1
|
Song D, Wei W, Zhang J, Zhang L, Huo J, Wang W. The mechanism of baicalin in improving pulmonary inflammatory response and injury and regulating intestinal flora in Mycoplasma pneumoniae pneumonia mice. Cell Signal 2025; 126:111530. [PMID: 39603438 DOI: 10.1016/j.cellsig.2024.111530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
OBJECTIVE Mycoplasma pneumoniae (MP) is a common pathogen that can cause respiratory infections. We explored the mechanisms of baicalin (BIA) affecting pulmonary inflammation and injury and regulated their intestinal flora through the TLR4/NF-κB pathway in MP pneumonia (MPP) mice with intestinal dysbiosis. METHODS The intestinal dysbiosis and the MPP mouse models with intestinal dysbiosis were established and treated with different doses of BIA, with lung wet-to-dry weight (W/D) ratio weighed. Kits were conducted to detect MP expression and serum C-reactive protein (CRP)/INF-γ/TNF-α/IL-1β/IL-8 levels, and RT-qPCR and Western blot to determine TLR4/MyD88/NF-κBp65 levels. Lung injury was assessed using HE staining, and intestinal flora structure using 16S rDNA sequencing. Gas chromatography-mass spectrometry determined fecal short-chain fatty acid (SFCA) content. RESULTS The broad-spectrum antibiotic mixture caused enlarged cecum, increased contents, darker color, weight loss, decreased intestinal flora abundance and diversity, and intestinal flora structure imbalance in mice. The MP-infected intestinal dysbiosis mice exhibited elevated MP expression, reduced body weight, increased W/D ratio, elevated serum CRP/INF-γ/TNFα/IL-1β/IL-8 levels, as well as interstitial pneumonitis in lungs. TLR4/MyD88/NF-κB p65 were elevated in lung tissues of MPP mice with intestinal dysbiosis. BIA partially reversed pulmonary inflammation and injury, and restored the flora diversity and SCFAs in MPP mice with intestinal dysbiosis. CONCLUSION BIA attenuated pulmonary inflammation and injury and modulated their intestinal flora imbalance by inhibiting the TLR4/NF-κB pathway in MPP mice with intestinal dysbiosis.
Collapse
Affiliation(s)
- Dan Song
- Heilongjiang Academy of Traditional Chinese Medicine, 142 Sanfu Street, Xiangfang District, Harbin 150080, Heilongjiang, China
| | - Wenfeng Wei
- Heilongjiang Academy of Traditional Chinese Medicine, 142 Sanfu Street, Xiangfang District, Harbin 150080, Heilongjiang, China
| | - Jie Zhang
- Heilongjiang Academy of Traditional Chinese Medicine, 142 Sanfu Street, Xiangfang District, Harbin 150080, Heilongjiang, China
| | - Lu Zhang
- Heilongjiang Nursing College, Harbin 150086, Heilongjiang, China
| | - Jinhai Huo
- Heilongjiang Academy of Traditional Chinese Medicine, 142 Sanfu Street, Xiangfang District, Harbin 150080, Heilongjiang, China.
| | - Weiming Wang
- Heilongjiang Academy of Traditional Chinese Medicine, 142 Sanfu Street, Xiangfang District, Harbin 150080, Heilongjiang, China
| |
Collapse
|
2
|
Kang Y, Jin Q, Zhou M, Li Z, Zheng H, Li D, Liu W, Wang Y, Lv J. Predictive value of bone metabolism markers in the progression of diabetic kidney disease: a cross-sectional study. Front Endocrinol (Lausanne) 2024; 15:1489676. [PMID: 39558979 PMCID: PMC11570274 DOI: 10.3389/fendo.2024.1489676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
Objective This study aimed to investigate the relationship between bone metabolism markers, including serum klotho, fibroblast growth factor 23 (FGF23), 25(OH)D3, iPTH, calcium (Ca), and PHOS and the progression of diabetic kidney disease (DKD) in patients with type 2 diabetes mellitus (T2DM). Additionally, the predictive value of these markers for DKD progression was evaluated. Methods This study involved 126 patients with T2DM between May 2021 and March 2023. DKD staging was assessed based on urinary protein excretion rates and estimated glomerular filtration rate (eGFR). The study evaluated serum concentrations of klotho, FGF23, 25(OH)D3, iPTH, Ca and PHOS across various stages and examined their relationships with clinical parameters. Receiver operating characteristic (ROC) curve analysis was utilized to determine the predictive accuracy of these bone metabolism markers for DKD. Multivariate linear and logistic regression analyses identified risk factors linked to DKD severity. Results Among the 126 participants, 30 had non-DKD with normal proteinuria, while 96 had DKD, categorized as 31 with stage III DKD (microproteinuria), 34 with stage IV DKD, and 31 with stage V DKD (massive proteinuria). With advancing DKD from stage III to V, levels of klotho, 25(OH)D3, and Ca decreased significantly, whereas FGF23, iPTH and PHOS levels increased markedly. Klotho is significantly positively correlated with eGFR (r = 0.285, P = 0.001.) and negative correlations with serum creatinine (Scr) and UACR (r = -0.255, P = 0.004; r = -0.260, P = 0.011). FGF23 was positively related to systolic blood pressure (SBP) (r = 0.224, P = 0.012), but negatively with eGFR (r = -0.294, P = 0.001). Additionally, 25(OH)D3 exhibited significant negative correlations with several adverse clinical biomarkers, and both iPTH, Ca and PHOS were strongly associated with DKD progression (P<0.05). ROC analysis showed high predictive accuracy for DKD using these bone metabolism markers, with a combined area under the curve (AUC) of 0.846. Multivariate logistic regression analysis reinforced the significance of these markers in DKD progression. Conclusion Bone metabolism markers, such as klotho, FGF23, 25(OH)D3, iPTH, Ca and PHOS are intricately linked to DKD progression and may function as valuable predictive biomarkers.
