1
|
Peng K, Xia RP, Zhao F, Xiao Y, Ma TD, Li M, Feng Y, Zhou CG. ALKBH5 facilitates the progression of infantile hemangioma by increasing FOXF1 expression in a m 6A-YTHDF2 dependent manner to activate HK-2 signaling. Mol Cell Biochem 2024; 479:3153-3166. [PMID: 38306011 DOI: 10.1007/s11010-024-04936-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Alkylation repair homolog protein 5 (ALKBH5) is reported to participate in infantile hemangioma (IH) progression. However, the underlying mechanism of ALKBH5 in IH remains unclear. Using qRT-PCR and Western blotting, ALKBH5, forkhead box F1 (FOXF1) and hexokinase 2 (HK-2) expressions in IH tissues and IH-derived endothelial cells XPTS-1 were assessed. The Me-RIP assay was used to analyze FOXF1 m6A level. CCK8, colony formation, flow cytometry and transwell assays were employed to determine IH cell viability, proliferation, apoptosis, migration and invasion. The interactions between YTH (YT521-B homology) domain 2 (YTHDF2), FOXF1 and HK-2 were analyzed by RIP, dual luciferase reporter gene assay and/or ChIP assay. The in vivo IH growth was evaluated in immunocompromised mice. FOXF1 was overexpressed in IH tissues, and its silencing inhibited IH cell proliferation, migration and invasion whereas promoting cell apoptosis in vitro. ALKBH5 upregulation facilitated FOXF1 mRNA stability and expression in IH cells in a m6A-YTHDF2-dependent manner. FOXF1 downregulation reversed the impact of ALKBH5 upregulation on IH cellular phenotypes. It also turned out that FOXF1 positively regulated HK-2 expression in IH cells through interacting with the HK-2 promoter. HK-2 upregulation abolished FOXF1 knockdown's inhibition on IH cell aggressive behaviors. ALKBH5 or FOXF1 silencing suppressed IH tumor development via HK-2 signaling in immunocompromised mice. ALKBH5 promoted FOXF1 expression m6A-YTHDF2 dependently, which in turn elevated HK-2 expression, thereby accelerating IH development.
Collapse
Affiliation(s)
- Kun Peng
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, No.86, Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Ren-Peng Xia
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, No.86, Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Fan Zhao
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, No.86, Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Yong Xiao
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, No.86, Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Ti-Dong Ma
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, No.86, Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Ming Li
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, No.86, Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Yong Feng
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, No.86, Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Chong-Gao Zhou
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, No.86, Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China.
| |
Collapse
|
2
|
Dastafkan Z, Rezvani N, Amini S. Diagnostic value of FOXF1 gene promoter-methylated DNA in the plasma samples of patients with colorectal cancer. Int J Biol Markers 2023; 38:194-202. [PMID: 37847578 DOI: 10.1177/03936155231207109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
BACKGROUND Epigenetic modifications such as DNA methylation in the CpG islands of genes occur at a high rate. In this study, we measured the methylation level of the promoter region of the FOXF1 gene as a new blood biomarker for the detection of colorectal cancer in the early stages. METHODS The methylation level of the promoter region of the FOXF1 gene was measured in the plasma samples of 50 colorectal cancer patients and 50 normal individuals. DNA was extracted after exposure to sodium bisulfite by the MethyLight polymerase chain reaction (PCR) method. The percentage of promoter region was measured in all samples, and statistical analysis was done using SPSS v24 software. RESULTS The average promoter region between the plasma samples of colorectal cancer patients and healthy individuals had a significant difference (P < 0.001). The average promoter region of the FOXF1 gene in tumor plasma samples was 7.1 and in the control samples was 0.48. The sensitivity and specificity of the sample plasma levels were 78% and 89.5%, respectively. CONCLUSION The promoter region value of the FOXF1 gene in plasma samples using the MethyLight PCR method had high sensitivity and specificity as a non-invasive method for colorectal cancer diagnosis. This research is the first report that has been presented regarding the investigation of FOXF1 gene methylation in plasma samples in colorectal cancer. Therefore, it is necessary to conduct more studies with larger size samples to evaluate the efficiency of the gene under investigation.
