1
|
Trinh J, Shin J, Rai V, Agrawal DK. Therapeutic Potential of Targeting p27 kip1 in Plaque Vulnerability. ARCHIVES OF INTERNAL MEDICINE RESEARCH 2024; 7:73-79. [PMID: 38737892 PMCID: PMC11087066 DOI: 10.26502/aimr.0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Atherosclerosis, a critical contributor to coronary artery diseases, involves the accumulation of cholesterol, fibrin, and lipids within arterial walls, inciting inflammatory reactions culminating in plaque formation. This multifaceted interplay encompasses excessive fibrosis, fatty plaque development, vascular smooth muscle cell (VSMC) proliferation, and leukocyte migration in response to inflammatory pathways. While stable plaques demonstrate resilience against complications, vulnerable ones, with lipid-rich cores, necrosis, and thin fibrous caps, lead to thrombosis, myocardial infarction, stroke, and acute cerebrovascular accidents. The nuanced phenotypes of VSMCs, modulated by gene regulation and environmental cues, remain pivotal. Essential markers like alpha-SMA, myosin heavy chain, and calponin regulate VSMC migration and contraction, exhibiting diminished expression during VSMC de-differentiation and proliferation. p27kip, a CDK inhibitor, shows promise in regulating VSMC proliferation and appears associated with TNF-α-induced pathways impacting unstable plaques. Oncostatin M (OSM), an IL-6 family cytokine, correlates with MMP upregulation and foam cell formation, influencing plaque development. Efforts targeting mammalian target of rapamycin (mTOR) inhibition, notably using rapamycin and its analogs, demonstrate potential but pose challenges due to associated adverse effects. Exploration of the impact of p27kip impact on plaque macrophages presents promising avenues, yet its complete therapeutic potential remains untapped. Similarly, while OSM has exhibited potential in inducing cell cycle arrest via p27kip, direct links necessitate further investigation. This critical review discusses the role of mTOR, p27kip, and OSM in VSMC proliferation and differentiation followed by the therapeutic potential of targeting these mediators in atherosclerosis to attenuate plaque vulnerability.
Collapse
Affiliation(s)
- Jerry Trinh
- Department of Translational Research, Western University of Health Sciences, Pomona CA 91766, USA
| | - Jennifer Shin
- Department of Translational Research, Western University of Health Sciences, Pomona CA 91766, USA
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona CA 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona CA 91766, USA
| |
Collapse
|
2
|
Patel AG, Moxham S, Bamezai AK. Ly-6A-Induced Growth Inhibition and Cell Death in a Transformed CD4 + T Cell Line: Role of Tumor Necrosis Factor-α. Arch Immunol Ther Exp (Warsz) 2023; 71:4. [PMID: 36725744 DOI: 10.1007/s00005-023-00670-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/21/2022] [Indexed: 02/03/2023]
Abstract
Ly-6A, a member of the Ly-6/uPAR supergene family of proteins, is a cell adhesion and cell signaling protein. Signaling through Ly-6A activates the cell-intrinsic apoptotic cell death pathway in CD4+ T cell lines, as indicated by the release of cytochrome C, and activation of caspases 9 and 3. In addition, Ly-6A induces cytokine production and growth inhibition. The mechanism underlying the distinct cellular responses that are triggered by engaging Ly-6A protein has remained unknown. To examine the relatedness of these distinct responses, we have quantified the production of pro-apoptotic, growth inhibitory and tumor suppressive cytokines, such as TNF-α, TGF-β and a related protein GDF-10, in response to Ly-6A signaling. Anti-Ly-6A monoclonal antibody-induced activation of YH16.33 CD4+ T cell line generated low levels of TGF-β and GDF-10 but elevated levels of TNF-α. Blocking the biological activity of TNF-α resulted in reduced Ly-6A-induced apoptosis in T cells. The Ly-6A-induced response in the T cell line was distinct, as signaling through the antigen receptor complex did not cause growth inhibition and apoptosis despite high levels of TGF-β and GDF-10 that were detected in these cultures. Additionally, in response to antigen receptor complex signaling, lower amount of TNF-α was detected. These results indicate the contribution of TNF-α in the observed Ly-6A-induced growth inhibition and apoptosis and provide a mechanistic explanation for the biologically distinct responses observed in CD4+ T cells after engaging Ly-6A protein. Additionally, the findings reported here will aid in the understanding of inhibitory signaling initiated by Ly-6A protein, especially in the context of its potential immune checkpoint inhibitory role in T cells.