Collapse
Affiliation(s)
- Yi Kang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Qian Jin
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Mengqi Zhou
- Department of Traditional Chinese Medicine, Beijing Puren Hospital, Beijing, China
| | - Zirong Li
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Huijuan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China
| | - Danwen Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China
| | - Weijing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China
| | - Yaoxian Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China
| | - Jie Lv
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Huang L, Lin T, Shi M, Wu P. Liraglutide ameliorates inflammation and fibrosis by downregulating the TLR4/MyD88/NF-κB pathway in diabetic kidney disease. Am J Physiol Regul Integr Comp Physiol 2024; 327:R410-R422. [PMID: 39133777 PMCID: PMC11483077 DOI: 10.1152/ajpregu.00083.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 09/10/2024]
Abstract
Inflammation and fibrosis play important roles in diabetic kidney disease (DKD). Previous studies have shown that glucagon-like peptide-1 receptor (GLP-1R) agonists had renal protective effects. However, the mechanisms are not clear. The present study explored the effect of liraglutide (LR), a GLP-1R agonist, on the downregulation of glomerular inflammation and fibrosis in DKD by regulating the Toll-like receptor (TLR)4/myeloid differentiation marker 88 (MyD88)/nuclear factor κB (NF-κB) signaling pathway in mesangial cells (MCs). In vitro, rat MCs were cultured in high glucose (HG). We found that liraglutide treatment significantly reduced the HG-mediated activation of the TLR4/MYD88/NF-κB signaling pathway, extracellular matrix (ECM)-related proteins, and inflammatory factors. A combination of TLR4 inhibitor (TAK242) and liraglutide did not synergistically inhibit inflammatory factors and ECM proteins. Furthermore, in the presence of TLR4 siRNA, liraglutide significantly blunted HG-induced expression of fibronectin protein and inflammatory factors. Importantly, TLR4 selective agonist LPS or TLR4 overexpression eliminated the improvement effects of liraglutide on the HG-induced response. In vivo, administration of liraglutide for 8 wk significantly improved the glomerular damage in streptozotocin-induced diabetic mice and reduced the expression of TLR4/MYD88/NF-κB signaling proteins, ECM protein, and inflammatory factors in renal cortex. TLR4-/- diabetic mice showed significant amelioration in urine protein excretion rate, glomerular pathological damage, inflammation, and fibrosis. Liraglutide attenuated glomerular hypertrophy, renal fibrosis, and inflammatory response in TLR4-/- diabetic mice. Taken together, our findings suggest that TLR4/MYD88/NF-κB signaling is involved in the regulation of inflammatory response and ECM protein proliferation in DKD. Liraglutide alleviates inflammation and fibrosis by downregulating the TLR4/MYD88/NF-κB signaling pathway in MCs.NEW & NOTEWORTHY Liraglutide, a glucagon-like peptide-1 receptor agonist (GLP-1RA), has renoprotective effect in diabetic kidney disease (DKD). In DKD, TLR4/MYD88/NF-κB signaling is involved in the regulation of inflammatory responses and extracellular matrix (ECM) protein proliferation. Liraglutide attenuates renal inflammation and overexpression of ECM proteins by inhibiting TLR4/MYD88/NF-κB signaling pathway. Therefore, we have identified a new mechanism that contributes to the renal protection of GLP-1RA, thus helping to design innovative treatment strategies for diabetic patients with various complications.
Collapse
Affiliation(s)
- Linjing Huang
- Department of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
- Department of Endocrinology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
- Clinical Research Center for Metabolic Diseases of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
- Fujian Key Laboratory of Glycolipid and Bone Mineral Metabolism, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
- Diabetes Research Institute of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Tingting Lin
- Department of Endocrinology, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, People's Republic of China
| | - Meizhen Shi
- Department of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Peiwen Wu
- Department of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
- Department of Endocrinology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
- Clinical Research Center for Metabolic Diseases of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
- Fujian Key Laboratory of Glycolipid and Bone Mineral Metabolism, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
- Diabetes Research Institute of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| |
Collapse
|
4
|
Fan Q, Li R, Wei H, Xue W, Li X, Xia Z, Zhao L, Qiu Y, Cui D. Research Progress of Pyroptosis in Diabetic Kidney Disease. Int J Mol Sci 2024; 25:7130. [PMID: 39000237 PMCID: PMC11241146 DOI: 10.3390/ijms25137130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Pyroptosis, known as one typical mode of programmed cell death, is generally characterized by the cleaved gasdermin family (GSDMs) forming pores in the cell membrane and inducing cell rupture, and the activation of aspartate-specific proteases (caspases) has also been found during this process. Diabetic Kidney Disease (DKD) is caused by the complication of diabetes in the kidney, and the most important kidney's function, Glomerular Filtration Rate (GFR), happens to drop to less than 90% of its usual and even lead to kidney failure in severe cases. The persistent inflammatory state induced by high blood glucose implies the key pathology of DKD, and growing evidence shows that pyroptosis serves as a significant contributor to this chronic immune-mediated inflammatory disorder. Currently, the expanded discovery of GSDMs, pyroptosis, and its association with innate immunity has been more attractive, and overwhelming research is needed to sort out the implication of pyroptosis in DKD pathology. In this review, we comb both classical studies and newly founds on pyroptosis, prick off the novel awakening of pyroptosis in DKD, and center on the significance of pyroptosis in DKD treatment, aiming to provide new research targets and treatment strategies on DKD.