Collapse
Affiliation(s)
- Zahra Dastafkan
- Medical Genetics Laboratory, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nayebali Rezvani
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sabrieh Amini
- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
3
|
Hao Y, He W, Wang H, Rui W, Sun F, Zhu Y, Xu D, Wang C. Forkhead box F1 functions as a novel prognostic biomarker and induces caspase‑dependent apoptosis in bladder cancer. Oncol Rep 2023; 50:173. [PMID: 37539708 PMCID: PMC10433446 DOI: 10.3892/or.2023.8610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
The downregulated expression of forkhead box F1 (FOXF1) has been found in many malignant tumors but no research was done in bladder cancer (BC). The present study aimed to investigate the prognostic value and antitumor effects of FOXF1 in patients with BC. Herein, a retrospectively recruited BC cohort and public datasets were utilized to identify the predictive ability of FOXF1 and determine its association with the clinical characteristics of BC patients. It was found that the expression level of FOXF1 was notably lower in BC tissues than in para‑cancerous mucosae. Low FOXF1 expression was associated with unfavorable clinicopathological features and poor prognosis. Furthermore, in BC cells, the mRNA and protein expression levels of FOXF1 were examined using reverse transcription‑quantitative PCR and western blot analysis. Cell viability was examined using Cell Counting Kit‑8, EdU and clonogenic capacity assays. Cell apoptosis was detected using flow cytometry. The results revealed that the activation of FOXF1 impaired cell viability and induced apoptosis in BC. The antitumor effects of FOXF1 were also validated using animal models. Subsequently, caspase‑3 was spotted as a downstream gene of FOXF1 by using RNA sequencing and protein‑protein interaction analyses. FOXF1 inhibited proliferation and induced apoptosis of BC cells via caspase signaling pathway. The present study demonstrates the expression patterns, prognostic predictive ability and antitumor effects of FOXF1 in BC. FOXF1 is a favorable biomarker for predicting clinical outcomes in patients with BC and represents a potential therapeutic target.
Collapse
Affiliation(s)
- Yining Hao
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Wei He
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Haofei Wang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Wenbin Rui
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Fukang Sun
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Yu Zhu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Danfeng Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Chenghe Wang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
4
|
Hrudka J, Prouzová Z, Mydlíková K, Jedličková K, Holešta M, Whitley A, Havlůj L. FOXF1 as an Immunohistochemical Marker of Hilar Cholangiocarcinoma or Metastatic Pancreatic Ductal Adenocarcinoma. Single Institution Experience. Pathol Oncol Res 2021; 27:1609756. [PMID: 34257615 PMCID: PMC8262193 DOI: 10.3389/pore.2021.1609756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/17/2021] [Indexed: 12/28/2022]
Abstract
Cholangiocarcinoma (CCA) is a liver malignancy associated with a poor prognosis. Its main subtypes are peripheral/intrahepatic and hilar/extrahepatic CCA. Several molecular, morphological and clinical similarities between hilar/extrahepatic CCA and pancreatic ductal adenocarcinoma (PDAC) have been described. FOXF1 is a transcription factor which has been described to have prognostic significance in various tumors and it is involved in the development of bile ducts. The aim of this study is to determine occurrence of nuclear expression of FOXF1 in both subtypes of CCA and metastatic PDAC and assess its potential usefulness as a diagnostic marker. Secondary aims were to investigate the use of C-reactive protein (CRP) immunohistochemistry for diagnosing intrahepatic peripheral CCA and the significance of histological features in CCA subtypes. 32 archive specimens of CCA, combined hepatocellular carcinoma-CCA (HCC-CCA) and liver metastasis of PDAC were stained by FOXF1 and CRP immunohistochemistry and evaluated to determine histological pattern. The CCAs were classified radiologically into peripheral/intrahepatic and hilar subtype. Using Fisher exact test, we identified nuclear FOXF1 as a fairly specific (87%) but insensitive (65%) marker of hilar and extrahepatic CCA and metastatic PDAC (p = 0.005). CRP immunohistochemistry was characterized by a high sensitivity and specificity, of 79% and 88%, respectively (p = 0.001). We did not identify any histomorphological features associated with either types of CCA or metastatic PDAC. As a conclusion of novel finding, FOXF1 immunohistochemistry may be regarded as a specific but insensitive marker of hilar/extrahepatic CCA and metastatic PDAC and it may help distinguish them from peripheral CCA.
