1
|
Bujdoso R, Smith A, Fleck O, Spiropoulos J, Andréoletti O, Thackray AM. Prion disease modelled in Drosophila. Cell Tissue Res 2023; 392:47-62. [PMID: 35092497 PMCID: PMC10113284 DOI: 10.1007/s00441-022-03586-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/17/2022] [Indexed: 11/02/2022]
Abstract
Prion diseases are fatal neurodegenerative conditions of humans and various vertebrate species that are transmissible between individuals of the same or different species. A novel infectious moiety referred to as a prion is considered responsible for transmission of these conditions. Prion replication is believed to be the cause of the neurotoxicity that arises during prion disease pathogenesis. The prion hypothesis predicts that the transmissible prion agent consists of PrPSc, which is comprised of aggregated misfolded conformers of the normal host protein PrPC. It is important to understand the biology of transmissible prions and to identify genetic modifiers of prion-induced neurotoxicity. This information will underpin the development of therapeutic and control strategies for human and animal prion diseases. The most reliable method to detect prion infectivity is by in vivo transmission in a suitable experimental host, which to date have been mammalian species. Current prion bioassays are slow, cumbersome and relatively insensitive to low titres of prion infectivity, and do not lend themselves to rapid genetic analysis of prion disease. Here, we provide an overview of our novel studies that have led to the establishment of Drosophila melanogaster, a genetically well-defined invertebrate host, as a sensitive, versatile and economically viable animal model for the detection of mammalian prion infectivity and genetic modifiers of prion-induced toxicity.
Collapse
Affiliation(s)
- Raymond Bujdoso
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 OES, UK.
| | - Andrew Smith
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 OES, UK
| | - Oliver Fleck
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 OES, UK
| | - John Spiropoulos
- Pathology Department, Animal and Plant Health Agency (APHA), Weybridge, Woodham Lane, New Haw, Surrey, KT15 3NB, Addlestone, UK
| | - Olivier Andréoletti
- UMR INRA ENVT 1225-Hôtes-Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Alana M Thackray
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 OES, UK.
| |
Collapse
|
2
|
Fatola OI, Keller M, Balkema-Buschmann A, Olopade J, Groschup MH, Fast C. Strain Typing of Classical Scrapie and Bovine Spongiform Encephalopathy (BSE) by Using Ovine PrP (ARQ/ARQ) Overexpressing Transgenic Mice. Int J Mol Sci 2022; 23:ijms23126744. [PMID: 35743187 PMCID: PMC9223460 DOI: 10.3390/ijms23126744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSE), caused by abnormal prion protein (PrPSc), affect many species. The most classical scrapie isolates harbor mixtures of strains in different proportions. While the characterization of isolates has evolved from using wild-type mice to transgenic mice, no standardization is established yet. Here, we investigated the incubation period, lesion profile and PrPSc profile induced by well-defined sheep scrapie isolates, bovine spongiform encephalopathy (BSE) and ovine BSE after intracerebral inoculation into two lines of ovine PrP (both ARQ/ARQ) overexpressing transgenic mice (Tgshp IX and Tgshp XI). All isolates were transmitted to both mouse models with an attack rate of almost 100%, but genotype-dependent differences became obvious between the ARQ and VRQ isolates. Surprisingly, BSE induced a much longer incubation period in Tgshp XI compared to Tgshp IX. In contrast to the histopathological lesion profiles, the immunohistochemical PrPSc profiles revealed discriminating patterns in certain brain regions in both models with clear differentiation of both BSE isolates from scrapie. These data provide the basis for the use of Tgshp IX and XI mice in the characterization of TSE isolates. Furthermore, the results enable a deeper appreciation of TSE strain diversity using ovine PrP overexpressing transgenic mice as a biological prion strain typing approach.
Collapse
Affiliation(s)
- Olanrewaju I. Fatola
- Neurosience Unit, Department of Veterinary Anatomy, University of Ibadan, Ibadan 200005, Nigeria; (O.I.F.); (J.O.)
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, 17493 Isle of Riems, Germany; (M.K.); (A.B.-B.); (M.H.G.)
| | - Markus Keller
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, 17493 Isle of Riems, Germany; (M.K.); (A.B.-B.); (M.H.G.)
| | - Anne Balkema-Buschmann
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, 17493 Isle of Riems, Germany; (M.K.); (A.B.-B.); (M.H.G.)
| | - James Olopade
- Neurosience Unit, Department of Veterinary Anatomy, University of Ibadan, Ibadan 200005, Nigeria; (O.I.F.); (J.O.)
| | - Martin H. Groschup
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, 17493 Isle of Riems, Germany; (M.K.); (A.B.-B.); (M.H.G.)
| | - Christine Fast
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, 17493 Isle of Riems, Germany; (M.K.); (A.B.-B.); (M.H.G.)
- Correspondence: ; Tel.: +49-38351-7-1274
| |
Collapse
|
3
|
BSE can propagate in sheep co-infected or pre-infected with scrapie. Sci Rep 2021; 11:11931. [PMID: 34099797 PMCID: PMC8184847 DOI: 10.1038/s41598-021-91397-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/24/2021] [Indexed: 11/29/2022] Open
Abstract
To understand the possible role of mixed-prion infections in disease presentation, the current study reports the co-infection of sheep with bovine spongiform encephalopathy (BSE) and scrapie. The bovine BSE agent was inoculated subcutaneously into sheep with ARQ/ARQ or VRQ/ARQ PRNP genotypes either at the same time as subcutaneous challenge with scrapie, or three months later. In addition, VRQ/VRQ sheep naturally infected with scrapie after being born into a scrapie-affected flock were challenged subcutaneously with BSE at eight or twenty one months-of-age. Sheep were analysed by incubation period/attack rate, and western blot of brain tissue determined the presence of BSE or scrapie-like PrPSc. Serial protein misfolding cyclic amplification (sPMCA) that can detect very low levels of BSE in the presence of an excess of scrapie agent was also applied to brain and lymphoreticular tissue. For VRQ/ARQ sheep challenged with mixed infections, scrapie-like incubation periods were produced, and no BSE agent was detected. However, whilst ARQ/ARQ sheep developed disease with BSE-like incubation periods, some animals had a dominant scrapie western blot phenotype in brain, but BSE was detected in these sheep by sPMCA. In addition, VRQ/VRQ animals challenged with BSE after natural exposure to scrapie had scrapie-like incubation periods and dominant scrapie PrPSc in brain, but one sheep had BSE detectable by sPMCA in the brain. Overall, the study demonstrates for the first time that for scrapie/BSE mixed infections, VRQ/ARQ sheep with experimental scrapie did not propagate BSE but VRQ/VRQ sheep with natural scrapie could propagate low levels of BSE, and whilst BSE readily propagated in ARQ/ARQ sheep it was not always the dominant PrPSc strain in brain tissue. Indeed, for several animals, a dominant scrapie biochemical phenotype in brain did not preclude the presence of BSE prion.