Collapse
Affiliation(s)
- Qingqing Fan
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Rongxuan Li
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Huiting Wei
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Weiyue Xue
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Xiang Li
- Department of Physical Education, Jiangnan University, Wuxi 214122, China
| | - Ziyao Xia
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Le Zhao
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Ye Qiu
- The State Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410000, China
| | - Di Cui
- Department of Physical Education, Hunan University, Changsha 410000, China
- The State Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410000, China
| |
Collapse
|
5
|
Althobaiti F, Taher ES, Ahmed Alkeridis L, Ibrahim AM, El-Shafai N, A Al-Shuraym L, Fericean L, Imbrea F, A Kassab M, Farrag FA, Abdeen A, Almalki DA, AL-Farga A, Afifi M, Shukry M. Exploring the NRF2/HO-1 and NF-κB Pathways: Spirulina Nanoparticles as a Novel Approach to Combat Diabetic Nephropathy. ACS OMEGA 2024; 9:23949-23962. [PMID: 38854532 PMCID: PMC11154939 DOI: 10.1021/acsomega.4c02285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024]
Abstract
Arthrospira platensis has been the subject of plentiful studies due to its purported health advantages; nevertheless, additional investigation is required to determine whether several chronic diseases may be treated or avoided with its nanoform. Therefore, we set out to examine A. platensis nanoparticles (SNPs) to protect against kidney impairment caused by Streptozotocin (STZ) in diabetic rats, precisely focusing on its effect and the cellular intracellular pathways involved. Male Wistar rats were assigned into four groups: Group 1 was set as control, comprising the normal rats; group 2 was administered SNPs (0.5 mg/kg BW, once/day) orally for 84 consecutive days; group 3, STZ-diabetic rats were injected with STZ (65 mg/kg BW); and group 4, in which the diabetic rats were treated with SNPs. After inducing diabetes in rats for 84 days, the animals were euthanized. The results disclosed that SNP treatment substantially (P < 0.05) improved the glucose and glycated hemoglobin levels (HbA1c %), insulin, C-peptide, and cystatin C deterioration in diabetic rats. Furthermore, SNP administration significantly lowered (P < 0.05) nitric oxide (NO) and malondialdehyde (MDA) levels in renal tissue and enhanced kidney function metrics, as well as improved the antioxidant capacity of the renal tissue. In addition, oral SNPs overcame the diabetic complications concerning diabetic nephropathy, indicated by downregulation and upregulation of apoptotic and antiapoptotic genes, respectively, along with prominent modulation of the antiangiogenic marker countenance level, improving kidney function. SNP modulated the nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 (NRF2/HO-1) pathways and inhibited the nuclear factor-κB (NF-κB) expression, strengthening the SNP pathways in alleviating diabetic nephropathy. The histopathology results corroborated the obtained biochemical and molecular observations, suggesting the therapeutic potential of SNPs in diabetic nephropathy via mechanisms other than its significant antioxidant and hypoglycemic effects, including modulation of antiangiogenic and inflammatory mediators and the NRF2/HO-1 pathways.
Collapse
Affiliation(s)
- Fayez Althobaiti
- Department
of Biotechnology, College of Science, Taif
University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ehab S. Taher
- Department
of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Lamya Ahmed Alkeridis
- Department
of Biology, College of Science, Princess
Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ateya M. Ibrahim
- Department
of Nursing, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Nagi El-Shafai
- Nanotechnology
Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Laila A Al-Shuraym
- Department
of Biology, College of Science, Princess
Nourah Bint Abdulrahman University, P.O.
Box 84428, Riyadh 11671, Saudi Arabia
| | - Liana Fericean
- Department
of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences “King Michael I”
from Timişoara, 300645 Timisoara, Romania
| | - Florin Imbrea
- Department
of Crop Science Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timisoara, 119, Calea Aradului, 300645 Timisoara, Romania
| | - Mohamed A Kassab
- Department
of Histology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Foad A. Farrag
- Department
of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Department of Basic veterinary sciences,
Faculty of Veterinary Medicine, Delta University
for Science and Technology, Dakahlia 7730103, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty
of Veterinary
Medicine, Benha University, Toukh 13736, Egypt
| | - Daklallah A. Almalki
- Biology Department,
Faculty of Science and Arts, Al-Mikhwah, Al-Baha University, Al Baha 1988, Saudi Arabia
| | - Ammar AL-Farga
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Mohamed Afifi
- Department of Biochemistry, Faculty of
Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt
| | - Mustafa Shukry
- Department
of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
6
|
Gomchok D, Ge RL, Wuren T. Platelets in Renal Disease. Int J Mol Sci 2023; 24:14724. [PMID: 37834171 PMCID: PMC10572297 DOI: 10.3390/ijms241914724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Kidney disease is a major global health concern, affecting millions of people. Nephrologists have shown interest in platelets because of coagulation disorders caused by renal diseases. With a better understanding of platelets, it has been found that these anucleate and abundant blood cells not only play a role in hemostasis, but also have important functions in inflammation and immunity. Platelets are not only affected by kidney disease, but may also contribute to kidney disease progression by mediating inflammation and immune effects. This review summarizes the current evidence regarding platelet abnormalities in renal disease, and the multiple effects of platelets on kidney disease progression. The relationship between platelets and kidney disease is still being explored, and further research can provide mechanistic insights into the relationship between thrombosis, bleeding, and inflammation related to kidney disease, and elucidate targeted therapies for patients with kidney disease.
Collapse
Affiliation(s)
- Drolma Gomchok
- Research Center for High Altitude Medicine, School of Medicine, Qinghai University, Xining 810001, China; (D.G.); (R.-L.G.)
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, School of Medicine, Qinghai University, Xining 810001, China; (D.G.); (R.-L.G.)
- Key Laboratory for Application for High Altitude Medicine, Qinghai University, Xining 810001, China
| | - Tana Wuren
- Research Center for High Altitude Medicine, School of Medicine, Qinghai University, Xining 810001, China; (D.G.); (R.-L.G.)