Collapse
Affiliation(s)
- Jan Hrudka
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Královské Vinohrady, Prague, Czech Republic
| | - Zuzana Prouzová
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Královské Vinohrady, Prague, Czech Republic
| | - Katarína Mydlíková
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Královské Vinohrady, Prague, Czech Republic
| | - Kristína Jedličková
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Michal Holešta
- Department of Radiodiagnostics, Charles University, 3rd Faculty of Medicine, Charles University and Královské Vinohrady University Hospital, Prague, Czech Republic
| | - Adam Whitley
- Department of General Surgery, Charles University, 3rd Faculty of Medicine, Charles University, University Hospital Královské Vinohrady, Prague, Czech Republic
| | - Lukáš Havlůj
- Department of General Surgery, Charles University, 3rd Faculty of Medicine, Charles University, University Hospital Královské Vinohrady, Prague, Czech Republic
| |
Collapse
|
5
|
Wu CY, Chan CH, Dubey NK, Wei HJ, Lu JH, Chang CC, Cheng HC, Ou KL, Deng WP. Highly Expressed FOXF1 Inhibit Non-Small-Cell Lung Cancer Growth via Inducing Tumor Suppressor and G1-Phase Cell-Cycle Arrest. Int J Mol Sci 2020; 21:ijms21093227. [PMID: 32370197 PMCID: PMC7246752 DOI: 10.3390/ijms21093227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer pathogenesis results from genetic alteration-induced high or low transcriptional programs, which become highly dependent on regulators of gene expression. However, their role in progressive regulation of non-small-cell lung cancer (NSCLC) and how these dependencies may offer opportunities for novel therapeutic options remain to be understood. Previously, we identified forkhead box F1 (FOXF1) as a reprogramming mediator which leads to stemnesss when mesenchymal stem cells fuse with lung cancer cells, and we now examine its effect on lung cancer through establishing lowly and highly expressing FOXF1 NSCLC engineered cell lines. Higher expression of FOXF1 was enabled in cell lines through lentiviral transduction, and their viability, proliferation, and anchorage-dependent growth was assessed. Flow cytometry and Western blot were used to analyze cellular percentage in cell-cycle phases and levels of cellular cyclins, respectively. In mice, tumorigenic behavior of FOXF1 was investigated. We found that FOXF1 was downregulated in lung cancer tissues and cancer cell lines. Cell proliferation and ability of migration, anchorage-independent growth, and transformation were inhibited in H441-FOXF1H and H1299-FOXF1H, with upregulated tumor suppressor p21 and suppressed cellular cyclins, leading to cell-cycle arrest at the gap 1 (G1) phase. H441-FOXF1H and H1299-FOXF1H injected mice showed reduced tumor size. Conclusively, highly expressing FOXF1 inhibited NSCLC growth via activating tumor suppressor p21 and G1 cell-cycle arrest, thus offering a potentially novel therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Chia-Yu Wu
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, Taipei 11031, Taiwan;
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Hao Chan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.C.); (N.K.D.); (H.-J.W.); (J.-H.L.); (H.-C.C.)
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Navneet Kumar Dubey
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.C.); (N.K.D.); (H.-J.W.); (J.-H.L.); (H.-C.C.)
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hong-Jian Wei
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.C.); (N.K.D.); (H.-J.W.); (J.-H.L.); (H.-C.C.)
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jui-Hua Lu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.C.); (N.K.D.); (H.-J.W.); (J.-H.L.); (H.-C.C.)
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan;
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsin-Chung Cheng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.C.); (N.K.D.); (H.-J.W.); (J.-H.L.); (H.-C.C.)
- Department of Dentistry, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Keng-Liang Ou
- Department of Dentistry, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan;
- 3D Global Biotech Inc., New Taipei City 22175, Taiwan
| | - Win-Ping Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.C.); (N.K.D.); (H.-J.W.); (J.-H.L.); (H.-C.C.)
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
- Correspondence:
| |
Collapse
|
6
|
Moassass F, Wafa A, Liehr T, Al-Ablog A, Al Achkar W. Down syndrome associated childhood myeloid leukemia with yet unreported acquired chromosomal abnormalities and a new potential adverse marker: dup(1)(q25q44). Mol Cytogenet 2018; 11:22. [PMID: 29563973 PMCID: PMC5851247 DOI: 10.1186/s13039-018-0370-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/07/2018] [Indexed: 01/17/2023] Open
Abstract
Background Children with constitutional trisomy 21, i.e. Down syndrome (DS, OMIM #190685) have a 10 to 20-fold increased risk for a hematopoietic malignancy. They may suffer from acute lymphoblastic leukemia or acute myeloid leukemia (AML). AML referred to as myeloid leukemia of Down syndrome (ML-DS) is observed especially after birth at an early gestational age and characterized by enhanced white blood cell count, failure of spontaneous remission, liver fibrosis or liver dysfunction, and is significantly associated with early death. There are only few studies yet focusing on the clonal cytogenetic changes during evolution of ML-DS. Case presentation In a 1.4-year-old boy with DS an immunophenotype consistent with AML-M1 according to French-American-British (FAB) classification was diagnoses. Cytogenetic and molecular cytogenetic analyses revealed, besides constitutional free trisomy 21, an unbalanced translocation as der(16)t(1;16)(q25.3;q24), plus a balanced translocation t(3;20)(q25;q13.1). A poor clinical outcome was observed here. Conclusions To the best of our knowledge, an ML-DS case associated with identical acquired chromosomal abnormalities was not previously reported. Our findings suggest that especially partial trisomy 1q25 to 1q44 may be indicative for a poor prognosis in ML-DS.