Collapse
|
4
|
Marín-Moreno A, Aguilar-Calvo P, Espinosa JC, Zamora-Ceballos M, Pitarch JL, González L, Fernández-Borges N, Orge L, Andréoletti O, Nonno R, Torres JM. Classical scrapie in small ruminants is caused by at least four different prion strains. Vet Res 2021; 52:57. [PMID: 33858518 PMCID: PMC8048364 DOI: 10.1186/s13567-021-00929-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
The diversity of goat scrapie strains in Europe has recently been studied using bioassays in a wide collection of rodent models, resulting in the classification of classical scrapie into four different categories. However, the sole use of the first passage does not lead to isolate adaptation and identification of the strains involved and might therefore lead to misclassification of some scrapie isolates. Therefore, this work reports the complete transmission study of a wide collection of goat transmissible spongiform encephalopathy (TSE) isolates by intracranial inoculation in two transgenic mouse lines overexpressing either small ruminant (TgGoat-ARQ) or bovine (TgBov) PrPC. To compare scrapie strains in sheep and goats, sheep scrapie isolates from different European countries were also included in the study. Once the species barrier phenomenon was overcome, an accurate classification of the isolates was attained. Thus, the use of just two rodent models allowed us to fully differentiate at least four different classical scrapie strains in small ruminants and to identify isolates containing mixtures of strains. This work reinforces the idea that classical scrapie in small ruminants is a prion disease caused by multiple different prion strains and not by a single strain, as is the case for epidemic classical bovine spongiform encephalopathy (BSE-C). In addition, the clear dissimilarity between the different scrapie strains and BSE-C does not support the idea that classical scrapie is the origin of epidemic BSE-C.
Collapse
Affiliation(s)
- Alba Marín-Moreno
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Patricia Aguilar-Calvo
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain.,Departments of Pathology and Medicine, UC San Diego, La Jolla, CA, USA
| | - Juan Carlos Espinosa
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | | | - José Luis Pitarch
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | | | | | - Leonor Orge
- Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, Portugal
| | - Olivier Andréoletti
- UMR INRAE ENVT 1225-IHAP, École Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Romolo Nonno
- Department of Veterinary Public Health, Nutrition and Food Safety, Istituto Superiore di Sanitá, Rome, Italy
| | - Juan María Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain.
| |
Collapse
|
5
|
Barrio T, Filali H, Otero A, Sheleby-Elías J, Marín B, Vidal E, Béringue V, Torres JM, Groschup M, Andréoletti O, Badiola JJ, Bolea R. Mixtures of prion substrains in natural scrapie cases revealed by ovinised murine models. Sci Rep 2020; 10:5042. [PMID: 32193445 PMCID: PMC7081250 DOI: 10.1038/s41598-020-61977-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/02/2020] [Indexed: 11/09/2022] Open
Abstract
Phenotypic variability in prion diseases, such as scrapie, is associated to the existence of prion strains, which are different pathogenic prion protein (PrPSc) conformations with distinct pathobiological properties. To faithfully study scrapie strain variability in natural sheep isolates, transgenic mice expressing sheep cellular prion protein (PrPC) are used. In this study, we used two of such models to bioassay 20 scrapie isolates from the Spain-France-Andorra transboundary territory. Animals were intracerebrally inoculated and survival periods, proteinase K-resistant PrP (PrPres) banding patterns, lesion profiles and PrPSc distribution were studied. Inocula showed a remarkable homogeneity on banding patterns, all of them but one showing 19-kDa PrPres. However, a number of isolates caused accumulation of 21-kDa PrPres in TgShp XI. A different subgroup of isolates caused long survival periods and presence of 21-kDa PrPres in Tg338 mice. It seemed that one major 19-kDa prion isoform and two distinct 21-kDa variants coexisted in source inocula, and that they could be separated by bioassay in each transgenic model. The reason why each model favours a specific component of the mixture is unknown, although PrPC expression level may play a role. Our results indicate that coinfection with more than one substrain is more frequent than infection with a single component.
Collapse
Affiliation(s)
- Tomás Barrio
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 (Universidad de Zaragoza - CITA), 50013, Zaragoza, Spain
| | - Hicham Filali
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 (Universidad de Zaragoza - CITA), 50013, Zaragoza, Spain
| | - Alicia Otero
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 (Universidad de Zaragoza - CITA), 50013, Zaragoza, Spain
| | - Jessica Sheleby-Elías
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 (Universidad de Zaragoza - CITA), 50013, Zaragoza, Spain
| | - Belén Marín
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 (Universidad de Zaragoza - CITA), 50013, Zaragoza, Spain
| | - Enric Vidal
- Priocat Laboratory, Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
| | - Vincent Béringue
- UMR Virologie Immunologie Moléculaires (VIM-UR892), INRA, Université Paris-Saclay, 78352, Jouy-en-Josas, France
| | - Juan María Torres
- Centro de Investigación en Sanidad Animal, CISA-INIA, 28130, Valdeolmos, Madrid, Spain
| | - Martin Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald-Isle of Riems, Germany
| | - Olivier Andréoletti
- UMR INRA ENVT 1225- IHAP, École Nationale Vétérinaire de Toulouse, 31076, Toulouse, France
| | - Juan José Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 (Universidad de Zaragoza - CITA), 50013, Zaragoza, Spain
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 (Universidad de Zaragoza - CITA), 50013, Zaragoza, Spain.
| |
Collapse
|
6
|
Nonno R, Marin-Moreno A, Carlos Espinosa J, Fast C, Van Keulen L, Spiropoulos J, Lantier I, Andreoletti O, Pirisinu L, Di Bari MA, Aguilar-Calvo P, Sklaviadis T, Papasavva-Stylianou P, Acutis PL, Acin C, Bossers A, Jacobs JG, Vaccari G, D'Agostino C, Chiappini B, Lantier F, Groschup MH, Agrimi U, Maria Torres J, Langeveld JPM. Characterization of goat prions demonstrates geographical variation of scrapie strains in Europe and reveals the composite nature of prion strains. Sci Rep 2020; 10:19. [PMID: 31913327 PMCID: PMC6949283 DOI: 10.1038/s41598-019-57005-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/16/2019] [Indexed: 11/09/2022] Open
Abstract
Bovine Spongiform Encephalopathy (BSE) is the only animal prion which has been recognized as a zoonotic agent so far. The identification of BSE in two goats raised the need to reliably identify BSE in small ruminants. However, our understanding of scrapie strain diversity in small ruminants remains ill-defined, thus limiting the accuracy of BSE surveillance and spreading fear that BSE might lurk unrecognized in goats. We investigated prion strain diversity in a large panel of European goats by a novel experimental approach that, instead of assessing the neuropathological profile after serial transmissions in a single animal model, was based on the direct interaction of prion isolates with several recipient rodent models expressing small ruminants or heterologous prion proteins. The findings show that the biological properties of scrapie isolates display different patterns of geographical distribution in Europe and suggest that goat BSE could be reliably discriminated from a wide range of biologically and geographically diverse goat prion isolates. Finally, most field prion isolates showed composite strain features, with discrete strain components or sub-strains being present in different proportions in individual goats or tissues. This has important implications for understanding the nature and evolution of scrapie strains and their transmissibility to other species, including humans.