- Key Laboratory for Application for High Altitude Medicine, Qinghai University, Xining 810001, China
| |
Collapse
|
7
|
Zhu F, Song Z, Zhang S, Zhang X, Zhu D. The Renoprotective Effect of Shikonin in a Rat Model of Diabetic Kidney Disease. Transplant Proc 2023; 55:1731-1738. [PMID: 37391330 DOI: 10.1016/j.transproceed.2023.04.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/22/2023] [Accepted: 04/14/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND In diabetes mellitus, diabetic nephropathy (DN) is a typical complication and pivotal cause of chronic kidney disease. The DN disease burden is among the highest in the world and is associated with high morbidity, mortality, and disease burden. Safe and effective medications are urgently needed for the treatment of DN. Interest has been increasing in Shikonin, extracted from the naphthoquinone plant, particularly in determining its renal protective effect. METHODS In this study, we explored Shikonin's effects and potential mechanisms on a streptozotocin (STZ)-induced DN experimental model. An STZ-induced rat diabetic model was established, and the rats were treated with different doses of Shikonin (10/50 mg/kg) for 4 weeks. Blood, urine, and renal tissue samples were collected after the last administration. Renal tissues were examined to detect each group's physiologic, biochemical, histopathologic, and molecular changes. RESULTS The results showed that Shikonin administration could significantly alleviate the STZ-induced elevation of blood urea nitrogen, serum creatinine, urinary protein content, and renal pathologic injury. Furthermore, Shikonin significantly decreased oxidative stress, inflammation, and Toll-like receptor 4/myeloid differentiation primary response 88/nuclear factor-κB expression levels in DN kidney tissues. Shikonin showed a dose-dependent effect, with the best outcome at 50 mg/kg. CONCLUSION Shikonin could effectively alleviate DN-related nephropathy damage and reveal the underlying pharmacologic mechanism. Based on the results, a Shikonin combination can be used in clinical treatment.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Endocrinology, Affiliated Hospital of Jinggangshan University, Ji'an City, China
| | - Zhengyi Song
- Department of General Surgery, Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, China
| | - Shuang Zhang
- Department of Neurology, Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, China
| | - Xueqin Zhang
- Department of Endocrinology, Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, China
| | - Dan Zhu
- Department of Endocrinology, Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, China.
| |
Collapse
|
8
|
Yang X, Chen Z, Luo Z, Yang D, Hao Y, Hu J, Feng J, Zhu Z, Luo Q, Zhang Z, Liang W, Ding G. STING deletion alleviates podocyte injury through suppressing inflammation by targeting NLRP3 in diabetic kidney disease. Cell Signal 2023:110777. [PMID: 37329999 DOI: 10.1016/j.cellsig.2023.110777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
An increasing number of studies have shown that immune inflammatory response plays a vital role in diabetic kidney disease (DKD). Nod-like receptor protein 3 (NLRP3) inflammasome-dependent inflammatory response is a key mechanism in the initiation and development of DKD. The stimulator of interferon genes (STING) is an adaptor protein that can drive noninfectious inflammation and pyroptosis. However, the mechanism of STING regulating immune inflammation and the interaction with NLRP3-dependent pyroptosis in high glucose state still remains unclear. This study evaluated the potential role of STING in high glucose (HG)-induced podocyte inflammation response. STING expression was significantly increased in db/db mice, STZ-treated diabetic mice, and HG-treated podocytes. Podocyte-specific deletion of STING alleviated podocyte injury, renal dysfunction, and inflammation in STZ-induced diabetic mice. STING inhibitor (H151) administration ameliorated inflammation and improved renal function in db/db mice. STING deletion in podocytes attenuated the activation of the NLRP3 inflammasome and podocyte pyroptosis in STZ-induced diabetic mice. In vitro, modulated STING expression by STING siRNA alleviated pyroptosis and NLRP3 inflammasome activation in HG-treated podocytes. NLRP3 over-expression offset the beneficial effects of STING deletion. These results indicate that STING deletion suppresses podocyte inflammation response through suppressing NLRP3 inflammasome activation and provide evidence that STING may be a potential target for podocyte injury in DKD.
Collapse
Affiliation(s)
- Xueyan Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China.
| | - Zilv Luo
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Dingping Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Yiqun Hao
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Jun Feng
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Zijing Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Qiang Luo
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Zongwei Zhang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Huang HY, Lin TW, Hong ZX, Lim LM. Vitamin D and Diabetic Kidney Disease. Int J Mol Sci 2023; 24:ijms24043751. [PMID: 36835159 PMCID: PMC9960850 DOI: 10.3390/ijms24043751] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/28/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Vitamin D is a hormone involved in many physiological processes. Its active form, 1,25(OH)2D3, modulates serum calcium-phosphate homeostasis and skeletal homeostasis. A growing body of evidence has demonstrated the renoprotective effects of vitamin D. Vitamin D modulates endothelial function, is associated with podocyte preservation, regulates the renin-angiotensin-aldosterone system, and has anti-inflammatory effects. Diabetic kidney disease (DKD) is a leading cause of end-stage kidney disease worldwide. There are numerous studies supporting vitamin D as a renoprotector, potentially delaying the onset of DKD. This review summarizes the findings of current research on vitamin D and its role in DKD.
