1
|
Dama G, Xue C, Zhang Y, Li D, Fan J, Qiao L, Xu Z, Yang C, Liu Y, Abdullah MFILB, Lin J. CD34 + stromal cells/telocytes and their role in mouse lung development: Light microscopy, immunofluorescence, ultrastructural and scanning electron microscopy evidence. Cell Biol Int 2024; 48:1680-1697. [PMID: 39099163 DOI: 10.1002/cbin.12223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024]
Abstract
Telocytes (TCs), a novel type of mesenchymal or interstitial cell with specific, very long and thin cellular prolongations, have been found in various mammalian organs and have potential biological functions. However, their existence during lung development is poorly understood. This study aimed to investigate the existence, morphological features, and role of CD34+ SCs/TCs in mouse lungs from foetal to postnatal life using primary cell culture, double immunofluorescence, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The immunofluorescence double staining profiles revealed positive expression of CD34 and PDGFR-α, Sca-1 or VEGFR-3, and the expression of these markers differed among the age groups during lung development. Intriguingly, in the E18.5 stage of development, along with the CD34+ SCs/TCs, haematopoietic stem cells and angiogenic factors were also significantly increased in number compared with those in the E14.5, E16.5, P0 and P7. Subsequently, TEM confirmed that CD34+ SCs/TCs consisted of a small cell body with long telopodes (Tps) that projected from the cytoplasm. Tps consisted of alternating thin and thick segments known as podomers and podoms. TCs contain abundant endoplasmic reticulum, mitochondria and secretory vesicles and establish close connections with neighbouring cells. Furthermore, SEM revealed characteristic features, including triangular, oval, spherical, or fusiform cell bodies with extensive cellular prolongations, depending on the number of Tps. Our findings provide evidence for the existence of CD34+ SCs/TCs, which contribute to vasculogenesis, the formation of the air‒blood barrier, tissue organization during lung development and homoeostasis.
Collapse
Affiliation(s)
- Ganesh Dama
- Stem Cell and Biotherapy Engineering Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Department of Community Health, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, Malaysia
| | - Chengxu Xue
- Stem Cell and Biotherapy Engineering Research Center of Henan, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yangxia Zhang
- Stem Cell and Biotherapy Engineering Research Center of Henan, School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, China
| | - Dezhuang Li
- Stem Cell and Biotherapy Engineering Research Center of Henan, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jinyu Fan
- Stem Cell and Biotherapy Engineering Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Stem Cell and Biotherapy Engineering Research Center of Henan, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Liang Qiao
- Stem Cell and Biotherapy Engineering Research Center of Henan, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhihao Xu
- Stem Cell and Biotherapy Engineering Research Center of Henan, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ciqing Yang
- Stem Cell and Biotherapy Engineering Research Center of Henan, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yanli Liu
- Stem Cell and Biotherapy Engineering Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Stem Cell and Biotherapy Engineering Research Center of Henan, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | | | - Juntang Lin
- Stem Cell and Biotherapy Engineering Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Stem Cell and Biotherapy Engineering Research Center of Henan, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Stem Cell and Biotherapy Engineering Research Center of Henan, School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
2
|
Sanches BDA, Teófilo FBS, Brunet MY, Villapun VM, Man K, Rocha LC, Neto JP, Matsumoto MR, Maldarine JS, Ciena AP, Cox SC, Carvalho HF. Telocytes: current methods of research, challenges and future perspectives. Cell Tissue Res 2024; 396:141-155. [PMID: 38539007 DOI: 10.1007/s00441-024-03888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/12/2024] [Indexed: 04/28/2024]
Abstract
Telocytes (TCs) are CD34-positive interstitial cells that have long cytoplasmic projections, called telopodes; they have been identified in several organs and in various species. These cells establish a complex communication network between different stromal and epithelial cell types, and there is growing evidence that they play a key role in physiology and pathology. In many tissues, TC network impairment has been implicated in the onset and progression of pathological conditions, which makes the study of TCs of great interest for the development of novel therapies. In this review, we summarise the main methods involved in the characterisation of these cells as well as their inherent difficulties and then discuss the functional assays that are used to uncover the role of TCs in normal and pathological conditions, from the most traditional to the most recent. Furthermore, we provide future perspectives in the study of TCs, especially regarding the establishment of more precise markers, commercial lineages and means for drug delivery and genetic editing that directly target TCs.