Collapse
Affiliation(s)
- Romolo Nonno
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy.
| | | | | | - Christine Fast
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Greifswald-Isle of Riems, Germany
| | | | - John Spiropoulos
- Animal and Plant Health Agency, New Haw, Addlestone, Surrey, United Kingdom
| | - Isabelle Lantier
- INRA-Centre Val de Loire, Infectiologie et Santé Publique, Nouzilly, France
| | - Olivier Andreoletti
- UMR INRA ENVT 1225- IHAP, École Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Laura Pirisinu
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Michele A Di Bari
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | | | - Theodoros Sklaviadis
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Pier Luigi Acutis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Cristina Acin
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Alex Bossers
- Wageningen BioVeterinary Research, Lelystad, the Netherlands
| | - Jorge G Jacobs
- Wageningen BioVeterinary Research, Lelystad, the Netherlands
| | - Gabriele Vaccari
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Claudia D'Agostino
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Barbara Chiappini
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Frederic Lantier
- INRA-Centre Val de Loire, Infectiologie et Santé Publique, Nouzilly, France
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Greifswald-Isle of Riems, Germany
| | - Umberto Agrimi
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | | | | |
Collapse
|
7
|
Thackray AM, Andréoletti O, Bujdoso R. Mammalian prion propagation in PrP transgenic Drosophila. Brain 2019; 141:2700-2710. [PMID: 29985975 PMCID: PMC6113635 DOI: 10.1093/brain/awy183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/24/2018] [Indexed: 12/22/2022] Open
Abstract
Mammalian prions propagate by template-directed misfolding and aggregation of normal cellular prion related protein PrPC as it converts into disease-associated conformers collectively referred to as PrPSc. Mammalian species may be permissive for prion disease because these hosts have co-evolved specific co-factors that assist PrPC conformational change and prion propagation. We have tested this hypothesis by examining whether faithful prion propagation occurs in the normally PrPC-null invertebrate host Drosophila melanogaster. Ovine PrP transgenic Drosophila exposed at the larval stage to ovine scrapie showed a progressive accumulation of transmissible prions in adult flies. Strikingly, the biological properties of distinct ovine prion strains were maintained during their propagation in Drosophila. Our observations show that the co-factors necessary for strain-specific prion propagation are not unique to mammalian species. Our studies establish Drosophila as a novel host for the study of transmissible mammalian prions.
Collapse
Affiliation(s)
- Alana M Thackray
- University of Cambridge, Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 OES, UK
| | - Olivier Andréoletti
- UMR INRA ENVT 1225 -Hôtes-Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, Toulouse, France
| | - Raymond Bujdoso
- University of Cambridge, Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 OES, UK
| |
Collapse
|
8
|
Thackray AM, Andréoletti O, Bujdoso R. The use of PrP transgenic Drosophila to replace and reduce vertebrate hosts in the bioassay of mammalian prion infectivity. F1000Res 2018; 7:595. [PMID: 29946445 PMCID: PMC5998032 DOI: 10.12688/f1000research.14753.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/27/2018] [Indexed: 11/24/2022] Open
Abstract
Prion diseases are fatal neurodegenerative conditions of humans and vertebrate species. The transmissible prion agent is a novel infectious particle composed principally of PrP Sc, an abnormal isomer of the normal host protein PrP C. The only reliable method to detect mammalian prion infectivity is by bioassay, invariably in a vertebrate host. The current prion bioassays typically involve intracerebral or peripheral inoculation of test material into the experimental host and subsequent euthanasia when clinical signs of terminal prion disease become evident. It may be months or years before the onset of clinical disease becomes evident and a pre-determined clinical end-point is reached. Consequently, bioassay of prion infectivity in vertebrate species is cumbersome, time consuming, expensive, and increasingly open to ethical debate because these animals are subjected to terminal neurodegenerative disease. Prions are a significant risk to public health through the potential for zoonotic transmission of animal prion diseases. Attention has focussed on the measurement of prion infectivity in different tissues and blood from prion-infected individuals in order to determine the distribution of infectious prions in diseased hosts. New animal models are required in order to replace or reduce, where possible, the dependency on the use of vertebrate species, including the 'gold standard' mouse prion bioassay, to assess prion infectivity levels. Here we highlight the development of a Drosophila-based prion bioassay, a highly sensitive and rapid invertebrate animal system that can efficiently detect mammalian prions. This novel invertebrate model system will be of considerable interest to biologists who perform prion bioassays as it will promote reduction and replacement in the number of sentient animals currently used for this purpose. This article is a composite of previous methods that provides an overview of the methodology of the model and discusses the experimental data to promote its viability for use instead of more sentient hosts.
Collapse
Affiliation(s)
- Alana M. Thackray
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 OES, UK
| | - Olivier Andréoletti
- UMR INRA ENVT 1225 -Hôtes-Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, 31076, France
| | - Raymond Bujdoso
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 OES, UK
| |
Collapse
|
9
|
Igel-Egalon A, Béringue V, Rezaei H, Sibille P. Prion Strains and Transmission Barrier Phenomena. Pathogens 2018; 7:E5. [PMID: 29301257 PMCID: PMC5874731 DOI: 10.3390/pathogens7010005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/25/2017] [Accepted: 12/26/2017] [Indexed: 11/30/2022] Open
Abstract
Several experimental evidences show that prions are non-conventional pathogens, which physical support consists only in proteins. This finding raised questions regarding the observed prion strain-to-strain variations and the species barrier that happened to be crossed with dramatic consequences on human health and veterinary policies during the last 3 decades. This review presents a focus on a few advances in the field of prion structure and prion strains characterization: from the historical approaches that allowed the concept of prion strains to emerge, to the last results demonstrating that a prion strain may in fact be a combination of a few quasi species with subtle biophysical specificities. Then, we will focus on the current knowledge on the factors that impact species barrier strength and species barrier crossing. Finally, we present probable scenarios on how the interaction of strain properties with host characteristics may account for differential selection of new conformer variants and eventually species barrier crossing.
Collapse
Affiliation(s)
- Angélique Igel-Egalon
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| | - Vincent Béringue
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| | - Human Rezaei
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| | - Pierre Sibille
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| |
Collapse
|
10
|
Effect of Polymorphisms at Codon 146 of the Goat PRNP Gene on Susceptibility to Challenge with Classical Scrapie by Different Routes. J Virol 2017; 91:JVI.01142-17. [PMID: 28878088 DOI: 10.1128/jvi.01142-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/16/2017] [Indexed: 01/21/2023] Open
Abstract
This report presents the results of experimental challenges of goats with scrapie by both the intracerebral (i.c.) and oral routes, exploring the effects of polymorphisms at codon 146 of the goat PRNP gene on resistance to disease. The results of these studies illustrate that while goats of all genotypes can be infected by i.c. challenge, the survival distribution of the animals homozygous for asparagine at codon 146 was significantly shorter than those of animals of all other genotypes (chi-square value, 10.8; P = 0.001). In contrast, only those animals homozygous for asparagine at codon 146 (NN animals) succumbed to oral challenge. The results also indicate that any cases of infection in non-NN animals can be detected by the current confirmatory test (immunohistochemistry), although successful detection with the rapid enzyme-linked immunosorbent assay (ELISA) was more variable and dependent on the polymorphism. Together with data from previous studies of goats exposed to infection in the field, these data support the previously reported observations that polymorphisms at this codon have a profound effect on susceptibility to disease. It is concluded that only animals homozygous for asparagine at codon 146 succumb to scrapie under natural conditions.IMPORTANCE In goats, like in sheep, there are PRNP polymorphisms that are associated with susceptibility or resistance to scrapie. However, in contrast to the polymorphisms in sheep, they are more numerous in goats and may be restricted to certain breeds or geographical regions. Therefore, eradication programs must be specifically designed depending on the identification of suitable polymorphisms. An initial analysis of surveillance data suggested that such a polymorphism in Cypriot goats may lie in codon 146. In this study, we demonstrate experimentally that NN animals are highly susceptible after i.c. inoculation. The presence of a D or S residue prolonged incubation periods significantly, and prions were detected in peripheral tissues only in NN animals. In oral challenges, prions were detected only in NN animals, and the presence of a D or S residue at this position conferred resistance to the disease. This study provides an experimental transmission model for assessing the genetic susceptibility of goats to scrapie.