Collapse
Affiliation(s)
- Ho-Yin Huang
- Department of Pharmacy, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ting-Wei Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Zi-Xuan Hong
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Lee-Moay Lim
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-3121101-7351; Fax: +886-7-3228721
| |
Collapse
|
10
|
Kluyveromyces marxianus Ameliorates High-Fat-Diet-Induced Kidney Injury by Affecting Gut Microbiota and TLR4/NF-κB Pathway in a Mouse Model. Cell Microbiol 2023. [DOI: 10.1155/2023/2822094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Objectives. The effects of Kluyveromyces marxianus on high-fat diet- (HFD-) induced kidney injury (KI) were explored. Methods. HFD-induced KI model was established using male C57BL/6 mice and treated with K. marxianus JLU-1016 and acid-resistant (AR) strain JLU-1016A. Glucose tolerance was evaluated via an oral glucose tolerance test (OGTT). KI was measured using Hematoxylin and Eosin (H&E) staining and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis. The chemical indexes were analyzed, including lipid profiles, inflammatory cytokines, and creatinine. The levels of Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) or phospho-NF-κB p65 (Ser536) and alpha inhibitor of NF-κB (IκBα) were measured using qPCR and Western blot. The gut microbiota was sequenced using high-throughput sequencing. Results. HFD induction increased OGTT value, KI severity, oxidative stress, inflammatory cytokines, oxidative stress, apoptotic rate, creatinine levels, and the expression of TLR4/NF-κB, phospho-NF-κB p65 (Ser536), and IκBα deteriorated lipid profiles (
) and reduced gut microbiota abundance. K. marxianus treatment ameliorated HFD-induced metabolic disorders and reversed these parameters (
). Compared with the control, HFD induction increased the proportion of Firmicutes but reduced the proportion of Bacteroidetes and Lactobacillus. K. marxianus JLU-1016 and AR strain JLU-1016A treatments improved gut microbiota by reducing the proportion of Firmicutes and increasing the proportion of Bacteroidetes and Lactobacillus in the KI model (
). Helicobacter has been identified with many infectious diseases and was increased after HFD induction and inhibited after K. marxianus JLU-1016 and AR strain JLU-1016A treatments. The strain JLU-1016A exhibited better results possibly with acid-tolerance properties to pass through an acidic environment of the stomach. Conclusions. K. marxianus may have a beneficial effect on KI by improving gut microbiota and inhibiting TLR4/NF-κB pathway activation.
Collapse
|
11
|
Therapeutic efficacy of dapagliflozin on diabetic kidney disease in rats. Int Immunopharmacol 2022; 113:109272. [DOI: 10.1016/j.intimp.2022.109272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
|
12
|
Yuan Y, Liu Y, Sun M, Ye H, Feng Y, Liu Z, Pan L, Weng H. Aggravated renal fibrosis is positively associated with the activation of HMGB1-TLR2/4 signaling in STZ-induced diabetic mice. Open Life Sci 2022; 17:1451-1461. [PMID: 36448056 PMCID: PMC9658007 DOI: 10.1515/biol-2022-0506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/28/2022] [Accepted: 09/04/2022] [Indexed: 08/27/2023] Open
Abstract
Diabetic kidney dysfunction is closely associated with renal fibrosis. Although the suppression of fibrosis is crucial to attenuate kidney damage, the underlying mechanisms remain poorly understood. In this study, renal injury in diabetic mice was induced by the intraperitoneal injection of streptozotocin (100 or 150 mg/kg) for 2 consecutive days. In the model mice, remarkable renal injury was observed, manifested by albuminuria, swelling of kidneys, and histopathological characteristics. The renal fibrosis was obviously displayed with high-intensity staining of fibrin, type IV collagen (Col IV), and fibronectin. The levels of Col IV and transforming growth factor-β1 were significantly increased in diabetic mice kidneys. The aggravated fibrotic process was associated with the overexpression of HMGB1, TLR2/4, and p-NF-κB. Furthermore, a high expression of F4/80 and CD14 indicated that macrophage infiltration was involved in perpetuating inflammation and subsequent fibrosis in the kidneys of diabetic mice. The results demonstrate that the severity of renal fibrosis is positively associated with the activation of HMGB1/TLR2/4 signaling in diabetes.
Collapse
Affiliation(s)
- Yan Yuan
- Department of Pharmacology, School of Pharmacy, Fudan University, 3728 Jinke Road, Pudong District, Shanghai, 201203, China
| | - Yuanxia Liu
- Department of Pathology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing’an District, Shanghai, 200071, China
| | - Mengyao Sun
- Department of Pharmacology, School of Pharmacy, Fudan University, 3728 Jinke Road, Pudong District, Shanghai, 201203, China
| | - Huijing Ye
- Department of Pharmacology, School of Pharmacy, Fudan University, 3728 Jinke Road, Pudong District, Shanghai, 201203, China
| | - Yuchen Feng
- Department of Pharmacology, School of Pharmacy, Fudan University, 3728 Jinke Road, Pudong District, Shanghai, 201203, China
| | - Zhenzhen Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, 3728 Jinke Road, Pudong District, Shanghai, 201203, China
| | - Lingyu Pan
- Department of Pharmacology, School of Pharmacy, Fudan University, 3728 Jinke Road, Pudong District, Shanghai, 201203, China
| | - Hongbo Weng
- Department of Pharmacology, School of Pharmacy, Fudan University, 3728 Jinke Road, Pudong District, Shanghai, 201203, China
| |
Collapse
|
13
|
Lin K, Luo W, Yang N, Su L, Zhou H, Hu X, Wang Y, Khan ZA, Huang W, Wu G, Liang G. Inhibition of MyD88 attenuates angiotensin II-induced hypertensive kidney disease via regulating renal inflammation. Int Immunopharmacol 2022; 112:109218. [PMID: 36116148 DOI: 10.1016/j.intimp.2022.109218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Kidney damage is a frequent event in the course of hypertension. Recent researches highlighted a critical role of non-hemodynamic activities of angiotensin II (Ang II) in hypertension-associated kidney fibrosis and inflammation. These activities are mediated through toll-like receptors (TLRs) but the mechanisms by which Ang II links TLRs to downstream inflammatory and fibrogenic responses is not fully known. In this study, we investigated the role of TLR adapter protein called myeloid differentiation primary-response protein-88 (MyD88) as the potential link. METHODS C57BL/6 mice were administered Ang II by micro-osmotic pump infusion for 4 weeks to develop nephropathy. Mice were treated with small-molecule MyD88 inhibitor LM8. In vitro, MyD88 was blocked using siRNA or LM8 in Ang II-challenged renal tubular epithelial cells. RESULTS We show that MyD88 is mainly located in tubular epithelial cells and Ang II increases the interaction between TLR4 and MyD88. This interaction activates MAPKs and nuclear factor-κB (NF-κB), leading to increased production of inflammatory and fibrogenic factors. Inhibition of MyD88 by siRNA or selective inhibitor LM8 supresses MyD88-TLR4 interaction, NF-κB activation, and elaboration of inflammatory cytokines and fibrosis-associated factors. These protective actions resulted in decreased renal pathological changes and preserved renal function in LM8-treated hypertensive mice, without affecting hypertension. CONCLUSION These results demonstrate that Ang II induces inflammation and fibrosis in renal tubular epithelial cells through MyD88 and present MyD88 as a potential point of intervention for hypertension-associated kidney disease.