Collapse
Affiliation(s)
- Bruno D A Sanches
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Carl von Linnaeus St. Bldg G1, Bertrand Russel Ave., Campinas, São Paulo, Brazil
| | - Francisco B S Teófilo
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Carl von Linnaeus St. Bldg G1, Bertrand Russel Ave., Campinas, São Paulo, Brazil
| | - Mathieu Y Brunet
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Victor M Villapun
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Kenny Man
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 GA, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Lara C Rocha
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), 1515 24 A Ave., Rio Claro, São Paulo, Brazil
| | - Jurandyr Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), 1515 24 A Ave., Rio Claro, São Paulo, Brazil
| | - Marta R Matsumoto
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Carl von Linnaeus St. Bldg G1, Bertrand Russel Ave., Campinas, São Paulo, Brazil
| | - Juliana S Maldarine
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Carl von Linnaeus St. Bldg G1, Bertrand Russel Ave., Campinas, São Paulo, Brazil
| | - Adriano P Ciena
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), 1515 24 A Ave., Rio Claro, São Paulo, Brazil
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Carl von Linnaeus St. Bldg G1, Bertrand Russel Ave., Campinas, São Paulo, Brazil.
| |
Collapse
|
3
|
Firouzi F, Echeagaray O, Esquer C, Gude NA, Sussman MA. 'Youthful' phenotype of c-Kit + cardiac fibroblasts. Cell Mol Life Sci 2022; 79:424. [PMID: 35841449 PMCID: PMC10544823 DOI: 10.1007/s00018-022-04449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/04/2022] [Accepted: 06/24/2022] [Indexed: 01/10/2023]
Abstract
Cardiac fibroblast (CF) population heterogeneity and plasticity present a challenge for categorization of biological and functional properties. Distinct molecular markers and associated signaling pathways provide valuable insight for CF biology and interventional strategies to influence injury response and aging-associated remodeling. Receptor tyrosine kinase c-Kit mediates cell survival, proliferation, migration, and is activated by pathological injury. However, the biological significance of c-Kit within CF population has not been addressed. An inducible reporter mouse detects c-Kit promoter activation with Enhanced Green Fluorescent Protein (EGFP) expression in cardiac cells. Coincidence of EGFP and c-Kit with the DDR2 fibroblast marker was confirmed using flow cytometry and immunohistochemistry. Subsequently, CFs expressing DDR2 with or without c-Kit was isolated and characterized. A subset of DDR2+ CFs also express c-Kit with coincidence in ~ 8% of total cardiac interstitial cells (CICs). Aging is associated with decreased number of c-Kit expressing DDR2+ CFs, whereas pathological injury induces c-Kit and DDR2 as well as the frequency of coincident expression in CICs. scRNA-Seq profiling reveals the transcriptome of c-Kit expressing CFs as cells with transitional phenotype. Cultured cardiac DDR2+ fibroblasts that are c-Kit+ exhibit morphological and functional characteristics consistent with youthful phenotypes compared to c-Kit- cells. Mechanistically, c-Kit expression correlates with signaling implicated in proliferation and cell migration, including phospho-ERK and pro-caspase 3. The phenotype of c-kit+ on DDR2+ CFs correlates with multiple characteristics of 'youthful' cells. To our knowledge, this represents the first evaluation of c-Kit biology within DDR2+ CF population and provides a fundamental basis for future studies to influence myocardial biology, response to pathological injury and physiological aging.