Collapse
Affiliation(s)
- Faten Moassass
- 1Molecular Biology and Biotechnology Department, Human Genetics Division, Chromosomes Laboratory, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria
| | - Abdulsamad Wafa
- 1Molecular Biology and Biotechnology Department, Human Genetics Division, Chromosomes Laboratory, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria
| | - Thomas Liehr
- 2Jena University Hospital, Institute of Human Genetics, Am Klinikum 1, 07747 Jena, Germany
| | - Ayman Al-Ablog
- 1Molecular Biology and Biotechnology Department, Human Genetics Division, Chromosomes Laboratory, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria
| | - Walid Al Achkar
- 1Molecular Biology and Biotechnology Department, Human Genetics Division, Chromosomes Laboratory, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria
| |
Collapse
|
7
|
Zhao ZG, Wang DQ, Hu DF, Li YS, Liu SH. Decreased FOXF1 promotes hepatocellular carcinoma tumorigenesis, invasion, and stemness and is associated with poor clinical outcome. Onco Targets Ther 2016; 9:1743-52. [PMID: 27042124 PMCID: PMC4809324 DOI: 10.2147/ott.s95002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Forkhead box F1 (FOXF1), a member of the forkhead transcription factor superfamily, plays critical roles in the progression of certain types of cancers. However, the expression and function of FOXF1 in human hepatocellular carcinoma (HCC) are still unclear. Quantitative real-time reverse transcription polymerase chain reaction, Western blotting, and immunohistochemistry detected the relatively lower expression status of FOXF1 in HCC cases. Soft agar and transwell assays clearly demonstrated that FOXF1-knockdown cells showed significantly increased in vitro cell tumorigenesis and invasion, and FOXF1-overexpressing cells had significantly reduced growth and invasion potential. Our study also examined the role of FOXF1 in HCC cell stemness by sphere formation, aldehyde dehydrogenase (ALDH1) activity, and CD44/133-positive cell analysis. Enforced FOXF1 expression decreased HCC cell stemness, and the downregulation of FOXF1 promoted cancer cell stemness. The in vivo study showed that overexpressed FOXF1 inhibits nude mouse tumorigenicity with downregulation of CD44 and proliferating cell nuclear antigen. More importantly, loss of FOXF1 expression was linked to poor overall survival time by Kaplan–Meier analysis.
Collapse
Affiliation(s)
- Zhen-Guo Zhao
- Department of Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, People's Republic of China; Department of General Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, People's Republic of China
| | - De-Qiang Wang
- Tumor Treatment Center, The Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - De-Fei Hu
- Clinical Laboratory, The Second People's Hospital of Huai'an, Huai'an, People's Republic of China
| | - You-Sheng Li
- Department of Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Shuang-Hai Liu
- Department of General Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, People's Republic of China
| |
Collapse
|
8
|
Lee JY, Tokumoto M, Fujiwara Y, Hasegawa T, Seko Y, Shimada A, Satoh M. Accumulation of p53 via down-regulation of UBE2D family genes is a critical pathway for cadmium-induced renal toxicity. Sci Rep 2016; 6:21968. [PMID: 26912277 PMCID: PMC4766413 DOI: 10.1038/srep21968] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/03/2016] [Indexed: 12/19/2022] Open
Abstract
Chronic cadmium (Cd) exposure can induce renal toxicity. In Cd renal toxicity, p53 is thought to be involved. Our previous studies showed that Cd down-regulated gene expression of the UBE2D (ubiquitin-conjugating enzyme E2D) family members. Here, we aimed to define the association between UBE2D family members and p53-dependent apoptosis in human proximal tubular cells (HK-2 cells) treated with Cd. Cd increased intracellular p53 protein levels and decreased UBE2D2 and UBE2D4 gene expression via inhibition of YY1 and FOXF1 transcription factor activities. Double knockdown of UBE2D2 and UBE2D4 caused an increase in p53 protein levels, and knockdown of p53 attenuated not only Cd-induced apoptosis, but also Cd-induced apoptosis-related gene expression (BAX and PUMA). Additionally, the mice exposed to Cd for 6 months resulted in increased levels of p53 and induction of apoptosis in proximal tubular cells. These findings suggest that down-regulation of UBE2D family genes followed by accumulation of p53 in proximal tubular cells is an important mechanism for Cd-induced renal toxicity.