Collapse
Affiliation(s)
- Akshay G Patel
- Department of Biology, Villanova University, Villanova, PA, 19085, USA
| | - Sarah Moxham
- Department of Biology, Villanova University, Villanova, PA, 19085, USA
| | - Anil K Bamezai
- Department of Biology, Villanova University, Villanova, PA, 19085, USA.
| |
Collapse
|
3
|
Chen L, Wang S, Wang Z, Liu Y, Xu Y, Yang S, Xue G. Construction and analysis of competing endogenous RNA network and patterns of immune infiltration in abdominal aortic aneurysm. Front Cardiovasc Med 2022; 9:955838. [PMID: 35990982 PMCID: PMC9386163 DOI: 10.3389/fcvm.2022.955838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Background Various studies have highlighted the role of circular RNAs (circRNAs) as critical molecular regulators in cardiovascular diseases, but its role in abdominal aortic aneurysm (AAA) is unclear. This study explores the potential molecular mechanisms of AAA based on the circRNA-microRNA (miRNA)-mRNA competing endogenous RNA (ceRNA) network and immune cell infiltration patterns. Methods The expression profiles of circRNAs (GSE144431) and mRNAs (GSE57691 and GSE47472) were obtained from the Gene Expression Omnibus (GEO). Then, the differentially expressed circRNAs (DEcircRNAs) and mRNAs (DEmRNAs) between AAA patients and healthy control samples, and the target miRNAs of these DEmRNAs and DEcircRNAs were identified. Based on the miRNA-DEmRNAs and miRNA-DEcircRNAs pairs, the ceRNA network was constructed. Furthermore, the proportion of the 22 immune cell types in AAA patients was assessed using cell type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm. The expressions of key genes and immune cell infiltration were validated using clinical specimens. Results A total of 214 DEmRNAs were identified in the GSE57691 and GSE47472 datasets, and 517 DEcircRNAs were identified in the GSE144431 dataset. The ceRNA network included 19 circRNAs, 36 mRNAs, and 68 miRNAs. Two key genes, PPARG and FOXO1, were identified among the hub genes of the established protein-protein interaction between mRNAs in the ceRNA network. Moreover, seven types of immune cells were differentially expressed between AAA patients and healthy control samples. Hub genes in ceRNA, such as FOXO1, HSPA8, and RAB5C, positively correlated with resting CD4 memory T cells or M1 macrophages, or both. Conclusion In conclusion, a ceRNA interaction axis was constructed. The composition of infiltrating immune cells was analyzed in the abdominal aorta of AAA patients and healthy control samples. This may help identify potential therapeutic targets for AAA.
Collapse
Affiliation(s)
- Liang Chen
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shuangshuang Wang
- Songyuan Central Hospital, Songyuan Children's Hospital, Songyuan, China
| | - Zheyu Wang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yuting Liu
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yi Xu
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shuofei Yang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Shuofei Yang
| | - Guanhua Xue
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Guanhua Xue
| |
Collapse
|
4
|
Liu Q, Yan S, Yuan Y, Ji S, Guo L. miR-28-5p improved carotid artery stenosis by regulating vascular smooth muscle cell proliferation and migration. Vascular 2021; 30:764-770. [PMID: 34162296 DOI: 10.1177/17085381211019510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are involved in carotid artery stenosis. The purpose of this study was to investigate the diagnostic value of serum miR-28-5p in asymptomatic carotid artery stenosis and its regulation on the proliferation and migration of VSMCs. METHODS Serum miR-28-5p levels in 65 healthy controls and 68 asymptomatic carotid artery stenosis patients were detected by qRT-PCR. The receiver-operating characteristic curve was applied to elucidate the diagnostic value of serum miR-28-5p for carotid artery stenosis patients. The specificity of miRNA targets was detected by luciferase reporter assay. CCK-8 and Transwell assay were applied to detect proliferation and migration of cells. Pearson correlation test was used to investigate the correlation between Forkhead box subclass O 1 (FOXO1) and serum miR-28-5p. RESULTS Serum miR-28-5p was significantly reduced in asymptomatic carotid artery stenosis patients. Moreover, miR-28-5p could distinguish asymptomatic carotid artery stenosis patients from healthy controls, with sensitivity and specificity of 86.8% and 81.5%, respectively, indicating its high diagnostic value. The overexpression of miR-28-5p inhibited the proliferation and migration of VSMCs, while inhibition of miR-28-5p resulted in the opposite effect. What is more, FOXO1, a direct target of miR-28-5p, was significantly increased in asymptomatic carotid artery stenosis patients. Inhibition of miR-28-5p in VSMCs reversed the reduction of FOXO1 levels in patients. CONCLUSIONS miR-28-5p is a valuable diagnostic biomarker for asymptomatic carotid artery stenosis and can affect the proliferation and migration of VSMCs by regulating FOXO1.