Collapse
Affiliation(s)
- Fareheh Firouzi
- SDSU Integrated Regenerative Research Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Oscar Echeagaray
- SDSU Integrated Regenerative Research Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Carolina Esquer
- SDSU Integrated Regenerative Research Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Natalie A Gude
- SDSU Integrated Regenerative Research Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Mark A Sussman
- SDSU Integrated Regenerative Research Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA.
| |
Collapse
|
4
|
Sanches BDA, Tamarindo GH, Dos Santos Maldarine J, da Silva ADT, Dos Santos VA, Lima MLD, Rahal P, Góes RM, Taboga SR, Felisbino SL, Carvalho HF. Telocytes contribute to aging-related modifications in the prostate. Sci Rep 2020; 10:21392. [PMID: 33288817 PMCID: PMC7721742 DOI: 10.1038/s41598-020-78532-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/20/2020] [Indexed: 12/23/2022] Open
Abstract
Telocytes are interstitial cells present in the stroma of several organs, including the prostate. There is evidence that these cells are present during prostate alveologenesis, in which these cells play a relevant role, but there is no information about the presence of and possible changes in telocytes during prostate aging. Throughout aging, the prostate undergoes several spontaneous changes in the stroma that are pro-pathogenic. Our study used histochemistry, 3D reconstructions, ultrastructure and immunofluorescence to compare the adult prostate with the senile prostate of the Mongolian gerbil, in order to investigate possible changes in telocytes with senescence and a possible role for these cells in the age-associated alterations. It was found that the layers of perialveolar smooth muscle become thinner as the prostatic alveoli become more dilated during aging, and that telocytes form a network that involves smooth muscle cells, which could possibly indicate a role for telocytes in maintaining the integrity of perialveolar smooth muscles. On the other hand, with senescence, VEGF+ telocytes are seen in stroma possibly contributing to angiogenesis, together with TNFR1+ telocytes, which are associated with a pro-inflammatory microenvironment in the prostate. Together, these data indicate that telocytes are important both in understanding the aging-related changes that are seen in the prostate and also in the search for new therapeutic targets for pathologies whose frequency increases with age.
Collapse
Affiliation(s)
- Bruno Domingos Azevedo Sanches
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Bertrand Russel Av., Campinas, São Paulo, Brazil
| | - Guilherme Henrique Tamarindo
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Bertrand Russel Av., Campinas, São Paulo, Brazil
| | - Juliana Dos Santos Maldarine
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Bertrand Russel Av., Campinas, São Paulo, Brazil
| | - Alana Della Torre da Silva
- Laboratory of Microscopy and Microanalysis, Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo St., 2265, São José Do Rio Preto, São Paulo, Brazil
| | - Vitória Alário Dos Santos
- Laboratory of Microscopy and Microanalysis, Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo St., 2265, São José Do Rio Preto, São Paulo, Brazil
| | - Maria Letícia Duarte Lima
- Laboratory of Genome Studies, Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo St., 2265, São José Do Rio Preto, São Paulo, Brazil
| | - Paula Rahal
- Laboratory of Genome Studies, Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo St., 2265, São José Do Rio Preto, São Paulo, Brazil
| | - Rejane Maira Góes
- Laboratory of Microscopy and Microanalysis, Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo St., 2265, São José Do Rio Preto, São Paulo, Brazil
| | - Sebastião Roberto Taboga
- Laboratory of Microscopy and Microanalysis, Department of Biology, São Paulo State University (UNESP), Cristóvão Colombo St., 2265, São José Do Rio Preto, São Paulo, Brazil
| | - Sérgio Luis Felisbino
- Laboratory of Extracellular Matrix, Institute of Biosciences, São Paulo State University - UNESP, Prof. Dr. Antônio Celso Wagner Zanin St., 250, Rubião Júnior District, Botucatu, São Paulo, 18618-689, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Bertrand Russel Av., Campinas, São Paulo, Brazil.
