast cancer cells via Akt-dependent RGC-32 gene activation. Oncol Rep 2014; 32:2817-23. [PMID: 25230890 DOI: 10.3892/or.2014.3489] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/14/2014] [Indexed: 11/05/2022] Open
Abstract
Complement system activation contributes to various immune and inflammatory diseases, as well as cancers.However, the role of complement activation in the proliferation of cancer cells is not clear. In the present study, we investigated the consequences of complement activation on the proliferation of breast cancer cells and its possible mechanisms. We focused our study on the potential roles of the anaphylatoxins C3a and C5a in the proliferation of human breast cancer, as two important immune mediators generated after complement activation. Our study revealed that C5a stimulation, but not C3a, enhanced the proliferation of human breast cancer cells in vitro. Moreover, the expression of response gene to complement 32 (RGC-32) was pronounced in breast cancer cells in response to C5a stimulation. Notably, blockade of the C5a receptor markedly reduced the expression of RGC-32 and the proliferation of breast cancer cells stimulated by C5a. Meanwhile, silencing of RGC-32 expression reduced the proliferation of breast cancer cells induced by C5a treatment. Further investigation revealed that Akt activation was involved in C5a-induced RGC-32 expression and breast cancer cell proliferation. In conclusion, the present study indicates that C5a may promote the proliferation of breast cancer cells through Akt1 activation of the RGC-32 gene.
Collapse
Affiliation(s)
- Yi Lu
- Department of General Surgery, Suzhou Kowloon Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Suzhou, Jiangsu 215021, P.R. China
| | - Xiao-Bo Hu
- Department of Breast Surgery, The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
31
|
Guo S, Philbrick MJ, An X, Xu M, Wu J. Response gene to complement 32 (RGC-32) in endothelial cells is induced by glucose and helpful to maintain glucose homeostasis. Int J Clin Exp Med 2014; 7:2541-2549. [PMID: 25356107 PMCID: PMC4211757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/26/2014] [Indexed: 06/04/2023]
Abstract
Endothelium dysfunction has been understood primarily in terms of abnormal vasomotor function, which plays an important role in the pathogenesis of diabetes and chronic diabetic complications. However, it has not been fully studied that the endothelium may regulate metabolism itself. The response gene to complement 32 (RGC-32) has be considered as an angiogenic inhibitor in the context of endothelial cells. We found that RGC-32 was induced by high fat diet in vivo and by glucose or insulin in endothelial cells, and then we set out to investigate the role of endothelial RGC-32 in metabolism. DNA array analysis and qPCR results showed that glutamine-fructose-6-phosphate aminotransferase [isomerizing] 1 (GFPT1), solute carrier family 2 (facilitated glucose transporter), member 12 (SLC2A12, GLUT12) and glucagon-like peptide 2 receptor (GLP2R) may be among possible glucose metabolism related downstream genes of RGC-32. Additionally, in the mice with endothelial specific over-expressed RGC-32, the disposal of carbohydrate was improved without changing insulin sensitivity when mice were faced with high fat diet challenges. Taken together, our findings suggest that RGC-32 in the endothelial cells regulates glucose metabolism related genes and subsequent helps to maintain the homeostasis of blood glucose.
Collapse
Affiliation(s)
- Shuzhen Guo
- School of Preclinical Medicine, Beijing University of Chinese MedicineBeijing, China
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA
| | - Melissa J Philbrick
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA
| | - Xiaojing An
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA
| | - Ming Xu
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA
| | - Jiaping Wu
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
32
|
Tegla CA, Azimzadeh P, Andrian-Albescu M, Martin A, Cudrici CD, Trippe R, Sugarman A, Chen H, Boodhoo D, Vlaicu SI, Royal W, Bever C, Rus V, Rus H. SIRT1 is decreased during relapses in patients with multiple sclerosis. Exp Mol Pathol 2014; 96:139-48. [DOI: 10.1016/j.yexmp.2013.12.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 12/27/2013] [Indexed: 11/25/2022]
|
33
|
Chen QW, Zhu XY, Li YY, Meng ZQ. Epigenetic regulation and cancer (review). Oncol Rep 2013; 31:523-32. [PMID: 24337819 DOI: 10.3892/or.2013.2913] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/04/2013] [Indexed: 11/06/2022] Open
Abstract
'Epigenetics' is defined as the inheritable changes in gene expression with no alterations in DNA sequences. Epigenetics is a rapidly expanding field, and the study of epigenetic regulation in cancer is emerging. Disruption of the epigenome is a fundamental mechanism in cancer, and several epigenetic drugs have been proven to prolong survival and to be less toxic than conventional chemotherapy. Promising results from combination clinical trials with DNA methylation inhibitors and histone deacetylase inhibitors have recently been reported, and data are emerging that describe molecular determinants of clinical responses. Despite significant advances, challenges remain, including a lack of predictive markers, unclear mechanisms of response and resistance, and rare responses in solid tumors. Preclinical studies are ongoing with novel classes of agents that target various components of the epigenetic machinery. In the present review, examples of studies that demonstrate the role of epigenetic regulation in human cancers with the focus on histone modifications and DNA methylation, and the recent clinical and translational data in the epigenetics field that have potential in cancer therapy are discussed.