Collapse
Affiliation(s)
- Qiangrui Liu
- Department of Neurology, Affiliated Hospital of Gansu Medical College, Pingliang, China
| | - Shibiao Yan
- Department of Cardiology, Shanxian Haijiya Hospital, Shandong, China
| | - Yangyi Yuan
- Fuzhou Medical College of Nanchang University, Fuzhou, Jiangxi, China
| | - Shishun Ji
- Fuzhou Medical College of Nanchang University, Fuzhou, Jiangxi, China
| | - Long Guo
- Department of Neurology, Affiliated Hospital of Gansu Medical College, Pingliang, China
| |
Collapse
|
5
|
Tumor necrosis factor α reduces gonadotropin-releasing hormone release through increase of forkhead box protein O1 activity. Neuroreport 2020; 31:473-477. [PMID: 32168098 DOI: 10.1097/wnr.0000000000001424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
It has been found that hypothalamus helps to control aging, and hypothalamus-driven programmatic aging is associated with nuclear factor-κB (NF-κB)-mediated decrease of gonadotropin-releasing hormone (GnRH). However, the molecular mechanism(s) underlying aging-associated hypothalamic GnRH decline are largely unknown. Forkhead box O (FOXO), a family of transcription factors, has been demonstrated to be associated with aging. GnRH neuronal cell line GT1-7 was used in this study to determine whether FOXO1 was involved in tumor necrosis factor α (TNF-α)-induced decrease of GnRH. Our data showed that FOXO1 activity was increased by TNF-α through inhibition of its phosphorylation. Increased FOXO1 activity inhibited gnrh1 gene and activated NF-κB, thereby impairing the secretion of GnRH from GT1-7 cells. The increase of FOXO1 activity contributes to TNF-α-induced decrease of GnRH release, which may underscore the significance of this event to the development of aging and therapeutic interventions against age-dependent pathologies.
Collapse
|
6
|
Kaneshiro K, Sakai Y, Suzuki K, Uchida K, Tateishi K, Terashima Y, Kawasaki Y, Shibanuma N, Yoshida K, Hashiramoto A. Interleukin-6 and tumour necrosis factor-α cooperatively promote cell cycle regulators and proliferate rheumatoid arthritis fibroblast-like synovial cells. Scand J Rheumatol 2019; 48:353-361. [DOI: 10.1080/03009742.2019.1602164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- K Kaneshiro
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Y Sakai
- Division of Rehabilitation Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - K Suzuki
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - K Uchida
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - K Tateishi
- Department of Orthopedics, Kohnan Kakogawa Hospital, Kakogawa, Japan
| | - Y Terashima
- Department of Orthopedics, Kohnan Kakogawa Hospital, Kakogawa, Japan
| | - Y Kawasaki
- Department of Rheumatology, Kobe Kaisei Hospital, Kobe, Japan
| | - N Shibanuma
- Department of Orthopedic Surgery, Kobe Kaisei Hospital, Kobe, Japan
| | - K Yoshida
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - A Hashiramoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
7
|
Chistiakov DA, Orekhov AN, Bobryshev YV. The impact of FOXO-1 to cardiac pathology in diabetes mellitus and diabetes-related metabolic abnormalities. Int J Cardiol 2017; 245:236-244. [PMID: 28781146 DOI: 10.1016/j.ijcard.2017.07.096] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 12/27/2022]
Abstract
Diabetic heart pathology has a serious social impact due to high prevalence worldwide and significant mortality/invalidation of diabetic patients suffered from cardiomyopathy. The pathogenesis of diabetic and diabetes-related cardiomyopathy is associated with progressive loss and impairment of cardiac function due to adverse effects of metabolic, prooxidant, proinflammatory, and pro-apoptotic stress factors. In the adult heart, the transcriptional factor forkhead box-1 (FOXO-1) is involved in maintaining cardiomyocytes in the homeostatic state and induction of their adaptation to metabolic and pro-oxidant stress stimuli. Insulin inhibits cardiac FOXO-1 expression/activity through the IRS1/Akt signaling in order to prevent gluconeogenesis. In diabetes and insulin resistance, both insulin production and insulin-dependent signaling is weakened or absent. Indeed, FOXO-1 becomes overproduced/overactivated in response to stress stimuli. In diabetic cardiac tissue, FOXO-1 overactivity induces the metabolic switch from the glucose uptake to the predominant lipid uptake. FOXO-1 limits mitochondrial glucose oxidation by stimulation of pyruvate dehydrogenase kinase 4 (PDK4) and increases the lipid uptake through up-regulation of surface expression of CD36. In cardiac muscle cells, lipid accumulation leads to lipotoxicity via increased lipid oxidation, oxidative stress, and cardiomyocyte apoptosis. Indeed, cardiac FOXO-1 levels and activity should be strictly regulated. FOXO-1 deregulation (that is observed in the diabetic heart) causes detrimental effects that finally lead to heart failure.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Fundamental and Applied Neurobiology, Serbsky Federal Medical Research Center of Psychiatry and Narcology, 119991 Moscow, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia; Department of Biophysics, Biological Faculty, Moscow State University, Moscow 119991, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia
| | - Yuri V Bobryshev
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia; School of Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia.