| |
Collapse
|
5
|
Sanches BDA, Maldarine JDS, Tamarindo GH, Da Silva ADT, Lima MLD, Rahal P, Góes RM, Taboga SR, Carvalho HF. Explant culture: A relevant tool for the study of telocytes. Cell Biol Int 2020; 44:2395-2408. [PMID: 32813303 DOI: 10.1002/cbin.11446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/15/2020] [Indexed: 12/12/2022]
Abstract
Telocytes are cells present in the stroma of various tissues including the prostate. The detection of telocytes is still very much dependent on obtaining ultrastructural data that show the presence of telopodes, which are cytoplasmic projections that alternate between dilated regions, the podoms, and thin segments, the podomers. These structures are the distinctive characteristics of the telocytes. Thus, in vitro assays are important for the study of telocytes, which are more easily identified in culture, which also enables the experimental manipulation of these cells. The isolation of telocytes per se does not allow the analysis of the behavior of these cells in relation to other cell types in a given organ. In this sense, in the prostate, explants could be a useful tool for the study of telocytes. The present study obtained prostatic explants and evaluated the influence of recombinant proteins, scattering factor (SCF) and stromal-derived factor 1 (SDF-1), which could impact on the migration of CD34-positive cells. Telocytes migrate out of explants and SDF-1 stimulates the proliferation and formation of telocyte networks in vitro. Telocytes are not smooth muscle cell progenitors in the prostate; on the contrary, they are CD90- and CD44-negative cells and, hence, have limited progenitor capacity. The present study demonstrated that explants are useful tools to elucidate the nature of telocytes and their functions.
Collapse
Affiliation(s)
- Bruno D A Sanches
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - Juliana D S Maldarine
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - Guilherme H Tamarindo
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - Alana D T Da Silva
- Department of Biology, Laboratory of Microscopy and Microanalysis, São Paulo State University (UNESP), São Paulo, Brazil
| | - Maria L D Lima
- Department of Biology, Laboratory of Genome Studies, São Paulo State University (UNESP), São Paulo, Brazil
| | - Paula Rahal
- Department of Biology, Laboratory of Genome Studies, São Paulo State University (UNESP), São Paulo, Brazil
| | - Rejane M Góes
- Department of Biology, Laboratory of Microscopy and Microanalysis, São Paulo State University (UNESP), São Paulo, Brazil
| | - Sebastião R Taboga
- Department of Biology, Laboratory of Microscopy and Microanalysis, São Paulo State University (UNESP), São Paulo, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil
| |
Collapse
|
6
|
Sanches BDA, Leonel ECR, Maldarine JS, Tamarindo GH, Barquilha CN, Felisbino SL, Goés RM, Vilamaior PSL, Taboga SR. Telocytes are associated with tissue remodeling and angiogenesis during the postlactational involution of the mammary gland in gerbils. Cell Biol Int 2020; 44:2512-2523. [PMID: 32856745 DOI: 10.1002/cbin.11458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/16/2020] [Accepted: 07/05/2020] [Indexed: 01/19/2023]
Abstract
The postlactational involution of the mammary gland is a complex process. It involves the collapse of the alveoli and the remodeling of the extracellular matrix, which in turn implies a complex set of interrelations between the epithelial, stromal, and extracellular matrix elements. The telocytes, a new type of CD34-positive stromal cell that differs from fibroblasts in morphological terms and gene expression, were detected in the stroma of several tissues, including the mammary gland; however, their function remains elusive. The present study employed three-dimensional reconstructions and immunohistochemical, ultrastructural, and immunofluorescence techniques in histological sections of the mammary gland of the Mongolian gerbil during lactation and postlactational involution to evaluate the presence of telocytes and to investigate a possible function for these cells. By means of immunofluorescence assays for CD34 and c-kit, major markers of telocytes, and also through morphological and ultrastructural evidences, telocytes were observed to surround the mammary ducts and collapsing alveoli. It was also found that these cells are associated with matrix metalloproteinase 9, which indicates that telocytes can play a role in extracellular matrix digestion, as well as vascular endothelial growth factor, a factor that promotes angiogenesis. Together, these data indicate that telocytes are a distinct cell type in the mammary gland and, for the first time, show that these cells possibly play a role in tissue remodeling and angiogenesis during the postlactional involution of the mammary gland.