Collapse
|
11
|
Madsen-Bouterse SA, Schneider DA, Zhuang D, Dassanayake RP, Balachandran A, Mitchell GB, O'Rourke KI. Primary transmission of chronic wasting disease versus scrapie prions from small ruminants to transgenic mice expressing ovine or cervid prion protein. J Gen Virol 2016; 97:2451-2460. [PMID: 27393736 PMCID: PMC5042132 DOI: 10.1099/jgv.0.000539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/06/2016] [Indexed: 11/18/2022] Open
Abstract
Development of mice expressing either ovine (Tg338) or cervid (TgElk) prion protein (PrP) have aided in characterization of scrapie and chronic wasting disease (CWD), respectively. Experimental inoculation of sheep with CWD prions has demonstrated the potential for interspecies transmission but, infection with CWD versus classical scrapie prions may be difficult to differentiate using validated diagnostic platforms. In this study, mouse bioassay in Tg338 and TgElk was utilized to evaluate transmission of CWD versus scrapie prions from small ruminants. Mice (≥5 per homogenate) were inoculated with brain homogenates from clinically affected sheep or goats with naturally acquired classical scrapie, white-tailed deer with naturally acquired CWD (WTD-CWD) or sheep with experimentally acquired CWD derived from elk (sheep-passaged-CWD). Survival time (time to clinical disease) and attack rates (brain accumulation of protease resistant PrP, PrPres) were determined. Inoculation with classical scrapie prions resulted in clinical disease and 100 % attack rates in Tg338, but no clinical disease at endpoint (>300 days post-inoculation, p.i.) and low attack rates (6.8 %) in TgElk. Inoculation with WTD-CWD prions yielded no clinical disease or brain PrPres accumulation in Tg338 at endpoint (>500 days p.i.), but rapid onset of clinical disease (~121 days p.i.) and 100 % attack rate in TgElk. Sheep-passaged-CWD resulted in transmission to both mouse lines with 100 % attack rates at endpoint in Tg338 and an attack rate of ~73 % in TgElk with some culled due to clinical disease. These primary transmission observations demonstrate the potential of bioassay in Tg338 and TgElk to help differentiate possible infection with CWD versus classical scrapie prions in sheep and goats.
Collapse
Affiliation(s)
- Sally A. Madsen-Bouterse
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA
| | - David A. Schneider
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, WA 99164-6630, USA
| | - Dongyue Zhuang
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, WA 99164-6630, USA
| | - Rohana P. Dassanayake
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA
| | - Aru Balachandran
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection, Agency, Ottawa Laboratory–Fallowfield, Ottawa, Ontario, Canada
| | - Gordon B. Mitchell
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection, Agency, Ottawa Laboratory–Fallowfield, Ottawa, Ontario, Canada
| | - Katherine I. O'Rourke
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, WA 99164-6630, USA
| |
Collapse
|
12
|
Methods for Differentiating Prion Types in Food-Producing Animals. BIOLOGY 2015; 4:785-813. [PMID: 26580664 PMCID: PMC4690018 DOI: 10.3390/biology4040785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/29/2015] [Accepted: 11/04/2015] [Indexed: 12/05/2022]
Abstract
Prions are an enigma amongst infectious disease agents as they lack a genome yet confer specific pathologies thought to be dictated mainly, if not solely, by the conformation of the disease form of the prion protein (PrPSc). Prion diseases affect humans and animals, the latter including the food-producing ruminant species cattle, sheep, goats and deer. Importantly, it has been shown that the disease agent of bovine spongiform encephalopathy (BSE) is zoonotic, causing variant Creutzfeldt Jakob disease (vCJD) in humans. Current diagnostic tests can distinguish different prion types and in food-producing animals these focus on the differentiation of BSE from the non-zoonotic agents. Whilst BSE cases are now rare, atypical forms of both scrapie and BSE have been reported, as well as two types of chronic wasting disease (CWD) in cervids. Typing of animal prion isolates remains an important aspect of prion diagnosis and is now becoming more focused on identifying the range of prion types that are present in food-producing animals and also developing tests that can screen for emerging, novel prion diseases. Here, we review prion typing methodologies in light of current and emerging prion types in food-producing animals.
Collapse
|
13
|
Chong A, Kennedy I, Goldmann W, Green A, González L, Jeffrey M, Hunter N. Archival search for historical atypical scrapie in sheep reveals evidence for mixed infections. J Gen Virol 2015; 96:3165-3178. [PMID: 26281831 DOI: 10.1099/jgv.0.000234] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Natural scrapie in sheep occurs in classical and atypical forms, which may be distinguished on the basis of the associated neuropathology and properties of the disease-associated prion protein on Western blots. First detected in 1998, atypical scrapie is known to have occurred in UK sheep since the 1980s. However, its aetiology remains unclear and it is often considered as a sporadic, non-contagious disease unlike classical scrapie which is naturally transmissible. Although atypical scrapie tends to occur in sheep of prion protein (PRNP) genotypes that are different from those found predominantly in classical scrapie, there is some overlap so that there are genotypes in which both scrapie forms can occur. In this search for early atypical scrapie cases, we made use of an archive of fixed and frozen sheep samples, from both scrapie-affected and healthy animals (∼1850 individuals), dating back to the 1960s. Using a selection process based primarily on PRNP genotyping, but also on contemporaneous records of unusual clinical signs or pathology, candidate sheep samples were screened by Western blot, immunohistochemistry and strain-typing methods using tg338 mice. We identified, from early time points in the archive, three atypical scrapie cases, including one sheep which died in 1972 and two which showed evidence of mixed infection with classical scrapie. Cases with both forms of scrapie in the same animal as recognizable entities suggest that mixed infections have been around for a long time and may potentially contribute to the variety of scrapie strains.
Collapse
Affiliation(s)
- Angela Chong
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Iain Kennedy
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Wilfred Goldmann
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Andrew Green
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Lorenzo González
- Animal and Plant Health Agency (APHA - Lasswade), Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Martin Jeffrey
- Animal and Plant Health Agency (APHA - Lasswade), Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Nora Hunter
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
14
|
Scientific Opinion on a request for a review of a scientific publication concerning the zoonotic potential of ovine scrapie prions. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.4197] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
15
|
Konold T, Nonno R, Spiropoulos J, Chaplin MJ, Stack MJ, Hawkins SAC, Cawthraw S, Wilesmith JW, Wells GAH, Agrimi U, Di Bari MA, Andréoletti O, Espinosa JC, Aguilar-Calvo P, Torres JM. Further characterisation of transmissible spongiform encephalopathy phenotypes after inoculation of cattle with two temporally separated sources of sheep scrapie from Great Britain. BMC Res Notes 2015. [PMID: 26205536 PMCID: PMC4618938 DOI: 10.1186/s13104-015-1260-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background The infectious agent responsible for the bovine spongiform encephalopathy (BSE) epidemic in Great Britain is a transmissible spongiform encephalopathy (TSE) strain with uniform properties but the origin of this strain remains unknown. Based on the hypothesis that classical BSE may have been caused by a TSE strain present in sheep, cattle were inoculated intracerebrally with two different pools of brains from scrapie-affected sheep sourced prior to and during the BSE epidemic to investigate resulting disease phenotypes and characterise their causal agents by transmission to rodents. Results As reported in 2006, intracerebral inoculation of cattle with pre-1975 and post-1990 scrapie brain pools produced two distinct disease phenotypes, which were unlike classical BSE. Subsequent to that report none of the remaining cattle, culled at 10 years post inoculation, developed a TSE. Retrospective Western immunoblot examination of the brains from TSE cases inoculated with the pre-1975 scrapie pool revealed a molecular profile similar to L-type BSE. The inoculation of transgenic mice expressing the bovine, ovine, porcine, murine or human prion protein gene and bank voles with brains from scrapie-affected cattle did not detect classical or atypical BSE strains but identified two previously characterised scrapie strains of sheep. Conclusions Characterisation of the causal agents of disease resulting from exposure of cattle to naturally occurring scrapie agents sourced in Great Britain did not reveal evidence of classical or atypical BSE, but did identify two distinct previously recognised strains of scrapie. Although scrapie was still recognizable upon cattle passage there were irreconcilable discrepancies between the results of biological strain typing approaches and molecular profiling methods, suggesting that the latter may not be appropriate for the identification and differentiation of atypical, particularly L-type, BSE agents from cattle experimentally infected with a potential mixture of classical scrapie strains from sheep sources. Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1260-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Timm Konold
- Specialist Scientific Support Department, Animal and Plant Health Agency Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, UK.