| |
Collapse
|
8
|
Pharmacological Inhibition of Vanin Activity Attenuates Transplant Vasculopathy in Rat Aortic Allografts. Transplantation 2017; 100:1656-66. [PMID: 27014792 DOI: 10.1097/tp.0000000000001169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Development of transplant vasculopathy is a major cause of graft loss and mortality in solid organ transplant recipients. Previous studies in mice have indicated that vanin-1, a member of the vanin protein family with pantetheinase activity, is possibly involved in neointima formation. Here, we investigated if RR6, a recently developed vanin inhibitor, could attenuate development of transplant vasculopathy. METHODS Abdominal allogeneic aorta transplantation from Dark Agouti to Brown Norway rats was performed. Surface neointima was quantified 2 and 4 weeks after transplantation. Systemic vanin activity was measured, and allograft leukocyte infiltration, glutathione-synthesizing capacity, matrix metalloproteinase 9 expression and neointimal smooth muscle cell (SMC) proliferation were assessed by immunohistochemistry. In vitro, the effects of RR6 on SMC proliferation (water-soluble tetrazolium-1 assay) and cytokine-induced apoptosis (flow cytometry) were investigated. RESULTS RR6 treatment significantly reduced systemic pantetheinase activity during the 4-week follow-up period. RR6 attenuated neointima formation 4 weeks after transplantation. Neointimal SMC proliferation and medial SMC matrix metalloproteinase 9 expression were not altered by RR6. However, RR6 significantly reduced neointimal macrophage influx that was accompanied by increased GCLC messenger RNA expression. In vitro, RR6 inhibited platelet-derived growth factor-induced SMC proliferation and protected SMCs from TNF-α-induced apoptosis. CONCLUSIONS Pharmacological inhibition of vanin activity attenuates development of transplant vasculopathy. This was accompanied by reduced macrophage infiltration and increased glutathione-synthesizing capacity. In vitro, RR6 reduced SMC proliferation and apoptosis that was not confirmed in vivo. Further in-depth studies are warranted to reveal the underlying mechanism(s) of RR6-induced attenuation of transplant vasculopathy in vivo.
Collapse
|
9
|
Zhang X, Li J, Qin JJ, Cheng WL, Zhu X, Gong FH, She Z, Huang Z, Xia H, Li H. Oncostatin M receptor β deficiency attenuates atherogenesis by inhibiting JAK2/STAT3 signaling in macrophages. J Lipid Res 2017; 58:895-906. [PMID: 28258089 PMCID: PMC5408608 DOI: 10.1194/jlr.m074112] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/03/2017] [Indexed: 12/31/2022] Open
Abstract
Oncostatin M (OSM) is a secreted cytokine mainly involved in chronic inflammatory and cardiovascular diseases through binding to OSM receptor β (OSMR-β). Recent studies demonstrated that the presence of OSM contributed to the destabilization of atherosclerotic plaque. To investigate whether OSMR-β deficiency affects atherosclerosis, male OSMR-β−/−ApoE−/− mice were generated and utilized. Here we observed that OSMR-β expression was remarkably upregulated in both human and mouse atherosclerotic lesions, which were mainly located in macrophages. We found that OSMR-β deficiency significantly ameliorated atherosclerotic burden in aorta and aortic root relative to ApoE-deficient littermates and enhanced the stability of atherosclerotic plaques by increasing collagen and smooth muscle cell content, while decreasing macrophage infiltration and lipid accumulation. Moreover, bone marrow transplantation of OSMR-β−/− hematopoietic cells to atherosclerosis-prone mice displayed a consistent phenotype. Additionally, we observed a relatively reduced level of JAK2 and signal transducer and activator of transcription (STAT)3 in vivo and under Ox-LDL stimulation in vitro. Our findings suggest that OSMR-β deficiency in macrophages improved high-fat diet-induced atherogenesis and plaque vulnerability. Mechanistically, the protective effect of OSMR-β deficiency on atherosclerosis may be partially attributed to the inhibition of the JAK2/STAT3 activation in macrophages, whereas OSM stimulation can activate the signaling pathway.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China.,Institute of Model Animals, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Jing Li
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China.,Institute of Model Animals, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Wen-Lin Cheng
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China.,Institute of Model Animals, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Xueyong Zhu
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China.,Institute of Model Animals, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Fu-Han Gong
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Zhigang She
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China.,Institute of Model Animals, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Zan Huang