Collapse
Affiliation(s)
- Bruno D A Sanches
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Ellen C R Leonel
- Laboratory of Microscopy and Microanalysis, Department of Biology, University of Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Juliana S Maldarine
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Guilherme H Tamarindo
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Caroline N Barquilha
- Department of Structural and Functional Biology, Institute of Biosciences, University of Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Sérgio L Felisbino
- Department of Structural and Functional Biology, Institute of Biosciences, University of Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Rejane M Goés
- Laboratory of Microscopy and Microanalysis, Department of Biology, University of Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Patricia S L Vilamaior
- Laboratory of Microscopy and Microanalysis, Department of Biology, University of Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Sebastião R Taboga
- Laboratory of Microscopy and Microanalysis, Department of Biology, University of Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
7
|
Maldarine JS, Sanches BDA, Cabral ÁS, Lima MLD, Guerra LHA, Baraldi CMB, Calmon MF, Rahal P, Góes RM, Vilamaior PSL, Taboga SR. Prenatal exposure to finasteride promotes sex-specific changes in gerbil prostate development. Reprod Fertil Dev 2020; 31:1719-1729. [PMID: 31248476 DOI: 10.1071/rd19106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/05/2019] [Indexed: 11/23/2022] Open
Abstract
Finasteride is a drug that is widely used in the treatment of benign prostatic hyperplasia, hair loss and even as a chemotherapeutic agent in the treatment of prostatic adenocarcinoma. However, its use is known to cause several side effects in adults and it can also cause changes in the embryonic development of the male prostate, which is a cause for concern given the possibility of the accumulation of finasteride in the environment. Nevertheless, no studies have investigated the effects of finasteride on the development of the prostate in females, which occurs in several species of mammals. To evaluate the effects of intrauterine exposure to finasteride (500μgkg-1 day-1) on postnatal prostate development in the Mongolian gerbil in the present study, we used immunohistochemistry, immunofluorescence, serological analysis and three-dimensional reconstruction techniques. Differences were observed in the effects of finasteride on periductal smooth muscle and cell proliferation between the sexes, as well as intersex differences in the presence of the androgen receptor, which was elevated in males, and the oestrogen receptor ERα, which was increased in females. Together, the data indicate that the female prostate has its own hormone dynamics and that there are sex-specific differences in the way in which the female prostate reacts to prenatal exposure to finasteride.