Collapse
Affiliation(s)
- Jin-Yong Lee
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Maki Tokumoto
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Yasuyuki Fujiwara
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan.,Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tatsuya Hasegawa
- Department of Environmental Biochemistry, Mount Fuji Research Institute, 5597-1 Kenmarubi, Kamiyoshida, Fujiyoshida, Yamanashi 403-0005, Japan
| | - Yoshiyuki Seko
- Department of Environmental Biochemistry, Mount Fuji Research Institute, 5597-1 Kenmarubi, Kamiyoshida, Fujiyoshida, Yamanashi 403-0005, Japan
| | - Akinori Shimada
- Laboratory of Pathology, Department of Medical Technology, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Masahiko Satoh
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| |
Collapse
|
9
|
Xiao GQ, Li F, Findeis-Hosey J, Hyrien O, Unger PD, Xiao L, Dunne R, Kim ES, Yang Q, McMahon L, Burstein DE. Down-regulation of cytoplasmic PLZF correlates with high tumor grade and tumor aggression in non-small cell lung carcinoma. Hum Pathol 2015; 46:1607-15. [PMID: 26297253 DOI: 10.1016/j.humpath.2015.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/20/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022]
Abstract
There are currently no effective prognostic biomarkers for lung cancer. Promyelocytic leukemia zinc finger (PLZF), a transcriptional repressor, has a role in cell cycle progression and tumorigenicity in various cancers. The expression and value of PLZF in lung carcinoma, particularly in the subclass of non-small cell lung carcinoma (NSCLC), has not been studied. Our aim was to study the immunohistochemical expression of PLZF in lung adenocarcinoma and squamous cell carcinoma and correlate the alteration of PLZF expression with tumor differentiation, lymph node metastasis, tumor stage, and overall survival. A total of 296 NSCLCs being mounted on tissue microarray (181 adenocarcinomas and 91 squamous cell carcinomas) were investigated. Moderate to strong expression of PLZF was found in the cytoplasm of all the nonneoplastic respiratory epithelium and most (89.9%) well-differentiated adenocarcinoma. The proportions of moderately differentiated, poorly differentiated adenocarcinoma, and paired lymph node adenocarcinoma metastases that demonstrated negative or only weak PLZF reactivity were 75.6%, 97.2%, and 89.9%, respectively. The expression of PLZF in squamous cell carcinoma was mostly weak or absent and significantly lower than that in adenocarcinoma of the same grade (P < .0005). The loss of cytoplasmic PLZF strongly correlated with high tumor grade and lymph node metastasis in both squamous carcinoma and adenocarcinoma (P < .0001). Down-regulation of PLZF also correlated with higher tumor stage and shorter overall survival (P < .05). These results support a prognostic value for loss of cytoplasmic PLZF expression in the stratification of NSCLC and a possible role of cytoplasmic shift and down-regulation of PLZF in the pathogenesis of NSCLC.
Collapse
Affiliation(s)
- Guang-Qian Xiao
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642.
| | - Faqian Li
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642
| | | | - Ollivier Hyrien
- Department of Biostatistics, University of Rochester Medical Center, Rochester, NY 14642
| | - Pamela D Unger
- Department of Pathology, Lenox Hill Hospital-NS/LIJ Health System, New York, NY 10065
| | - Lu Xiao
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642
| | - Richard Dunne
- Department of Hematology and Oncology, University of Rochester Medical Center, Rochester, NY 14642
| | - Eric S Kim
- Department of Hematology and Oncology, University of Rochester Medical Center, Rochester, NY 14642
| | - Qi Yang
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642
| | - Loralee McMahon
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642
| | - David E Burstein
- Department of Pathology, Mount Sinai Medical Center, New York, NY 10029
| |
Collapse
|
10
|
The miR-200 family and the miR-183~96~182 cluster target Foxf2 to inhibit invasion and metastasis in lung cancers. Oncogene 2015; 35:173-86. [PMID: 25798833 PMCID: PMC4580489 DOI: 10.1038/onc.2015.71] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/25/2015] [Accepted: 02/02/2015] [Indexed: 12/12/2022]
Abstract
Metastatic lung cancer is one of the most lethal forms of cancer and molecular pathways driving metastasis are still not clearly elucidated. Metastatic cancer cells undergo an epithelial-mesenchymal transition (EMT) where they lose their epithelial properties and acquire a migratory and invasive phenotype. Here we identify that expression of microRNAs from the miR-200 family and the miR-183~96~182 cluster are significantly co-repressed in non-small cell lung cancer (NSCLC) cell lines and primary tumors from multiple TCGA data sets with high EMT scores. Ectopic expression of the miR-183~96~182 cluster inhibited cancer cell migration and invasion, while its expression was tightly modulated by miR-200. We identified Foxf2 as a common, novel and direct target of both these microRNA families. Foxf2 expression tightly correlates with the transcription factor Zeb1 and is elevated in mesenchymal-like metastatic lung cancer cells. Foxf2 expression induced robust EMT, migration, invasion and metastasis in lung cancer cells, whereas Foxf2 inhibition significantly repressed these phenotypes. We also demonstrated that Foxf2 transcriptionally represses E-Cadherin and miR-200, independent of Zeb1, to form a double negative feedback loop. We therefore identified a novel mechanism whereby the miR-200 family and the miR-183~96~182 cluster inhibit lung cancer invasion and metastasis by targeting Foxf2.