- College of Life Science, Wuhan University, Wuhan, China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China .,Institute of Model Animals, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Guan H, Cheng WL, Guo J, Chao ML, Zhang Y, Gong J, Zhu XY, She ZG, Huang Z, Li H. Vinexin β Ablation Inhibits Atherosclerosis in Apolipoprotein E-Deficient Mice by Inactivating the Akt-Nuclear Factor κB Inflammatory Axis. J Am Heart Assoc 2017; 6:JAHA.116.004585. [PMID: 28209562 PMCID: PMC5523760 DOI: 10.1161/jaha.116.004585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background Vinexin β is a novel adaptor protein that regulates cellular adhesion, cytoskeletal reorganization, signal transduction, and transcription; however, the exact role that vinexin β plays in atherosclerosis remains unknown. Methods and Results Immunoblot analysis showed that vinexin β expression is upregulated in the atherosclerotic lesions of both patients with coronary heart disease and hyperlipemic apolipoprotein E–deficient mice and is primarily localized in macrophages indicated by immunofluorescence staining. The high‐fat diet–induced double‐knockout mice exhibited lower aortic plaque burdens than apolipoprotein E−/− littermates and decreased macrophage content. Vinexin β deficiency improved plaque stability by attenuating lipid accumulation and increasing smooth muscle cell content and collagen. Moreover, the bone marrow transplant experiment demonstrated that vinexin β deficiency exerts atheroprotective effects in hematopoietic cells. Consistent with these changes, the mRNA expression of proinflammatory cytokines were downregulated in vinexin β−/− apolipoprotein E−/− mice, whereas the anti‐inflammatory M2 macrophage markers were upregulated. The immunohistochemical staining and in vitro experiments showed that deficiency of vinexin β inhibited the accumulation of monocytes and the migration of macrophages induced by tumor necrosis factor α–stimulated human umbilical vein endothelial cells as well as macrophage proliferation. Finally, the inhibitory effects exerted by vinexin β deficiency on foam cell formation, nuclear factor κB activation, and inflammatory cytokine expression were largely reversed by constitutive Akt activation, whereas the increased expression of the nuclear factor κB subset promoted by adenoviral vinexin β was dramatically suppressed by inhibition of AKT. Conclusions Vinexin β deficiency attenuates atherogenesis primarily by suppressing vascular inflammation and inactivating Akt–nuclear factor κB signaling. Our data suggest that vinexin β could be a therapeutic target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Hongjing Guan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wen-Lin Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,The Institute of Model Animals of Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Junhong Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,The Institute of Model Animals of Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Meng-Lin Chao
- Key Laboratory of CVD, Nanjing Medical University, Nanjing, China
| | - Yan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,The Institute of Model Animals of Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Jun Gong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,The Institute of Model Animals of Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Xue-Yong Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,The Institute of Model Animals of Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,The Institute of Model Animals of Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Zan Huang
- College of Life Science, Wuhan University, Wuhan, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China .,The Institute of Model Animals of Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Rao VH, Rai V, Stoupa S, Subramanian S, Agrawal DK. Tumor necrosis factor-α regulates triggering receptor expressed on myeloid cells-1-dependent matrix metalloproteinases in the carotid plaques of symptomatic patients with carotid stenosis. Atherosclerosis 2016; 248:160-9. [PMID: 27017522 DOI: 10.1016/j.atherosclerosis.2016.03.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine the relationship between increased triggering receptor expressed on myeloid cells (TREM)-1 and plaque stability in atherosclerotic carotid stenosis. METHODS The mRNA transcripts and protein for TREM-1, MMP-1, MMP-9, collagen type I (COL1A1) and collagen type III (COL3A1) were analyzed by qPCR and immunofluorescence in both tissues and VSMCs isolated from atherosclerotic carotid plaques of symptomatic and asymptomatic patients with carotid stenosis. RESULTS The TREM-1, MMP-1 and MMP-9 mRNA transcripts were significantly increased (TREM-1, p < 0.01; MMP-1, p < 0.01 and MMP-9, p < 0.001) while COL1A1 and COL3A1 mRNA transcripts were decreased (p < 0.001) in VSMCs isolated from carotid plaques of symptomatic (S) than asymptomatic (AS) patients. Stimulation of cells with TNF-α further increased the mRNA transcripts of TREM-1, MMPs, COL1A1 and COL3A1. Modulation of TREM-1 by treatment with TREM-1 decoy receptor rTREM-1/Fc, and either TREM-1 antibodies or TREM-1 siRNA attenuated the TNF-α-induced expression of MMP-1 and MMP-9 (p < 0.01) and COL1A1 and COL3A1 (p < 0.01) in S compared to AS VSMCs isolated from carotid plaques. Inhibition of NF-kB (BAY 11-7085), JNK (SP600125) and PI3K (LY294002) signaling pathways decreased the expression of TREM-1 (p < 0.01), MMP-1 (p < 0.001) and MMP-9 (p < 0.01) in TNF-α-treated VSMCs isolated from S carotid plaques compared to AS patients. CONCLUSION Increased expression of TREM-1 in S compared to AS patients involving MMP-1 and MMP-9 suggest a potential role of TREM-1 in plaque destabilization. Selective blockade of TREM-1 may contribute to the development of new therapies and promising targets for stabilizing vulnerable atherosclerotic plaques.