| | - Romolo Nonno
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161, Rome, Italy.
| | - John Spiropoulos
- Pathology Department, Animal and Plant Health Agency Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, UK.
| | - Melanie J Chaplin
- Prion Unit, Virology Department, Animal and Plant Health Agency Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, UK.
| | - Michael J Stack
- Prion Unit, Virology Department, Animal and Plant Health Agency Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, UK.
| | - Steve A C Hawkins
- Pathology Department, Animal and Plant Health Agency Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, UK.
| | - Saira Cawthraw
- Specialist Scientific Support Department, Animal and Plant Health Agency Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, UK.
| | - John W Wilesmith
- Formerly Epidemiology Department, Veterinary Laboratories Agency Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, UK.
| | - Gerald A H Wells
- Formerly Neuropathology, Veterinary Laboratories Agency Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, UK.
| | - Umberto Agrimi
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161, Rome, Italy.
| | - Michele A Di Bari
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161, Rome, Italy.
| | - Olivier Andréoletti
- UMR INRA-ENVT 1225, Interactions Hôte Agent Pathogène, École Nationale Vétérinaire de Toulouse, 31076, Toulouse Cedex 3, France.
| | - Juan C Espinosa
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain.
| | | | - Juan M Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain.
| |
Collapse
|
16
|
Does the Presence of Scrapie Affect the Ability of Current Statutory Discriminatory Tests To Detect the Presence of Bovine Spongiform Encephalopathy? J Clin Microbiol 2015; 53:2593-604. [PMID: 26041899 DOI: 10.1128/jcm.00508-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/27/2015] [Indexed: 11/20/2022] Open
Abstract
Current European Commission (EC) surveillance regulations require discriminatory testing of all transmissible spongiform encephalopathy (TSE)-positive small ruminant (SR) samples in order to classify them as bovine spongiform encephalopathy (BSE) or non-BSE. This requires a range of tests, including characterization by bioassay in mouse models. Since 2005, naturally occurring BSE has been identified in two goats. It has also been demonstrated that more than one distinct TSE strain can coinfect a single animal in natural field situations. This study assesses the ability of the statutory methods as listed in the regulation to identify BSE in a blinded series of brain samples, in which ovine BSE and distinct isolates of scrapie are mixed at various ratios ranging from 99% to 1%. Additionally, these current statutory tests were compared with a new in vitro discriminatory method, which uses serial protein misfolding cyclic amplification (sPMCA). Western blotting consistently detected 50% BSE within a mixture, but at higher dilutions it had variable success. The enzyme-linked immunosorbent assay (ELISA) method consistently detected BSE only when it was present as 99% of the mixture, with variable success at higher dilutions. Bioassay and sPMCA reported BSE in all samples where it was present, down to 1%. sPMCA also consistently detected the presence of BSE in mixtures at 0.1%. While bioassay is the only validated method that allows comprehensive phenotypic characterization of an unknown TSE isolate, the sPMCA assay appears to offer a fast and cost-effective alternative for the screening of unknown isolates when the purpose of the investigation was solely to determine the presence or absence of BSE.
Collapse
|
17
|
Maddison BC, Spiropoulos J, Vickery CM, Lockey R, Owen JP, Bishop K, Baker CA, Gough KC. Incubation of ovine scrapie with environmental matrix results in biological and biochemical changes of PrP(Sc) over time. Vet Res 2015; 46:46. [PMID: 25928902 PMCID: PMC4415298 DOI: 10.1186/s13567-015-0179-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/02/2015] [Indexed: 11/15/2022] Open
Abstract
Ovine scrapie can be transmitted via environmental reservoirs. A pool of ovine scrapie isolates were incubated on soil for one day or thirteen months and eluted prion was used to challenge tg338 mice transgenic for ovine PrP. After one-day incubation on soil, two PrPSc phenotypes were present: G338 or Apl338ii. Thirteen months later some divergent PrPSc phenotypes were seen: a mixture of Apl338ii with either G338 or P338, and a completely novel PrPSc deposition, designated Cag338. The data show that prolonged ageing of scrapie prions within an environmental matrix may result in changes in the dominant PrPSc biological/biochemical properties.
Collapse
Affiliation(s)
- Ben C Maddison
- ADAS UK, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire, UK.
| | - John Spiropoulos
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, UK.
| | | | - Richard Lockey
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, UK. .,Current address: University of Southampton, Southampton, SO17 1BJ, UK.
| | - Jonathan P Owen
- ADAS UK, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire, UK.
| | - Keith Bishop
- ADAS UK, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire, UK.
| | - Claire A Baker
- ADAS UK, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire, UK.
| | - Kevin C Gough
- School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire, UK.
| |
Collapse
|
18
|
van Keulen LJM, Langeveld JPM, Dolstra CH, Jacobs J, Bossers A, van Zijderveld FG. TSE strain differentiation in mice by immunohistochemical PrP(Sc) profiles and triplex Western blot. Neuropathol Appl Neurobiol 2015; 41:756-79. [PMID: 25201447 DOI: 10.1111/nan.12181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/25/2014] [Indexed: 11/27/2022]
Abstract
UNLABELLED TSE strains are routinely identified by their incubation period and vacuolation profile in the brain after intracerebral inoculation and serial passaging in inbred mouse lines. There are some major drawbacks to this method that are related to the variation in vacuolation that exists in the brains of mice infected with the same TSE strain and to variation between observers and laboratories in scoring vacuolation and determining the final incubation period. AIM We investigated the potential of PrP(Sc) immunohistochemistry and triplex Western blotting as possible alternative methods to differentiate between TSE strains. METHODS TSE reference strains ME7, 87A/87V, 22A/22C, 79A/79V and 301C/301V were intracerebrally inoculated in RIII or VM inbred mice that differ in their PrP genotype. Immunohistochemical PrP(Sc) profiles were drawn up by scanning light microscopy both on coronal and sagittal sections. RESULTS On the basis of the localization of PrP(Sc) in the cerebral cortex, hippocampus, and cerebellar cortex and the overall type of PrP(Sc) staining, all TSE strains could be well differentiated from each other through their typical strain dependent characteristics. In addition, Western blot showed that the combination of glycosylation profile and 12B2 epitope content of PrP(Sc) allowed to distinguish between all reference strains except for ME7 and 22A in VM mice. CONCLUSION TSE strains in mice can be identified on the basis of their PrP(Sc) profile alone. The potential to identify TSE strains in ruminants with these PrP(Sc) profiles after a single primary passage in mice will be the topic of future studies.