Collapse
|
11
|
Dharmadhikari AV, Gambin T, Szafranski P, Cao W, Probst FJ, Jin W, Fang P, Gogolewski K, Gambin A, George-Abraham JK, Golla S, Boidein F, Duban-Bedu B, Delobel B, Andrieux J, Becker K, Holinski-Feder E, Cheung SW, Stankiewicz P. Molecular and clinical analyses of 16q24.1 duplications involving FOXF1 identify an evolutionarily unstable large minisatellite. BMC MEDICAL GENETICS 2014; 15:128. [PMID: 25472632 PMCID: PMC4411736 DOI: 10.1186/s12881-014-0128-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 11/18/2014] [Indexed: 11/10/2022]
Abstract
Background Point mutations or genomic deletions of FOXF1 result in a lethal developmental lung disease Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins. However, the clinical consequences of the constitutively increased dosage of FOXF1 are unknown. Methods Copy-number variations and their parental origin were identified using a combination of array CGH, long-range PCR, DNA sequencing, and microsatellite analyses. Minisatellite sequences across different species were compared using a gready clustering algorithm and genome-wide analysis of the distribution of minisatellite sequences was performed using R statistical software. Results We report four unrelated families with 16q24.1 duplications encompassing entire FOXF1. In a 4-year-old boy with speech delay and a café-au-lait macule, we identified an ~15 kb 16q24.1 duplication inherited from the reportedly healthy father, in addition to a de novo ~1.09 Mb mosaic 17q11.2 NF1 deletion. In a 13-year-old patient with autism and mood disorder, we found an ~0.3 Mb duplication harboring FOXF1 and an ~0.5 Mb 16q23.3 duplication, both inherited from the father with bipolar disorder. In a 47-year old patient with pyloric stenosis, mesenterium commune, and aplasia of the appendix, we identified an ~0.4 Mb duplication in 16q24.1 encompassing 16 genes including FOXF1. The patient transmitted the duplication to her daughter, who presented with similar symptoms. In a fourth patient with speech and motor delay, and borderline intellectual disability, we identified an ~1.7 Mb FOXF1 duplication adjacent to a large minisatellite. This duplication has a complex structure and arose de novo on the maternal chromosome, likely as a result of a DNA replication error initiated by the adjacent large tandem repeat. Using bioinformatic and array CGH analyses of the minisatellite, we found a large variation of its size in several different species and individuals, demonstrating both its evolutionarily instability and population polymorphism. Conclusions Our data indicate that constitutional duplication of FOXF1 in humans is not associated with any pediatric lung abnormalities. We propose that patients with gut malrotation, pyloric or duodenal stenosis, and gall bladder agenesis should be tested for FOXF1 alterations. We suggest that instability of minisatellites greater than 1 kb can lead to structural variation due to DNA replication errors. Electronic supplementary material The online version of this article (doi:10.1186/s12881-014-0128-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Avinash V Dharmadhikari
- Interdepartmental Program in Translational Biology & Molecular Medicine, Baylor College of Medicine, Houston, TX, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Wenjian Cao
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Frank J Probst
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Weihong Jin
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Ping Fang
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | | | - Anna Gambin
- Institute of Informatics, University of Warsaw, Warsaw, Poland. .,Mossakowski Medical Research Center, Polish Academy of Sciences, Warsaw, Poland.
| | | | - Sailaja Golla
- Departments of Pediatrics and Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Francoise Boidein
- Neuropediatrics Service, Saint Vincent de Paul Catholic Hospitals Association of Lille, Free Faculty of Medicine, Lille, France.
| | - Benedicte Duban-Bedu
- Cytogenetics Service, Saint Vincent de Paul Catholic Hospitals Association of Lille, Free Faculty of Medicine, Lille, France.