Collapse
Affiliation(s)
- Velidi H Rao
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Vikrant Rai
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Samantha Stoupa
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Saravanan Subramanian
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Devendra K Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA.
| |
Collapse
|
12
|
Rao VH, Rai V, Stoupa S, Agrawal DK. Blockade of Ets-1 attenuates epidermal growth factor-dependent collagen loss in human carotid plaque smooth muscle cells. Am J Physiol Heart Circ Physiol 2015; 309:H1075-86. [PMID: 26254334 DOI: 10.1152/ajpheart.00378.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/27/2015] [Indexed: 12/27/2022]
Abstract
Although degradation of extracellular matrix by matrix metalloproteinases (MMPs) is thought to be involved in symptomatic (S) carotid plaques in atherosclerosis, the mechanisms of MMP expression are poorly understood. Here, we demonstrate that collagen loss in vascular smooth vessel cells (VSMCs) isolated from S plaques was induced by epidermal growth factor (EGF) through the activation of p38-MAPK and JNK-MAPK pathways. Inhibitors of p38-MAPK and JNK-MAPK signaling pathways downregulated the expression of MMP-1 and MMP-9. In addition, we examined whether v-ets erythroblastosis virus E26 oncogene homologue 1 (Ets-1), an important regulator of different genes, is involved in destabilizing S plaques in patients with carotid stenosis. We demonstrate that EGF induces Ets-1 expression and decreases interstitial and basement membrane collagen in vascular smooth muscle cells (VSMCs) from patients with carotid stenosis. Increased expression of MMP-1 and -9 and decreased collagen mRNA transcripts were also found in Ets-1-overexpressed VSMCs. Transfection with both dominant-negative form of Ets-1 and small interfering RNA blocked EGF-induced MMP-1 and -9 expressions and increased the mRNA transcripts for collagen I (α1) and collagen III (α1) in S compared with asymptomatic (AS) carotid plaques. Inhibitors of p38-MAPK (SB202190) and JNK-MAPK (SP600125) signaling pathways decreased the expression of Ets-1, MMP-1, and MMP-9 and increased collagen type I and III expression in EGF-treated VSMCs. This study provides a mechanistic insight into the role of Ets-1 in the plaque destabilization in patients with carotid stenosis involving p38-MAPK and JNK signaling pathways.
Collapse
Affiliation(s)
- Velidi H Rao
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska
| | - Vikrant Rai
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska
| | - Samantha Stoupa
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska
| | - Devendra K Agrawal
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska
| |
Collapse
|
13
|
The expression of the tumour suppressor HBP1 is down-regulated by growth factors via the PI3K/PKB/FOXO pathway. Biochem J 2014; 460:25-34. [PMID: 24762137 DOI: 10.1042/bj20131467] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Growth factors inactivate the FOXO (forkhead box O) transcription factors through PI3K (phosphoinositide 3-kinase) and PKB (protein kinase B). By comparing microarray data from multiple model systems, we identified HBP1 (high-mobility group-box protein 1) as a novel downstream target of this pathway. HBP1 mRNA was down-regulated by PDGF (platelet-derived growth factor), FGF (fibroblast growth factor), PI3K and PKB, whereas it was up-regulated by FOXO factors. This observation was confirmed in human and murine fibroblasts as well as in cell lines derived from leukaemia, breast adenocarcinoma and colon carcinoma. Bioinformatics analysis led to the identification of a conserved consensus FOXO-binding site in the HBP1 promoter. By luciferase activity assay and ChIP, we demonstrated that FOXO bound to this site and regulated the HBP1 promoter activity in a PI3K-dependent manner. Silencing of HBP1 by shRNA increased the proliferation of human fibroblasts in response to growth factors, suggesting that HBP1 limits cell growth. Finally, by analysing a transcriptomics dataset from The Cancer Genome Atlas, we observed that HBP1 expression was lower in breast tumours that had lost FOXO expression. In conclusion, HBP1 is a novel target of the PI3K/FOXO pathway and controls cell proliferation in response to growth factors.