Collapse
Affiliation(s)
- Q W Chen
- Department of Integrated Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - X Y Zhu
- Department of Integrated Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Y Y Li
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Z Q Meng
- Department of Integrated Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
34
|
Vlaicu SI, Tegla CA, Cudrici CD, Danoff J, Madani H, Sugarman A, Niculescu F, Mircea PA, Rus V, Rus H. Role of C5b-9 complement complex and response gene to complement-32 (RGC-32) in cancer. Immunol Res 2013; 56:109-21. [PMID: 23247987 DOI: 10.1007/s12026-012-8381-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Complement system activation plays an important role in both innate and acquired immunity, with the activation of complement and the subsequent formation of C5b-9 terminal complement complex on cell membranes inducing target cell death. Recognition of this role for C5b-9 leads to the assumption that C5b-9 might play an antitumor role. However, sublytic C5b-9 induces cell cycle progression by activating signal transduction pathways and transcription factors in cancer cells, indicating a role in tumor promotion for this complement complex. The induction of the cell cycle by C5b-9 is dependent upon the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt/FOXO1 and ERK1 pathways in a Gi protein-dependent manner. C5b-9 also induces response gene to complement (RGC)-32, a gene that plays a role in cell cycle promotion through activation of Akt and the CDC2 kinase. RGC-32 is expressed by tumor cells and plays a dual role in cancers, in that it has both a tumor suppressor role and tumor-promoting activity. Thus, through the activation of tumor cells, the C5b-9-mediated induction of the cell cycle plays an important role in tumor proliferation and oncogenesis.
Collapse
Affiliation(s)
- Sonia I Vlaicu
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tegla CA, Cudrici CD, Azimzadeh P, Singh AK, Trippe R, Khan A, Chen H, Andrian-Albescu M, Royal W, Bever C, Rus V, Rus H. Dual role of Response gene to complement-32 in multiple sclerosis. Exp Mol Pathol 2012; 94:17-28. [PMID: 23000427 DOI: 10.1016/j.yexmp.2012.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/10/2012] [Indexed: 01/17/2023]
Abstract
Response gene to complement (RGC)-32 is a novel molecule that plays an important role in cell proliferation. We investigated the expression of RGC-32 in multiple sclerosis (MS) brain and in peripheral blood mononuclear cells (PBMCs) obtained from patients with relapsing-remitting multiple sclerosis. We found that CD3(+), CD68(+), and glial fibrillar acidic protein (GFAP)(+) cells in MS plaques co-localized with RGC-32. Our results show a statistically significant decrease in RGC-32 mRNA expression in PBMCs during relapses when compared to the levels in stable MS patients. This decrease might be useful in predicting disease activity in patients with relapsing-remitting MS. RGC-32 expression was also correlated with that of FasL mRNA during relapses. FasL mRNA expression was significantly reduced after RGC-32 silencing, indicating a role for RGC-32 in the regulation of FasL expression. In addition, the expression of Akt1, cyclin D1, and IL-21 mRNA was significantly increased during MS relapses when compared to levels in healthy controls. Furthermore, we investigated the role of RGC-32 in TGF-β-induced extracellular matrix expression in astrocytes. Blockage of RGC-32 using small interfering RNA significantly inhibits TGF-β induction of procollagen I, fibronectin and of the reactive astrocyte marker α-smooth muscle actin (α-SMA). Our data suggest that RGC-32 plays a dual role in MS, both as a regulator of T-cells mediated apoptosis and as a promoter of TGF-β-mediated profibrotic effects in astrocytes.