Collapse
Affiliation(s)
- Lucien J M van Keulen
- Department of Infection Biology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | - Jan P M Langeveld
- Department of Infection Biology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | - Corry H Dolstra
- Department of Infection Biology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | - Jorg Jacobs
- Department of Infection Biology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | - Alex Bossers
- Department of Infection Biology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | - Fred G van Zijderveld
- Department of Bacteriology and TSEs, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| |
Collapse
|
19
|
Prion-induced and spontaneous formation of transmissible toxicity in PrP transgenic Drosophila. Biochem J 2014; 463:31-40. [PMID: 25000212 DOI: 10.1042/bj20140129] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prion diseases are fatal transmissible neurodegenerative diseases of various mammalian species. Central to these conditions is the conversion of the normal host prion protein PrP(C) into the abnormal prion conformer PrP(Sc). Mature PrP(C) is attached to the plasma membrane by a glycosylphosphatidylinositol anchor, whereas during biosynthesis and metabolism cytosolic and secreted forms of the protein may arise. The role of topological PrP(C) variants in the mechanism of prion formation and prion-induced neurotoxicity during prion disease remains undefined. In the present study we investigated whether Drosophila transgenic for ovine PrP targeted to the plasma membrane, to the cytosol or for secretion, could produce transmissible toxicity following exposure to exogenous ovine prions. Although all three topological variants of PrP were efficiently expressed in Drosophila, cytosolic PrP was conformationally distinct and required denaturation before recognition by immunobiochemical methods. Adult Drosophila transgenic for pan neuronally expressed ovine PrP targeted to the plasma membrane, to the cytosol or for secretion exhibited a decreased locomotor activity after exposure at the larval stage to ovine prions. Proteinase K-resistant PrP(Sc) was detected by protein misfolding cyclic amplification in prion-exposed Drosophila transgenic for membrane-targeted PrP. Significantly, head homogenate from all three variants of prion-exposed PrP transgenic Drosophila induced a decreased locomotor activity when transmitted to PrP recipient flies. Drosophila transgenic for PrP targeted for secretion exhibited a spontaneous locomotor defect in the absence of prion exposure that was transmissible in PrP transgenic flies. Our data are consistent with the formation of transmissible prions in PrP transgenic Drosophila.
Collapse
|
20
|
Scientific Opinion on the scrapie situation in the EU after 10 years of monitoring and control in sheep and goats. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3781] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
21
|
Foster JD, Goldmann W, Hunter N. Evidence in sheep for pre-natal transmission of scrapie to lambs from infected mothers. PLoS One 2013; 8:e79433. [PMID: 24260219 PMCID: PMC3832582 DOI: 10.1371/journal.pone.0079433] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 09/19/2013] [Indexed: 01/09/2023] Open
Abstract
Natural scrapie transmission from infected ewes to their lambs is thought to occur by the oral route around the time of birth. However the hypothesis that scrapie transmission can also occur before birth (in utero) is not currently favoured by most researchers. As scrapie is an opportunistic infection with multiple infection routes likely to be functional in sheep, definitive evidence for or against transmission from ewe to her developing fetus has been difficult to achieve. In addition the very early literature on maternal transmission of scrapie in sheep was compromised by lack of knowledge of the role of the PRNP (prion protein) gene in control of susceptibility to scrapie. In this study we experimentally infected pregnant ewes of known PRNP genotype with a distinctive scrapie strain (SSBP/1) and looked for evidence of transmission of SSBP/1 to the offspring. The sheep were from the NPU Cheviot flock, which has endemic natural scrapie from which SSBP/1 can be differentiated on the basis of histology, genetics of disease incidence and strain typing bioassay in mice. We used embryo transfer techniques to allow sheep fetuses of scrapie-susceptible PRNP genotypes to develop in a range of scrapie-resistant and susceptible recipient mothers and challenged the recipients with SSBP/1. Scrapie clinical disease, caused by both natural scrapie and SSBP/1, occurred in the progeny but evidence (including mouse strain typing) of SSBP/1 infection was found only in lambs born to fully susceptible recipient mothers. Progeny were not protected from transmission of natural scrapie or SSBP/1 by washing of embryos to International Embryo Transfer Society standards or by caesarean derivation and complete separation from their birth mothers. Our results strongly suggest that pre-natal (in utero) transmission of scrapie may have occurred in these sheep.
Collapse
Affiliation(s)
- James D. Foster
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Wilfred Goldmann
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Nora Hunter
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| |
Collapse
|
22
|
Griffiths PC, Plater JM, Chave A, Jayasena D, Tout AC, Rice PB, Vickery CM, Spiropoulos J, Stack MJ, Windl O. Overexpression of chimaeric murine/ovine PrP (A136H154Q171) in transgenic mice facilitates transmission and differentiation of ruminant prions. J Gen Virol 2013; 94:2577-2586. [PMID: 23761404 DOI: 10.1099/vir.0.051581-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Development of transgenic mouse models expressing heterologous prion protein (PrP) has facilitated and advanced in vivo studies of prion diseases affecting humans and animals. Here, novel transgenic mouse lines expressing a chimaeric murine/ovine (Mu/Ov) PrP transgene, including amino acid residues alanine, histidine and glutamine at ovine polymorphic codons 136, 154 and 171 (A136H154Q171), were generated to provide a means of assessing the susceptibility of the ovine AHQ allele to ruminant prion diseases in an in vivo model. Transmission studies showed that the highest level of transgene overexpression, in Tg(Mu/OvPrP(AHQ))EM16 (EM16) mice, conferred high susceptibility to ruminant prions. Highly efficient primary transmission of atypical scrapie from sheep was shown, irrespective of donor sheep PrP genotype, with mean incubation periods (IPs) of 154–178 days post-inoculation (p.i.), 100% disease penetrance and early Western blot detection of protease-resistant fragments (PrP(res)) of the disease-associated isoform, PrP(Sc), in EM16 brain from 110 days p.i. onwards. EM16 mice were also highly susceptible to classical scrapie and bovine spongiform encephalopathy (BSE), with mean IPs 320 and 246 days faster, respectively, than WT mice. Primary passage of atypical scrapie, classical scrapie and BSE showed that the PrP(res) profiles associated with disease in the natural host were faithfully maintained in EM16 mice, and were distinguishable based on molecular masses, antibody reactivities and glycoform percentages. Immunohistochemistry was used to confirm PrP(Sc) deposition in brain sections from terminal phase transmissible spongiform encephalopathy-challenged EM16 mice. The findings indicate that EM16 mice represent a suitable bioassay model for detection of atypical scrapie infectivity and offer the prospect of differentiation of ruminant prions.