Collapse
|
14
|
Rao VH, Kansal V, Stoupa S, Agrawal DK. MMP-1 and MMP-9 regulate epidermal growth factor-dependent collagen loss in human carotid plaque smooth muscle cells. Physiol Rep 2014; 2:e00224. [PMID: 24744893 PMCID: PMC3966234 DOI: 10.1002/phy2.224] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 01/13/2014] [Indexed: 11/11/2022] Open
Abstract
Mechanisms underlying the rupture of atherosclerotic plaque, a crucial factor in the development of myocardial infarction and stroke, are not well defined. Here, we examined the role of epidermal growth factor (EGF)‐mediated matrix metalloproteinases (MMP) on the stability of interstitial collagens in vascular smooth muscle cells (VSMCs) isolated from carotid endarterectomy tissues of symptomatic and asymptomatic patients with carotid stenosis. VSMCs isolated from the carotid plaques of both asymptomatic and symptomatic patients were treated with EGF. The MMP‐9 activity was quantified by gelatin zymography and the analysis of mRNA transcripts and protein for MMP‐9, MMP‐1, EGFR and collagen types I, Col I(α1) and collagen type III, Col III(α1) were analyzed by qPCR and immunofluorescence, respectively. The effect of EGF treatment to increase MMP‐9 activity and mRNA transcripts for MMP‐9, MMP‐1, and EGFR and to decrease mRNA transcripts for Col I(α1) and Col III(α1) was threefold to fourfold greater in VSMCs isolated from the carotid plaques of symptomatic than asymptomatic patients. Inhibitors of EGFR (AG1478) and a small molecule inhibitor of MMP‐9 decreased the MMP9 expression and upregulated Col I(α1) and Col III(α1) in EGF‐treated VSMCs of both groups. Additionally, the magnitude in decreased MMP‐9 mRNA and increased Col I(α1) and Col III(α1) due to knockdown of MMP‐9 gene with siRNA in EGF‐treated VSMCs was significantly greater in the symptomatic group than the asymptomatic group. Thus, a selective blockade of both EGFR and MMP‐9 may be a novel strategy and a promising target for stabilizing vulnerable plaques in patients with carotid stenosis. This report described the underlying mechanisms by which MMP‐1 and MMP‐9 induced by EFGR activation decreases the interstitial collagens and this could result in plaque instability in patients with carotid stenosis. Thus, selective blockade of EGFR and/or MMP‐9 may be a novel strategy and a promising target to stabilize atherosclerotic plaques and thus decreases morbidity and mortality.
Collapse
Affiliation(s)
- Velidi H Rao
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, 68178, Nebraska
| | - Vikash Kansal
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, 68178, Nebraska
| | - Samantha Stoupa
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, 68178, Nebraska
| | - Devendra K Agrawal
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, 68178, Nebraska ; Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, 68178, Nebraska
| |
Collapse
|
15
|
Sleiman L, Beanlands R, Hasu M, Thabet M, Norgaard A, Chen YX, Holcik M, Whitman S. Loss of cellular inhibitor of apoptosis protein 2 reduces atherosclerosis in atherogenic apoE-/- C57BL/6 mice on high-fat diet. J Am Heart Assoc 2013; 2:e000259. [PMID: 24072531 PMCID: PMC3835229 DOI: 10.1161/jaha.113.000259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background Cellular inhibitor of apoptosis protein 2 (cIAP2) is predicted to participate in atherosclerosis; however, its direct role in atherosclerosis development has not been investigated. We aimed to examine and assess the loss of cIAP2 on atherosclerosis lesion development. Methods and Results We used apoE−/− C57BL/6 male mice, either cIAP2−/− or cIAP2+/+. At 8 weeks, mice were fed a high‐fat diet (HFD) for 4 and 12 weeks. Aortic root was serially sectioned and stained with Sudan IV, CD68, α‐actin, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). cIAP2−/− mice displayed a significant decrease in atherosclerotic lesion's macrophage number after 4 weeks of HFD. Similarly, decrease in lesion area at 4 and 12 weeks HFD was detected by use of en face analysis (cIAP2−/− 0.58±0.37% versus cIAP2+/+ 1.51±0.79% [P=0.0056]); (cIAP2−/− 9.34±4.88% versus cIAP2+/+ 17.65±6.24% [P=0.0019]). Aortic root lesion area after 4 and 12 weeks of HFD also decreased (cIAP2−/− 0.0328±0.014 mm2 versus cIAP2+/+ 0.0515±0.021 mm2 [P=0.022]); (cIAP2−/− 0.3614±0.1157 mm2 versus cIAP2+/+ 0.4901±0.125 mm2 [P=0.065]). TUNEL analysis after 4 and 12 weeks of HFD showed a 2.5‐fold increase in TUNEL+ cells (cIAP2−/− 4.47±2.26% versus cIAP2+/+ 1.74±0.98% [P=0.036]); (cIAP2−/− 2.39±0.75% versus cIAP2+/+ 1.29±0.47% [P=0.032]). Smooth muscle cell content in cIAP2−/− mice was 3.075±3.3% compared with cIAP2+/+ with 0.085±0.1% (P=0.0071). Conclusions Results uncover a key role for cIAP2 in atherosclerotic lesion development, and targeting it may represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Lyne Sleiman