Collapse
Affiliation(s)
- Cosmin A Tegla
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gargalionis AN, Piperi C, Adamopoulos C, Papavassiliou AG. Histone modifications as a pathogenic mechanism of colorectal tumorigenesis. Int J Biochem Cell Biol 2012; 44:1276-89. [PMID: 22583735 DOI: 10.1016/j.biocel.2012.05.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/02/2012] [Accepted: 05/02/2012] [Indexed: 12/16/2022]
Abstract
Epigenetic regulation of gene expression has provided colorectal cancer (CRC) pathogenesis with an additional trait during the past decade. In particular, histone post-translational modifications set up a major component of this process dictating chromatin status and recruiting non-histone proteins in complexes formed to "handle DNA". In CRC, histone marks of aberrant acetylation and methylation levels on specific residues have been revealed, along with a plethora of deregulated enzymes that catalyze these reactions. Mutations, deletions or altered expression patterns transform the function of several histone-modifying proteins, further supporting the crucial role of epigenetic effectors in CRC oncogenesis, being closely associated to inactivation of tumor suppressor genes. Elucidation of the biochemical basis of these new tumorigenic mechanisms allows novel potential prognostic factors to come into play. Moreover, the detection of these changes even in early stages of the multistep CRC process, along with the reversible nature of these mechanisms and the technical capability to detect such alterations in cancer cells, places this group of covalent modifications as a further potential asset for clinical diagnosis or treatment of CRC. This review underlines the biochemistry of histone modifications and the potential regulatory role of histone-modifying proteins in CRC pathogenesis, to date. Furthermore, the underlying mechanisms of the emerging epigenetic interplay along with the chemical compounds that are candidates for clinical use are discussed, offering new insights for further investigation of key histone enzymes and new therapeutic targets.
Collapse
Affiliation(s)
- Antonios N Gargalionis
- Department of Biological Chemistry, University of Athens, Medical School, 11527 Athens, Greece.
| | | | | | | |
Collapse
|
37
|
Zhu L, Qin H, Li PY, Xu SN, Pang HF, Zhao HZ, Li DM, Zhao Q. Response gene to complement-32 enhances metastatic phenotype by mediating transforming growth factor beta-induced epithelial-mesenchymal transition in human pancreatic cancer cell line BxPC-3. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2012; 31:29. [PMID: 22458379 PMCID: PMC3337240 DOI: 10.1186/1756-9966-31-29] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 03/29/2012] [Indexed: 02/05/2023]
Abstract
BACKGROUND Response gene to complement-32 (RGC-32) is comprehensively expressed in many kinds of tissues and has been reported to be expressed abnormally in different kinds of human tumors. However, the role of RGC-32 in cancer remains controversial and no reports have described the effect of RGC-32 in pancreatic cancer. The present study investigated the expression of RGC-32 in pancreatic cancer tissues and explored the role of RGC-32 in transforming growth factor-beta (TGF-β)-induced epithelial-mesenchymal transition (EMT) in human pancreatic cancer cell line BxPC-3. METHODS Immunohistochemical staining of RGC-32 and E-cadherin was performed on specimens from 42 patients with pancreatic cancer, 12 with chronic pancreatitis and 8 with normal pancreas. To evaluate the role of RGC-32 in TGF-β-induced EMT in pancreatic cancer cells, BxPC-3 cells were treated with TGF-β1, and RGC-32 siRNA silencing and gene overexpression were performed as well. The mRNA expression and protein expression of RGC-32 and EMT markers such E-cadherin and vimentin were determined by quantitative reverse transcription-PCR (qRT-PCR) and western blot respectively. Finally, migration ability of BxPC-3 cells treated with TGF-β and RGC-32 siRNA transfection was examined by transwell cell migration assay. RESULTS We found stronger expression of RGC-32 and higher abnormal expression rate of E-cadherin in pancreatic cancer tissues than those in chronic pancreatitis tissues and normal pancreatic tissues. Immunohistochemical analysis revealed that both RGC-32 positive expression and E-cadherin abnormal expression in pancreatic