Collapse
Affiliation(s)
- Ke Lin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China; Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Na Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lan Su
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hao Zhou
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiang Hu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Zia A Khan
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Weijian Huang
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Gaojun Wu
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China; Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
14
|
Quintero-Fabián S, Bandala C, Pichardo-Macías LA, Contreras-García IJ, Gómez-Manzo S, Hernández-Ochoa B, Martínez-Orozco JA, Ignacio- Mejía I, Cárdenas-Rodríguez N. Vitamin D and its possible relationship to neuroprotection in COVID-19: evidence in the literature. Curr Top Med Chem 2022; 22:1346-1368. [PMID: 35366776 DOI: 10.2174/1568026622666220401140737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Vitamin D is a hormone involved in the regulation of important biological processes such as signal transduction, immune response, metabolic regulation and also in the nervous and vascular systems. To date, coronavirus disease 2019 (COVID-19) infection does not have a specific treatment, however various drugs have been proposed, including those that attenuate the intense inflammatory response and recently the use of vitamin D, in clinical trials, as part of the treatment of COVID-19 has provided promising results. It has been observed in some clinical studies that the use of cholecalciferol (vitamin D3) and its two metabolites the circulating form, calcidiol or calcifediol (25-hydroxycalciferol, 25-(OH)-D) and the active form, calcitriol (1,25-(OH)2-D), in different doses, improve the clinical manifestations, prognosis and survival of patients infected with COVID-19 probably because of its anti-inflammatory, antiviral and lung-protective action. In relation to the central nervous system (CNS) it has been shown, in clinical studies, that vitamin D is beneficial in some neurological and psychiatric conditions because of its anti-inflammatory and antioxidant properties, modulation of neurotransmitters actions, regulation of calcium homeostasis between other mechanisms. It has been showed that COVID-19 infection induces CNS complications such as headache, anosmia, ageusia, neuropathy, encephalitis, stroke, thrombosis, cerebral hemorrhages, cytotoxic lesions and psychiatric conditions and it has been proposed that the use of dietary supplements, as vitamin and minerals, can be adjuvants in this disease. In this review the evidence of possible role of vitamin D, and its metabolites, as protector against the neurological manifestations of COVID-19 was summarized.
Collapse
Affiliation(s)
- Saray Quintero-Fabián
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, UDEFA, Mexico City, 11200, Mexico
| | - Cindy Bandala
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, 11340, Mexico
| | - Luz Adriana Pichardo-Macías
- Departamento de Fisiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City, 07738, Mexico
| | | | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, 04530, Mexico
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City, 06720, Mexico
| | - José Arturo Martínez-Orozco
- Departmento de Infectología, Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Secretaría de Salud, Mexico City, 14080, Mexico
| | - Iván Ignacio- Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, UDEFA, Mexico City, 11200, Mexico
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, 04530, Mexico
| |
Collapse
|
15
|
Chu JL, Bi SH, He Y, Ma RY, Wan XY, Wang ZH, Zhang L, Zheng MZ, Yang ZQ, Du LW, Maimaiti Y, Biekedawulaiti G, Duolikun M, Chen HY, Chen L, Li LL, Tie L, Lin J. 5-Hydroxymethylcytosine profiles in plasma cell-free DNA reflect molecular characteristics of diabetic kidney disease. Front Endocrinol (Lausanne) 2022; 13:910907. [PMID: 35966076 PMCID: PMC9372268 DOI: 10.3389/fendo.2022.910907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD), one of the main complications of diabetes mellitus (DM), has become a frequent cause of end-stage renal disease. A clinically convenient, non-invasive approach for monitoring the development of DKD would benefit the overall life quality of patients with DM and contribute to lower medical burdens through promoting preventive interventions. METHODS We utilized 5hmC-Seal to profile genome-wide 5-hydroxymethylcytosines in plasma cell-free DNA (cfDNA). Candidate genes were identified by intersecting the differentially hydroxymethylated genes and differentially expressed genes from the GSE30528 and GSE30529. Then, a protein interaction network was constructed for the candidate genes, and the hub genes were identified by the MCODE and cytoHubba algorithm. The correlation analysis between the hydroxymethylation level of the hub genes and estimated glomerular filtration rate (eGFR) was carried out. Finally, we demonstrated differences in expression levels of the protein was verified by constructing a mouse model of DKD. In addition, we constructed a network of interactions between drugs and hub genes using the Comparative Toxicogenomics Database. RESULTS This study found that there were significant differences in the overall distribution of 5hmC in plasma of patients with DKD, and an alteration of hydroxymethylation levels in genomic regions involved in inflammatory pathways which participate in the immune response. The final 5 hub genes, including (CTNNB1, MYD88, CD28, VCAM1, CD44) were confirmed. Further analysis indicated that this 5-gene signature showed a good capacity to distinguish between DKD and DM, and was found that protein levels were increased in renal tissue of DKD mice. Correlation analysis indicated that the hydroxymethylation level of 5 hub genes were nagatively correlated with eGFR. Toxicogenomics analysis showed that a variety of drugs for the treatment of DKD can reduce the expression levels of 4 hub genes (CD44, MYD88, VCAM1, CTNNB1). CONCLUSIONS The 5hmC-Seal assay was successfully applied to the plasma cfDNA samples from a cohort of DM patients with or without DKD. Altered 5hmC signatures indicate that 5hmC-Seal has the potential to be a non-invasive epigenetic tool for monitoring the development of DKD and it provides new insight for the future molecularly targeted anti-inflammation therapeutic strategies of DKD.