Collapse
Affiliation(s)
- Peter C Griffiths
- TSE Department, Animal Health and Veterinary Laboratories Agency (AHVLA), Addlestone, Surrey KT15 3NB, UK
| | - Jane M Plater
- TSE Department, Animal Health and Veterinary Laboratories Agency (AHVLA), Addlestone, Surrey KT15 3NB, UK
| | - Alun Chave
- TSE Department, Animal Health and Veterinary Laboratories Agency (AHVLA), Addlestone, Surrey KT15 3NB, UK
| | - Dhanushka Jayasena
- TSE Department, Animal Health and Veterinary Laboratories Agency (AHVLA), Addlestone, Surrey KT15 3NB, UK
| | - Anna C Tout
- TSE Department, Animal Health and Veterinary Laboratories Agency (AHVLA), Addlestone, Surrey KT15 3NB, UK
| | - Paul B Rice
- TSE Department, Animal Health and Veterinary Laboratories Agency (AHVLA), Addlestone, Surrey KT15 3NB, UK
| | - Christopher M Vickery
- TSE Department, Animal Health and Veterinary Laboratories Agency (AHVLA), Addlestone, Surrey KT15 3NB, UK
| | - John Spiropoulos
- Pathology Unit, Specialist Scientific Support Department, Animal Health and Veterinary Laboratories Agency (AHVLA), Addlestone, Surrey KT15 3NB, UK
| | - Michael J Stack
- TSE Department, Animal Health and Veterinary Laboratories Agency (AHVLA), Addlestone, Surrey KT15 3NB, UK
| | - Otto Windl
- TSE Department, Animal Health and Veterinary Laboratories Agency (AHVLA), Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
23
|
Campisi E, Cardone F, Graziano S, Galeno R, Pocchiari M. Role of proteomics in understanding prion infection. Expert Rev Proteomics 2013; 9:649-66. [PMID: 23256675 DOI: 10.1586/epr.12.58] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transmissible spongiform encephalopathies or prion diseases are fatal neurodegenerative pathologies characterized by the autocatalytic misfolding and polymerization of a cellular glycoprotein (cellular prion protein [PrP(C)]) that accumulates in the CNS and leads to neurodegeneration. The detailed mechanics of PrP(C) conversion to its pathological isoform (PrP(TSE)) are unclear but one or more exogenous factors are likely involved in the process of PrP misfolding. In the last 20 years, proteomic investigations have identified several endogenous proteins that interact with PrP(C), PrP(TSE) or both, which are possibly involved in the prion pathogenetic process. However, current approaches have not yet produced convincing conclusions on the biological value of such PrP interactors. Future advancements in the comprehension of the molecular pathogenesis of prion diseases, in experimental techniques and in data analysis procedures, together with a boost in more productive international collaborations, are therefore needed to improve the understanding on the role of PrP interactors. Finally, the advancement of 'omics' techniques in prion diseases will contribute to the development of novel diagnostic tests and effective drugs.
Collapse
Affiliation(s)
- Edmondo Campisi
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | | | | | | | | |
Collapse
|
24
|
Beck KE, Thorne L, Lockey R, Vickery CM, Terry LA, Bujdoso R, Spiropoulos J. Strain typing of classical scrapie by transgenic mouse bioassay using protein misfolding cyclic amplification to replace primary passage. PLoS One 2013; 8:e57851. [PMID: 23472112 PMCID: PMC3589467 DOI: 10.1371/journal.pone.0057851] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/26/2013] [Indexed: 11/24/2022] Open
Abstract
According to traditional murine bioassay methodology, prions must be serially passaged within a new host before a stable phenotype, and therefore a strain, can be assigned. Prions often transmit with difficulty from one species to another; a property termed the transmission barrier. Transgenic mouse lines that over express prion protein (PrP) genes of different species can circumvent the transmission barrier but serial passages may still be required, particularly if unknown strains are encountered. Here we sought to investigate whether protein misfolding cyclic amplification (PMCA), an in-vitro method of PrPSc replication, could be used to replace serial passage of VRQ/VRQ classical scrapie isolates undergoing strain typing in ovine transgenic tg338 mice. Two classical scrapie field isolates that do not readily transmit to wild-type mice underwent bioassay in tg338 mice pre- and post- PMCA and the phenotype of disease in inoculated mice was compared. For one of the sources investigated, the PMCA product gave rise to the same disease phenotypes in tg338 mice as traditional bioassay, as indicated by lesion profile, IHC analysis and Western blot, whilst the second source produced phenotypic characteristics which were not identical with those that arose through traditional bioassay. These data show that differences in the efficiency of PMCA as a strain-typing tool may vary between ovine classical scrapie isolates and therefore suggest that the ability of PMCA to replace serial passage of classical scrapie in tg338 mice may depend on the strain present in the initial source.
Collapse
Affiliation(s)
- Katy E. Beck
- Transmissible Spongiform Encephalopathy Department, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
| | - Leigh Thorne
- Transmissible Spongiform Encephalopathy Department, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
| | - Richard Lockey
- Department of Pathology, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
| | - Christopher M. Vickery
- Transmissible Spongiform Encephalopathy Department, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
| | - Linda A. Terry
- Transmissible Spongiform Encephalopathy Department, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
| | - Raymond Bujdoso
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - John Spiropoulos
- Department of Pathology, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Di Bari MA, Nonno R, Castilla J, D'Agostino C, Pirisinu L, Riccardi G, Conte M, Richt J, Kunkle R, Langeveld J, Vaccari G, Agrimi U. Chronic wasting disease in bank voles: characterisation of the shortest incubation time model for prion diseases. PLoS Pathog 2013; 9:e1003219. [PMID: 23505374 PMCID: PMC3591354 DOI: 10.1371/journal.ppat.1003219] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 01/12/2013] [Indexed: 01/17/2023] Open
Abstract
In order to assess the susceptibility of bank voles to chronic wasting disease (CWD), we inoculated voles carrying isoleucine or methionine at codon 109 (Bv109I and Bv109M, respectively) with CWD isolates from elk, mule deer and white-tailed deer. Efficient transmission rate (100%) was observed with mean survival times ranging from 156 to 281 days post inoculation. Subsequent passages in Bv109I allowed us to isolate from all CWD sources the same vole-adapted CWD strain (Bv(109I)CWD), typified by unprecedented short incubation times of 25-28 days and survival times of ∼35 days. Neuropathological and molecular characterisation of Bv(109I)CWD showed that the classical features of mammalian prion diseases were all recapitulated in less than one month after intracerebral inoculation. Bv(109I)CWD was characterised by a mild and discrete distribution of spongiosis and relatively low levels of protease-resistant PrP(Sc) (PrP(res)) in the same brain regions. Despite the low PrP(res) levels and the short time lapse available for its accumulation, end-point titration revealed that brains from terminally-ill voles contained up to 10(8,4) i.c. ID50 infectious units per gram. Bv(109I)CWD was efficiently replicated by protein misfolding cyclic amplification (PMCA) and the infectivity faithfully generated in vitro, as demonstrated by the preservation of the peculiar Bv(109I)CWD strain features on re-isolation in Bv109I. Overall, we provide evidence that the same CWD strain was isolated in Bv109I from the three-cervid species. Bv(109I)CWD showed unique characteristics of "virulence", low PrP(res) accumulation and high infectivity, thus providing exceptional opportunities to improve basic knowledge of the relationship between PrP(Sc), neurodegeneration and infectivity.