Collapse
Affiliation(s)
- Juliana S Maldarine
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Bertrand Russel Avenue, 13083-862, Campinas, São Paulo, Brazil
| | - Bruno D A Sanches
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Bertrand Russel Avenue, 13083-862, Campinas, São Paulo, Brazil
| | - Ágata S Cabral
- Department of Biology, São Paulo State University (UNESP), Laboratory of Genome Studies, Cristóvão Colombo Street, 2265, 15054-000, São José do Rio Preto, São Paulo, Brazil
| | - Maria L D Lima
- Department of Biology, São Paulo State University (UNESP), Laboratory of Genome Studies, Cristóvão Colombo Street, 2265, 15054-000, São José do Rio Preto, São Paulo, Brazil
| | - Luiz H A Guerra
- Department of Biology, São Paulo State University (UNESP), Laboratory of Microscopy and Microanalysis, Cristóvão Colombo Street, 2265, 15054-000, São José do Rio Preto, São Paulo, Brazil
| | - Carolina M B Baraldi
- Department of Biology, São Paulo State University (UNESP), Laboratory of Microscopy and Microanalysis, Cristóvão Colombo Street, 2265, 15054-000, São José do Rio Preto, São Paulo, Brazil
| | - Marília F Calmon
- Department of Biology, São Paulo State University (UNESP), Laboratory of Genome Studies, Cristóvão Colombo Street, 2265, 15054-000, São José do Rio Preto, São Paulo, Brazil
| | - Paula Rahal
- Department of Biology, São Paulo State University (UNESP), Laboratory of Genome Studies, Cristóvão Colombo Street, 2265, 15054-000, São José do Rio Preto, São Paulo, Brazil
| | - Rejane M Góes
- Department of Biology, São Paulo State University (UNESP), Laboratory of Microscopy and Microanalysis, Cristóvão Colombo Street, 2265, 15054-000, São José do Rio Preto, São Paulo, Brazil
| | - Patricia S L Vilamaior
- Department of Biology, São Paulo State University (UNESP), Laboratory of Microscopy and Microanalysis, Cristóvão Colombo Street, 2265, 15054-000, São José do Rio Preto, São Paulo, Brazil
| | - Sebastião R Taboga
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Bertrand Russel Avenue, 13083-862, Campinas, São Paulo, Brazil; and Department of Biology, São Paulo State University (UNESP), Laboratory of Microscopy and Microanalysis, Cristóvão Colombo Street, 2265, 15054-000, São José do Rio Preto, São Paulo, Brazil; and Corresponding author.
| |
Collapse
|
8
|
Telocytes in the Normal and Pathological Peripheral Nervous System. Int J Mol Sci 2020; 21:ijms21124320. [PMID: 32560571 PMCID: PMC7352954 DOI: 10.3390/ijms21124320] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
We studied telocytes/CD34+ stromal cells in the normal and pathological peripheral nervous system (PNS), for which we reviewed the literature and contributed our observations under light and electron microscopy in this field. We consider the following aspects: (A) general characteristics of telocytes and the terminology used for these cells (e.g., endoneurial stromal cells) in PNS; (B) the presence, characteristics and arrangement of telocytes in the normal PNS, including (i) nerve epi-perineurium and endoneurium (e.g., telopodes extending into the endoneurial space); (ii) sensory nerve endings (e.g., Meissner and Pacinian corpuscles, and neuromuscular spindles); (iii) ganglia; and (iv) the intestinal autonomic nervous system; (C) the telocytes in the pathologic PNS, encompassing (i) hyperplastic neurogenic processes (neurogenic hyperplasia of the appendix and gallbladder), highly demonstrative of telocyte characteristics and relations, (ii) PNS tumours, such as neurofibroma, schwannoma, granular cell tumour and nerve sheath myxoma, and interstitial cell of Cajal-related gastrointestinal stromal tumour (GIST), (iii) tumour-invaded nerves and (iv) traumatic, metabolic, degenerative or genetic neuropathies, in which there are fewer studies on telocytes, e.g., neuroinflammation and nerves in undescended testicles (cryptorchidism), Klinefelter syndrome, crush injury, mucopolysaccharidosis II (Hunter’s syndrome) and Charcot–Marie–Tooth disease.