Collapse
Affiliation(s)
- Jin-Lin Chu
- College of Pharmacy, Xinjiang Medical University Key Laboratory of Active Components of Xinjiang Natural Medicine and Drug Release Technology, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| | - Shu-Hong Bi
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Yao He
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| | - Rui-Yao Ma
- College of Pharmacy, Xinjiang Medical University Key Laboratory of Active Components of Xinjiang Natural Medicine and Drug Release Technology, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| | - Xing-Yu Wan
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, Beijing, China
| | - Zi-Hao Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Lei Zhang
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, Beijing, China
| | - Meng-Zhu Zheng
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, Beijing, China
| | - Zhan-Qun Yang
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, Beijing, China
| | - Ling-Wei Du
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Yiminiguli Maimaiti
- College of Pharmacy, Xinjiang Medical University Key Laboratory of Active Components of Xinjiang Natural Medicine and Drug Release Technology, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| | - Gulinazi Biekedawulaiti
- College of Pharmacy, Xinjiang Medical University Key Laboratory of Active Components of Xinjiang Natural Medicine and Drug Release Technology, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| | - Maimaitiyasen Duolikun
- College of Pharmacy, Xinjiang Medical University Key Laboratory of Active Components of Xinjiang Natural Medicine and Drug Release Technology, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| | - Hang-Yu Chen
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, Beijing, China
| | - Long Chen
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, Beijing, China
| | - Lin-Lin Li
- College of Pharmacy, Xinjiang Medical University Key Laboratory of Active Components of Xinjiang Natural Medicine and Drug Release Technology, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
- *Correspondence: Lin-Lin Li, ; Lu Tie, ; Jian Lin,
| | - Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
- *Correspondence: Lin-Lin Li, ; Lu Tie, ; Jian Lin,
| | - Jian Lin
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, Beijing, China
- *Correspondence: Lin-Lin Li, ; Lu Tie, ; Jian Lin,
| |
Collapse
|
16
|
Yang F, Zhang Z, Zhang L. Bisacurone attenuates diabetic nephropathy by ameliorating oxidative stress, inflammation and apoptosis in rats. Hum Exp Toxicol 2022; 41:9603271221143713. [PMID: 36510688 DOI: 10.1177/09603271221143713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Diabetes nephropathy (DN) is a serious diabetic problem that may progress to renal failure. The root of Curcuma longa L., often known as turmeric, provides various health benefits. Bisacurone is a bioactive terpenoid found in small amounts in turmeric that possesses anti-inflammatory and antioxidant properties. The present study focuses on the potential protective effects of bisacurone against DN via reducing renal inflammation, oxidative stress, and apoptosis. METHODS Type 2 diabetes was created in rats by feeding them a high-fat/high-sugar diet for 8 weeks, followed by a low dose of streptozotocin and Bisacurone (50 and 100 μg/kg bisacurone) given for 4 weeks. RESULTS In diabetic rats, bisacurone reduced hyperglycemia, protected against body weight (BW) loss, lowered renal markers, reduced lipid profile alterations and avoided histological abnormalities. Bisacurone treatment reduced oxidative stress by decreasing malondialdehyde (MDA) levels while enhancing antioxidant defenses through superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) levels. Furthermore, bisacurone treatment activated the renal Nrf2/Keap1 signaling pathway but attenuated the high levels of NFκB p65, TNF-α, IL-1β, IL-6, Cox2, and iNOS. Bisacurone also reduced Bax, caspase-3, caspase-9 and cytochrome c but increased Bcl-2 in the kidneys of diabetic rats. CONCLUSION In the present study, bisacurone reduces DN by reducing hyperglycemia, oxidative stress, inflammation, and apoptosis, while also increasing Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- F Yang
- Department of Traditional Chinese Medicine, 12636Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Z Zhang
- Clinical Medicine, 12610Tianjing Medical University, Tianjing, China
| | - L Zhang
- Department of Nephrology, 612973Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
17
|
Valle MS, Russo C, Malaguarnera L. Protective role of vitamin D against oxidative stress in diabetic retinopathy. Diabetes Metab Res Rev 2021; 37:e3447. [PMID: 33760363 DOI: 10.1002/dmrr.3447] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes mellitus. There is much evidence showing that a high level of mitochondrial overproduction of reactive oxygen species in the diabetic retina contributes in modifying cellular signalling and leads to retinal cell damage and finally to the development of DR pathogenesis. In the last few decades, it has been reported that vitamin D is involved in DR pathogenesis. Vitamin D, traditionally known as an essential nutrient crucial in bone metabolism, has also been proven to be a very effective antioxidant. It has been demonstrated that it modulates the production of advanced glycosylated end products, as well as several pathways including protein kinase C, the polyol pathway leading to the reduction of free radical formation. It prevents the translocation of nuclear factor kappa B, preventing the inflammatory response, acting as an immunomodulator, and modulates autophagy and apoptosis. In this review, we explore the molecular mechanisms by which vitamin D protects the eye from oxidative stress, in order to evaluate whether vitamin D supplementation may be useful to mitigate the deleterious effects of free radicals in DR.