Collapse
Affiliation(s)
- Michele Angelo Di Bari
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Corda E, Beck KE, Sallis RE, Vickery CM, Denyer M, Webb PR, Bellworthy SJ, Spencer YI, Simmons MM, Spiropoulos J. The interpretation of disease phenotypes to identify TSE strains in mice: characterisation of BSE using PrPSc distribution patterns in the brain. Vet Res 2012; 43:86. [PMID: 23245876 PMCID: PMC3567960 DOI: 10.1186/1297-9716-43-86] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/06/2012] [Indexed: 11/20/2022] Open
Abstract
In individual animals affected by transmissible spongiform encephalopathies, different disease phenotypes can be identified which are attributed to different strains of the agent. In the absence of reliable technology to fully characterise the agent, classification of disease phenotype has been used as a strain typing tool which can be applied in any host. This approach uses standardised data on biological parameters, established for a single host, to allow comparison of different prion sources. Traditionally prion strain characterisation in wild type mice is based on incubation periods and lesion profiles after the stabilisation of the agent into the new host which requires serial passages. Such analysis can take many years, due to prolonged incubation periods. The current study demonstrates that the PrPSc patterns produced by one serial passage in wild type mice of bovine or ovine BSE were consistent, stable and showed minimal and predictable differences from mouse-stabilised reference strains. This biological property makes PrPSc deposition pattern mapping a powerful tool in the identification and definition of TSE strains on primary isolation, making the process of characterisation faster and cheaper than a serial passage protocol. It can be applied to individual mice and therefore it is better suited to identify strain diversity within single inocula in case of co-infections or identify strains in cases where insufficient mice succumb to disease for robust lesion profiles to be constructed. The detailed description presented in this study provides a reference document for identifying BSE in wild type mice.
Collapse
Affiliation(s)
- Erica Corda
- School of Veterinary Medicine, University of Milan, Milan, Italy
| | - Katy E Beck
- Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Rosemary E Sallis
- Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Christopher M Vickery
- Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Margaret Denyer
- Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Paul R Webb
- Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Susan J Bellworthy
- Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Yvonne I Spencer
- Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Marion M Simmons
- Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - John Spiropoulos
- Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| |
Collapse
|
27
|
Vrentas CE, Greenlee JJ, Tatum TL, Nicholson EM. Relationships between PrPSc stability and incubation time for United States scrapie isolates in a natural host system. PLoS One 2012; 7:e43060. [PMID: 22916207 PMCID: PMC3419241 DOI: 10.1371/journal.pone.0043060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 07/18/2012] [Indexed: 11/23/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs), including scrapie in sheep (Ovis aries), are fatal neurodegenerative diseases caused by the misfolding of the cellular prion protein (PrPC) into a â-rich conformer (PrPSc) that accumulates into higher-order structures in the brain and other tissues. Distinct strains of TSEs exist, characterized by different pathologic profiles upon passage into rodents and representing distinct conformations of PrPSc. One biochemical method of distinguishing strains is the stability of PrPSc as determined by unfolding in guanidine hydrochloride (GdnHCl), which is tightly and positively correlated with the incubation time of disease upon passage into mice. Here, we utilize a rapid, protease-free version of the stability assay to characterize naturally occurring scrapie samples, including a fast-acting scrapie inoculum for which incubation time is highly dependent on the amino acid at codon 136 of the prion protein. We utilize the stability methodology to identify the presence of two distinct isolates in the inoculum, and compare isolate properties to those of a host-stabilized reference scrapie isolate (NADC 13-7) in order to assess the stability/incubation time correlation in a natural host system. We demonstrate the utility of the stability methodology in characterizing TSE isolates throughout serial passage in livestock, which is applicable to a range of natural host systems, including strains of bovine spongiform encephalopathy and chronic wasting disease.
Collapse
Affiliation(s)
- Catherine E. Vrentas
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, United States of America
| | - Justin J. Greenlee
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, United States of America
| | - Trudy L. Tatum
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, United States of America
| | - Eric M. Nicholson
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
28
|
Madsen-Bouterse SA, Zhuang D, O'Rourke KI, Schneider DA. Differential immunoreactivity of goat derived scrapie following in vitro misfolding versus mouse bioassay. Biochem Biophys Res Commun 2012; 423:770-4. [PMID: 22713450 DOI: 10.1016/j.bbrc.2012.06.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 06/11/2012] [Indexed: 02/01/2023]
Abstract
The protein misfolding cyclic amplification (PMCA) assay allows for detection of prion protein misfolding activity in tissues and fluids from sheep with scrapie where it was previously undetected by conventional western blot and immunohistochemistry assays. Studies of goats with scrapie have yet to take advantage of PMCA, which could aid in discerning the risk of transmission between goats and goats to sheep. The aim of the current study was to adapt PMCA for evaluation of scrapie derived from goats. Diluted brain homogenate from scrapie-infected goats (i.e., the scrapie seed, PrP(Sc)) was subjected to PMCA using normal brain homogenate from ovinized transgenic mice (tg338) as the source of normal cellular prion protein (the substrate, PrP(C)). The assay end-point was detection of the proteinase K-resistant misfolded prion protein core (PrP(res)) by western blot. Protein misfolding activity was consistently observed in caprine brain homogenate diluted 10,000-fold after 5 PMCA rounds. Epitope mapping by western blot analyses demonstrated that PrP(res) post-PMCA was readily detected with an N-terminus anti-PrP monoclonal antibody (P4), similar to scrapie inoculum from goats. This was in contrast to limited detection of PrP(res) with P4 following mouse bioassay. The inverse was observed with a monoclonal antibody to the C-terminus (F99/97.6.1). Thus, brain homogenate prepared from uninoculated tg338 served as an appropriate substrate for serial PMCA of PrP(Sc) derived from goats. These observations suggest that concurrent PMCA and bioassay with tg338 could improve characterization of goat derived scrapie.
Collapse
Affiliation(s)
- Sally A Madsen-Bouterse
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.
| | | | | | | |
Collapse
|
29
|
O'Rourke KI, Schneider DA, Spraker TR, Dassanayake RP, Highland MA, Zhuang D, Truscott TC. Transmissibility of caprine scrapie in ovine transgenic mice. BMC Vet Res 2012; 8:42. [PMID: 22472560 PMCID: PMC3489715 DOI: 10.1186/1746-6148-8-42] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 02/17/2012] [Indexed: 01/19/2023] Open
Abstract
Background The United States control program for classical ovine scrapie is based in part on the finding that infection is typically spread through exposure to shed placentas from infected ewes. Transmission from goats to sheep is less well described. A suitable rodent model for examining the effect of caprine scrapie isolates in the ovine host will be useful in the ovine scrapie eradication effort. In this study, we describe the incubation time, brain lesion profile, glycoform pattern and PrPSc distribution patterns in a well characterized transgenic mouse line (Tg338) expressing the ovine VRQ prion allele, following inoculation with brain from scrapie infected goats. Results First passage incubation times of caprine tissue in Tg338 ovinized mice varied widely but second passage intervals were shorter and consistent. Vacuolation profiles, glycoform patterns and paraffin-embedded tissue blots from terminally ill second passage mice derived from sheep or goat inocula were similar. Proteinase K digestion products of murine tissue were slightly smaller than the original ruminant inocula, a finding consistent with passage of several ovine strains in previous reports. Conclusions These findings demonstrate that Tg338 mice propagate prions of caprine origin and provide a suitable baseline for examination of samples identified in the expanded US caprine scrapie surveillance program.
Collapse
Affiliation(s)
- Katherine I O'Rourke
- United States Department of Agriculture, Agricultural Research Service, Pullman, WA 99164, USA.
| | | | | | | | | | | | | |
Collapse
|