Collapse
|
9
|
Maldarine JS, Sanches BDA, Santos VA, Amaro GM, Calmon MF, Rahal P, Góes RM, Vilamaior PSL, Taboga SR. Low-dose in utero exposure to finasteride promotes developmental changes in both male and female gerbil prostates. ENVIRONMENTAL TOXICOLOGY 2020; 35:15-26. [PMID: 31454150 DOI: 10.1002/tox.22838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
The prostate is an accessory reproductive gland that is sensitive to the action of exogenous compounds known as endocrine disrupters that alter normal hormonal function. Finasteride is a widely used chemical that acts to inhibit the conversion of testosterone in its most active form, dihydrotestosterone. It is known that intrauterine exposure to finasteride causes changes in the male prostate even at low dosages; however, it is not known whether these dosages are capable of causing changes in the female prostate, which is present in a large number of mammalian species, including humans. In the present study, histochemistry, immunohistochemistry, immunofluorescence, serological dosages, and three-dimensional reconstruction techniques were employed to evaluate the effects of intrauterine exposure to a low dose of finasteride (100 μg.BW/d) on postnatal prostate development in male and female Mongolian gerbils. The results indicate that the gerbil female prostate also undergoes alterations following intrauterine exposure to finasteride, exhibiting a thickening of periductal smooth muscle and increased stromal proliferation. There are also intersex differences in the impact of exposure on the expression of the androgen receptor, which was increased in males, and of the estrogen-α receptor, which was decreased in the male prostate but unchanged in females. Altogether, this study indicates there are sex differences in the effects of finasteride exposure even at low dosages.
Collapse
Affiliation(s)
- Juliana S Maldarine
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - Bruno D A Sanches
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - Vitória A Santos
- Department of Biology, São Paulo State University (UNESP), Laboratory of Microscopy and Microanalysis, São Paulo, Brazil
| | - Gustavo M Amaro
- Department of Biology, São Paulo State University (UNESP), Laboratory of Microscopy and Microanalysis, São Paulo, Brazil
| | - Marília F Calmon
- Department of Biology, São Paulo State University (UNESP), Laboratory of Genome Studies, São Paulo, Brazil
| | - Paula Rahal
- Department of Biology, São Paulo State University (UNESP), Laboratory of Genome Studies, São Paulo, Brazil
| | - Rejane M Góes
- Department of Biology, São Paulo State University (UNESP), Laboratory of Microscopy and Microanalysis, São Paulo, Brazil
| | - Patricia S L Vilamaior
- Department of Biology, São Paulo State University (UNESP), Laboratory of Microscopy and Microanalysis, São Paulo, Brazil
| | - Sebastião R Taboga
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil
- Department of Biology, São Paulo State University (UNESP), Laboratory of Microscopy and Microanalysis, São Paulo, Brazil
| |
Collapse
|
10
|
"Prostate telocytes change their phenotype in response to castration or testosterone replacement". Sci Rep 2019; 9:3761. [PMID: 30842587 PMCID: PMC6403354 DOI: 10.1038/s41598-019-40465-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/07/2019] [Indexed: 12/24/2022] Open
Abstract
Telocytes are CD34-positive cells with a fusiform cell body and long, thin cytoplasmic projections called telopodes. These cells were detected in the stroma of various organs, including the prostate. The prostate is a complex gland capable of undergoing involution due to low testosterone levels; and this condition can be reversed with testosterone replacement. Telocyte function in the mature prostate remains to be dermined, and it is not known whether telocytes can take place in tissue remodeling during prostate involution and regrowth. The present study employed structural, ultrastructural and immunohistochemical methods to investigate the telocyte's phenotypes in the ventral prostate (VP) from control (CT), castrated (CS) and testosterone replacement (TR) groups of adult male Wistar rats. Telocytes were found in the subepithelial, perimuscular and interstitical regions around glandular acini. Telocytes from CT animals have condensed chromatin and long and thin telopodes. In CS group, telocytes appeared quiescent and exhibited layers of folded up telopodes. After TR, telocytes presented loose chromatin, abundant rough endoplasmic reticulum and enlarged telopodes, closely associated with bundles of collagen fibrils. We called these cells "telocytes with a synthetic phenotype". As testosterone levels and glandular morphology returned toward to the CT group parameters, after 10 days of TR, these telocytes progressively switched to the normal phenotype. Our results demonstrate that telocytes exhibit phenotypic plasticity upon androgen manipulation and interact with fibroblast and smooth muscle cells to maintain glandular architecture in control animals and during tissue remodeling after hormonal manipulation.
Collapse
|