- Departments of Pathology and Laboratory Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Dobierzewska A, Shi L, Karakashian AA, Nikolova-Karakashian MN. Interleukin 1β regulation of FoxO1 protein content and localization: evidence for a novel ceramide-dependent mechanism. J Biol Chem 2012; 287:44749-60. [PMID: 23105097 DOI: 10.1074/jbc.m112.378836] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
FoxO1 transcription factor controls the glucose and lipid metabolism, as well as cell proliferation and stress response. Akt, activated by insulin and other growth factors, phosphorylates FoxO1 causing its nuclear export and activity suppression. In this manuscript, we show that IL-1β, a pro-inflammatory cytokine, has the opposite effects on FoxO1. IL-1β stimulation of primary rat hepatocytes and HEK293 cells overexpressing the IL-1β receptor (293-IL-1RI) results in increased nuclear and cytosolic FoxO1 protein but not mRNA levels. IL-1β stimulation also elevates the levels of a mutant FoxO1 that is resistant to Akt phosphorylation. This suggests that an Akt-independent mechanism is involved. Co-stimulation with insulin does not affect the IL-1β induction of FoxO1. The IL-1β effects on FoxO1 are counteracted, however, by the silencing or inhibition of neutral sphingomyelinase 2 (nSMase-2) using shRNAi, scyphostatin, or GW4869, as well as by the pharmacological inhibition of JNK and ERK. Reversely, the overexpression of nSMase-2 through adenovirus-mediated gene transfer potentiates, in a JNK- and ERK-dependent manner, the IL-1β effects. We also show that transcription of insulin-like growth factor-binding protein-1 mRNA, which requires active FoxO1, is stimulated by IL-1β and is suppressed by the inhibition of nSMase-2 and JNK. In conclusion, we propose that IL-1β regulates FoxO1 activity through a novel nSMase-2-dependent pathway.
Collapse
Affiliation(s)
- Aneta Dobierzewska
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | | | | | | |
Collapse
|
17
|
Zhou Y, Yang B, Ren X, Liu Z, Deng Z, Chen L, Deng Y, Zhang LM, Yang L. Hyperbranched cationic amylopectin derivatives for gene delivery. Biomaterials 2012; 33:4731-40. [DOI: 10.1016/j.biomaterials.2012.03.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 03/04/2012] [Indexed: 11/28/2022]
|
18
|
Suppressor of cytokine signaling-3 and intimal hyperplasia in porcine coronary arteries following coronary intervention. Exp Mol Pathol 2011; 91:346-52. [PMID: 21540027 DOI: 10.1016/j.yexmp.2011.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 04/13/2011] [Indexed: 11/21/2022]
Abstract
AIMS The growth and differentiation of cells is regulated by cytokines by binding to cell-surface receptors and activating intracellular signal transduction cascade. Suppressor of cytokine signaling (SOCS)-3 is a negative regulator of cytokines. In this study we examined the expression of SOCS-3 in porcine coronary artery smooth muscle cells (PCASMCs) in vitro and in proliferating smooth muscle cells of neointimal lesions after coronary artery intervention in a swine model. METHODS AND RESULTS PCASMCs were cultured and stimulated with TNF-α and/or IGF-1 individually or in combination. Protein expression of SOCS-3 was examined using Western blot. For in vivo studies, six female Yucatan miniswine were fed with special high cholesterol diet for 8 months. At 4 months of high cholesterol diet, animals underwent coronary balloon angioplasty. At the end of 8 months animals were euthanized, coronary arteries were isolated and morphological and histological studies were performed. Western blot data revealed significantly high SOCS-3 expression in PCASMCs in the presence of either TNF-α or IGF-1 (5-6 fold) alone. However, in the presence of both TNF-α and IGF-1 the SOCS-3 expression was significantly decreased (4-5 fold). Results from morphological studies including, H&E and Masson's trichrome stain showed typical lesions with significant neointimal proliferation. Histological evaluation showed expression of smooth muscle α-actin and significantly increased proliferating cell nuclear antigen (PCNA) in neointimal lesion. Interestingly, there was significantly decreased expression of SOCS-3 in smooth muscle cells of neointima as compared to control. CONCLUSIONS These data suggest that SOCS-3 expression is decreased in proliferating smooth muscle cells of neointimal lesions. This leads to uncontrolled growth of vascular smooth muscle cells in injured arteries leading to restenosis. Therefore, local delivery of SOCS-3 gene at the site of injury after coronary artery intervention could regulate the proliferation of vascular smooth muscle cells and help in preventing the neointimal hyperplasia and restenosis.
Collapse
|