Collapse
Affiliation(s)
- Maria Stella Valle
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lucia Malaguarnera
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
18
|
Wang J, Xiang H, Lu Y, Wu T, Ji G. New progress in drugs treatment of diabetic kidney disease. Biomed Pharmacother 2021; 141:111918. [PMID: 34328095 DOI: 10.1016/j.biopha.2021.111918] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 02/08/2023] Open
Abstract
Diabetic kidney disease (DKD) is not only one of the main complications of diabetes, but also the leading cause of the end-stage renal disease (ESRD). The occurrence and development of DKD have always been a serious clinical problem that leads to the increase of morbidity and mortality and the severe damage to the quality of life of human beings. Controlling blood glucose, blood pressure, blood lipids, and improving lifestyle can help slow the progress of DKD. In recent years, with the extensive research on the pathological mechanism and molecular mechanism of DKD, there are more and more new drugs based on this, such as new hypoglycemic drugs sodium-glucose cotransporter 2 (SGLT2) inhibitors, glucagon-like peptide-1 (GLP-1) inhibitors, and dipeptidyl peptidase-4 (DPP-4) inhibitors with good efficacy in clinical treatment. Besides, there are some newly developed drugs, including protein kinase C (PKC) inhibitors, advanced glycation end product (AGE) inhibitors, aldosterone receptor inhibitors, endothelin receptor (ETR) inhibitors, transforming growth factor-β (TGF-β) inhibitors, Rho kinase (ROCK) inhibitors and so on, which show positive effects in animal or clinical trials and bring hope for the treatment of DKD. In this review, we sort out the progress in the treatment of DKD in recent years, the research status of some emerging drugs, and the potential drugs for the treatment of DKD in the future, hoping to provide some directions for clinical treatment of DKD.
Collapse
Affiliation(s)
- Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
19
|
Liu S, Wang X, Bu X, Zhang C, Qiao F, Qin C, Li E, Qin JG, Chen L. Influences of dietary vitamin D 3 on growth, antioxidant capacity, immunity and molting of Chinese mitten crab (Eriocheir sinensis) larvae. J Steroid Biochem Mol Biol 2021; 210:105862. [PMID: 33675950 DOI: 10.1016/j.jsbmb.2021.105862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
This study investigates the effects of vitamin D3 (VD3) on growth performance, antioxidant capacity, immunity and molting of larval Chinese mitten crab Eriocheir sinensis. A total of 6,000 larvae (7.52 ± 0.10 mg) were fed with six isonitrogenous and isolipidic experimental diets with different levels of dietary VD3 (0, 3000, 6000, 9000, 12000 and 36000 IU/kg) respectively for 23 days. The highest survival and molting frequency were found in crabs fed 6000 IU/kg VD3. Weight gain, specific growth rate, and carapace growth significantly increased in crabs fed 3000 and 6000 IU/kg VD3 compared to the control. Broken-line analysis of molting frequency, weight gain and specific growth rate against dietary VD3 levels indicates that the optimal VD3 requirement for larval crabs is 4825-5918 IU/kg. The highest whole-body VD3 content occurred in the 12000 IU/kg VD3 group, and the 25-dihydroxy VD3 content decreased with the increase of dietary VD3. The malonaldehyde content was lower than the control. Moreover, the superoxide dismutase activity, glutathione peroxidase and total antioxidant capacity of crab fed 6000 IU/kg VD3 were significantly higher than in control. Crabs fed 9000 IU/kg showed the highest survival after 120 h of salinity stress, and the relative mRNA expressions indicate vitamin D receptor (VDR) is the important regulatory element in molting and innate immunity. The molting-related gene expressions showed that the response of crab to salinity was self-protective. This study would contribute to a new understanding of the molecular basis underlying molting and innate immunity regulation by vitamin D3 in E. sinensis.
Collapse
Affiliation(s)
- Shubin Liu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China.
| | - Xianyong Bu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Cong Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Sichuan, 641100, PR China
| | - Erchao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, PR China
| | - Jian G Qin
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China.
| |
Collapse
|
20
|
Wang Z, Ni X, Zhang L, Sun L, Zhu X, Zhou Q, Yang Z, Yuan H. Toll-Like Receptor 4 and Inflammatory Micro-Environment of Pancreatic Islets in Type-2 Diabetes Mellitus: A Therapeutic Perspective. Diabetes Metab Syndr Obes 2020; 13:4261-4272. [PMID: 33204132 PMCID: PMC7666984 DOI: 10.2147/dmso.s279104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Patients with type-2 diabetes mellitus (T2DM) display chronic low-grade inflammation induced by activation of the innate immune system. Toll-like receptor (TLR)4 is a pattern recognition receptor that plays a vital part in activation of the innate immune system. Results from animal and computer-simulation studies have demonstrated that targeting TLR4 to block the TLR4-nuclear factor-kappa B (NF-κB) pathway reduces the inflammatory response and complications associated with T2DM. Therefore, TLR4-targeted therapy has broad prospects. Here, we reviewed the role of TLR4 in inflammation during chronic hyperglycemia in T2DM and its therapeutic prospects.
Collapse
Affiliation(s)
- Zhaoping Wang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, People’s Republic of China
| | - Xiaolin Ni
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Li Zhang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, People’s Republic of China
| | - Liang Sun
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, People’s Republic of China
| | - Xiaoquan Zhu
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, People’s Republic of China
| | - Qi Zhou
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, People’s Republic of China
| | - Ze Yang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, People’s Republic of China
| | - Huiping Yuan
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, People’s Republic of China
- Correspondence: Huiping Yuan The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Dongdan DaHua Road 1#, Beijing100730, People’s Republic of ChinaTel +86-10-58115043Fax +86-10-65237929 Email
| |
Collapse
|