cancer were correlated with lymph node metastasis and TNM staging. In addition, a significant and positive correlation was found between positive expression of RGC-32 and abnormal expression of E-cadherin. Furthermore, in vitro, we found sustained TGF-β stimuli induced EMT and up-regulated RGC-32 expression in BxPC-3 cells. By means of siRNA silencing and gene overexpression, we further demonstrated that RGC-32 mediated TGF-β-induced EMT and migration in BxPC-3 cells. CONCLUSIONS The results above indicated that RGC-32 might be a novel metastasis promoting gene in pancreatic cancer and it enhances metastatic phenotype by mediating TGF-β-induced EMT in human pancreatic cancer cell line BxPC-3.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Upregulation of the cell-cycle regulator RGC-32 in Epstein-Barr virus-immortalized cells. PLoS One 2011; 6:e28638. [PMID: 22163048 PMCID: PMC3232240 DOI: 10.1371/journal.pone.0028638] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 11/11/2011] [Indexed: 12/19/2022] Open
Abstract
Epstein-Barr virus (EBV) is implicated in the pathogenesis of multiple human tumours of lymphoid and epithelial origin. The virus infects and immortalizes B cells establishing a persistent latent infection characterized by varying patterns of EBV latent gene expression (latency 0, I, II and III). The CDK1 activator, Response Gene to Complement-32 (RGC-32, C13ORF15), is overexpressed in colon, breast and ovarian cancer tissues and we have detected selective high-level RGC-32 protein expression in EBV-immortalized latency III cells. Significantly, we show that overexpression of RGC-32 in B cells is sufficient to disrupt G2 cell-cycle arrest consistent with activation of CDK1, implicating RGC-32 in the EBV transformation process. Surprisingly, RGC-32 mRNA is expressed at high levels in latency I Burkitt's lymphoma (BL) cells and in some EBV-negative BL cell-lines, although RGC-32 protein expression is not detectable. We show that RGC-32 mRNA expression is elevated in latency I cells due to transcriptional activation by high levels of the differentially expressed RUNX1c transcription factor. We found that proteosomal degradation or blocked cytoplasmic export of the RGC-32 message were not responsible for the lack of RGC-32 protein expression in latency I cells. Significantly, analysis of the ribosomal association of the RGC-32 mRNA in latency I and latency III cells revealed that RGC-32 transcripts were associated with multiple ribosomes in both cell-types implicating post-initiation translational repression mechanisms in the block to RGC-32 protein production in latency I cells. In summary, our results are the first to demonstrate RGC-32 protein upregulation in cells transformed by a human tumour virus and to identify post-initiation translational mechanisms as an expression control point for this key cell-cycle regulator.
Collapse
|
39
|
Migliore L, Migheli F, Spisni R, Coppedè F. Genetics, cytogenetics, and epigenetics of colorectal cancer. J Biomed Biotechnol 2011; 2011:792362. [PMID: 21490705 PMCID: PMC3070260 DOI: 10.1155/2011/792362] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/14/2010] [Indexed: 12/17/2022] Open
Abstract
Most of the colorectal cancer (CRC) cases are sporadic, only 25% of the patients have a family history of the disease, and major genes causing syndromes predisposing to CRC only account for 5-6% of the total cases. The following subtypes can be recognized: MIN (microsatellite instability), CIN (chromosomal instability), and CIMP (CpG island methylator phenotype). CIN occurs in 80-85% of CRC. Chromosomal instability proceeds through two major mechanisms, missegregation that results in aneuploidy through the gain or loss of whole chromosomes, and unbalanced structural rearrangements that lead to the loss and/or gain of chromosomal regions. The loss of heterozygosity that occur in the first phases of the CRC cancerogenesis (in particular for the genes on 18q) as well as the alteration of methylation pattern of multiple key genes can drive the development of colorectal cancer by facilitating the acquisition of multiple tumor-associated mutations and the instability phenotype.
Collapse
Affiliation(s)
- Lucia Migliore
- Department of Human and Environmental Sciences, University of Pisa, Street S. Giuseppe 22, 56126 Pisa, Italy.
| | | | | | | |
Collapse
|