| | - Bruno Delobel
- Cytogenetics Service, Saint Vincent de Paul Catholic Hospitals Association of Lille, Free Faculty of Medicine, Lille, France.
| | - Joris Andrieux
- Laboratory of Medical Genetics, University Hospital, Lille, France.
| | | | | | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Pawel Stankiewicz
- Interdepartmental Program in Translational Biology & Molecular Medicine, Baylor College of Medicine, Houston, TX, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Effertz T, Scharr AL, Ricci AJ. The how and why of identifying the hair cell mechano-electrical transduction channel. Pflugers Arch 2014; 467:73-84. [PMID: 25241775 DOI: 10.1007/s00424-014-1606-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/28/2014] [Accepted: 09/01/2014] [Indexed: 01/10/2023]
Abstract
Identification of the auditory hair cell mechano-electrical transduction (hcMET) channel has been a major focus in the hearing research field since the 1980s when direct mechanical gating of a transduction channel was proposed (Corey and Hudspeth J Neurosci 3:962-976, 1983). To this day, the molecular identity of this channel remains controversial. However, many of the hcMET channel's properties have been characterized, including pore properties, calcium-dependent ion permeability, rectification, and single channel conductance. At this point, elucidating the molecular identity of the hcMET channel will provide new tools for understanding the mechanotransduction process. This review discusses the significance of identifying the hcMET channel, the difficulties associated with that task, as well as the establishment of clear criteria for this identification. Finally, we discuss potential candidate channels in light of these criteria.
Collapse
Affiliation(s)
- Thomas Effertz
- Department of Otolaryngology, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | | | | |
Collapse
|
13
|
Kucharczyk M, Kochański A, Jezela-Stanek A, Kugaudo M, Sielska-Rotblum D, Gutkowska A, Krajewska-Walasek M. The first case of a patient with de novo partial distal 16q tetrasomy and a data's review. Am J Med Genet A 2014; 164A:2541-50. [DOI: 10.1002/ajmg.a.36686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 06/17/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Marzena Kucharczyk
- Department of Medical Genetics; The Children's Memorial Health Institute; Warsaw Poland
| | - Andrzej Kochański
- Department of Medical Genetics; The Children's Memorial Health Institute; Warsaw Poland
- Neuromuscular Unit; Mossakowski Medical Research Centre; Polish Academy of Sciences; Warsaw Poland
| | | | - Monika Kugaudo
- Department of Medical Genetics; The Children's Memorial Health Institute; Warsaw Poland
- Department of Child and Adolescent Psychiatry; Medical University of Warsaw; Warsaw Poland
| | | | - Anna Gutkowska
- Department of Medical Genetics; The Children's Memorial Health Institute; Warsaw Poland
| | | |
Collapse
|
14
|
Sen P, Dharmadhikari AV, Majewski T, Mohammad MA, Kalin TV, Zabielska J, Ren X, Bray M, Brown HM, Welty S, Thevananther S, Langston C, Szafranski P, Justice MJ, Kalinichenko VV, Gambin A, Belmont J, Stankiewicz P. Comparative analyses of lung transcriptomes in patients with alveolar capillary dysplasia with misalignment of pulmonary veins and in foxf1 heterozygous knockout mice. PLoS One 2014; 9:e94390. [PMID: 24722050 PMCID: PMC3983164 DOI: 10.1371/journal.pone.0094390] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/14/2014] [Indexed: 12/24/2022] Open
Abstract
Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins (ACDMPV) is a developmental disorder of the lungs, primarily affecting their vasculature. FOXF1 haploinsufficiency due to heterozygous genomic deletions and point mutations have been reported in most patients with ACDMPV. The majority of mice with heterozygous loss-of-function of Foxf1 exhibit neonatal lethality with evidence of pulmonary hemorrhage in some of them. By comparing transcriptomes of human ACDMPV lungs with control lungs using expression arrays, we found that several genes and pathways involved in lung development, angiogenesis, and in pulmonary hypertension development, were deregulated. Similar transcriptional changes were found in lungs of the postnatal day 0.5 Foxf1+/− mice when compared to their wildtype littermate controls; 14 genes, COL15A1, COL18A1, COL6A2, ESM1, FSCN1, GRINA, IGFBP3, IL1B, MALL, NOS3, RASL11B, MATN2, PRKCDBP, and SIRPA, were found common to both ACDMPV and Foxf1 heterozygous lungs. Our results advance knowledge toward understanding of the molecular mechanism of ACDMPV, lung development, and its vasculature pathology. These data may also be useful for understanding etiologies of other lung disorders, e.g. pulmonary hypertension, bronchopulmonary dysplasia, or cancer.
Collapse
Affiliation(s)
- Partha Sen
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (P. Sen); (P. Stankiewicz)
| | - Avinash V. Dharmadhikari
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tadeusz Majewski
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Mahmoud A. Mohammad
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tanya V. Kalin
- Division of Pulmonary Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | | | - Xiaomeng Ren
- Division of Pulmonary Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Molly Bray
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Hannah M. Brown
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Robinson Research Institute, School of Pediatrics and Reproductive Health, University of Adelaide, Adelaide, Australia
| | - Stephen Welty
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sundararajah Thevananther
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Claire Langston
- Department of Pathology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Przemyslaw Szafranski
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Monica J. Justice
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Vladimir V. Kalinichenko
- Division of Pulmonary Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Anna Gambin
- Institute of Informatics, University of Warsaw, Warsaw, Poland
- Mossakowski Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| | - John Belmont
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Pawel Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (P. Sen); (P. Stankiewicz)
| |
Collapse
|
15
|
Trucco MM, Awad O, Wilky BA, Goldstein SD, Huang R, Walker RL, Shah P, Katuri V, Gul N, Zhu YJ, McCarthy EF, Paz-Priel I, Meltzer PS, Austin CP, Xia M, Loeb DM. A novel chordoma xenograft allows in vivo drug testing and reveals the importance of NF-κB signaling in chordoma biology. PLoS One 2013; 8:e79950. [PMID: 24223206 PMCID: PMC3819300 DOI: 10.1371/journal.pone.0079950] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 09/27/2013] [Indexed: 01/10/2023] Open
Abstract
Chordoma is a rare primary bone malignancy that arises in the skull base, spine and sacrum and originates from remnants of the notochord. These tumors are typically resistant to conventional chemotherapy, and to date there are no FDA-approved agents to treat chordoma. The lack of in vivo models of chordoma has impeded the development of new therapies for this tumor. Primary tumor from a sacral chordoma was xenografted into NOD/SCID/IL-2R γ-null mice. The xenograft is serially transplantable and was characterized by both gene expression analysis and whole genome SNP genotyping. The NIH Chemical Genomics Center performed high-throughput screening of 2,816 compounds using two established chordoma cell lines, U-CH1 and U-CH2B. The screen yielded several compounds that showed activity and two, sunitinib and bortezomib, were tested in the xenograft. Both agents slowed the growth of the xenograft tumor. Sensitivity to an inhibitor of IκB, as well as inhibition of an NF-κB gene expression signature demonstrated the importance of NF-κB signaling for chordoma growth. This serially transplantable chordoma xenograft is thus a practical model to study chordomas and perform in vivo preclinical drug testing.
Collapse
Affiliation(s)
- Matteo M. Trucco
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ola Awad
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Breelyn A. Wilky
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Seth D. Goldstein
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ruili Huang
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland, United States of America
| | - Robert L. Walker
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States of America
| | - Preeti Shah
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Varalakshmi Katuri
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Naheed Gul
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Yuelin J. Zhu
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States of America
| | - Edward F. McCarthy
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ido Paz-Priel
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Paul S. Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States of America
| | - Christopher P. Austin
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland, United States of America
| | - Menghang Xia
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland, United States of America
| | - David M. Loeb
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
16
|
Forkhead transcription factor FOXF1 is a novel target gene of the p53 family and regulates cancer cell migration and invasiveness. Oncogene 2013; 33:4837-46. [PMID: 24186199 DOI: 10.1038/onc.2013.427] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 07/12/2013] [Accepted: 08/09/2013] [Indexed: 12/15/2022]
Abstract
p53 is an established tumor suppressor that can activate the transcription of multiple target genes. Recent evidence suggests that p53 may contribute to the regulation of cell invasion and migration. In this study, we show that the forkhead box transcription factor FOXF1 is a novel target of the p53 family because FOXF1 is upregulated by p53, TAp73 and TAp63. We show that FOXF1 is induced upon DNA damage in a p53-dependent manner. Furthermore, we identified a response element located within the FOXF1 gene that is responsive to wild-type p53, TAp73β and TAp63γ. The ectopic expression of FOXF1 inhibited cancer cell invasion and migration, whereas the inactivation of FOXF1 stimulated cell invasion and migration. We also show that FOXF1 regulates the transcriptional activity of E-cadherin (CDH1) by acting on its FOXF1 consensus binding site located upstream of the E-cadherin gene. Collectively, our results show that FOXF1 is a p53 family target gene, and our data suggest that FOXF1 and p53 form a portion of a regulatory transcriptional network that appears to have an important role in cancer cell invasion and migration.
Collapse
|