1
|
Sehar U, Mukherjee U, Khan H, Brownell M, Malhotra K, Culberson J, Alvir RV, Reddy PH. Effects of sleep deprivation on brain atrophy in individuals with mild cognitive impairment and Alzheimer's disease. Ageing Res Rev 2024; 99:102397. [PMID: 38942198 PMCID: PMC11260543 DOI: 10.1016/j.arr.2024.102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Dementia, a prevalent condition in the United States, affecting millions of individuals and their families, underscores the importance of healthy cognitive ageing, which involves maintaining cognitive function and mental wellness as individuals grow older, promoting overall well-being and quality of life. Our original research study investigates the correlation between lifestyle factors and brain atrophy in individuals with mild cognitive impairment (MCI) or Alzheimer's disease (AD), as well as healthy older adults. Conducted over six months in West Texas, the research involved 20 participants aged 62-87. Findings reveal that sleep deprivation in MCI subjects and AD patients correlate with posterior cingulate cortex, hippocampal atrophy and total brain volume, while both groups exhibit age-related hippocampal volume reduction. Notably, fruit/vegetable intake negatively correlates with certain brain regions' volume, emphasizing the importance of diet. Lack of exercise is associated with reduced brain volume and hippocampal atrophy, underlining the cognitive benefits of physical activity. The study underscores lifestyle's significant impact on cognitive health, advocating interventions to promote brain health and disease prevention, particularly in MCI/AD cases. While blood profile data showed no significant results regarding cognitive decline, the study underscores the importance of lifestyle modifications in preserving cognitive function.
Collapse
Affiliation(s)
- Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Upasana Mukherjee
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Hafiz Khan
- Nutritional Sciences Department, College Human Sciences, Texas Tech University, TX, Lubbock 79409, USA
| | - Malcolm Brownell
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Keya Malhotra
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Grace Clinic, Covenant Health System, Lubbock, TX, USA
| | - John Culberson
- Department of Family Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Rainier Vladlen Alvir
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, TX, Lubbock 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
2
|
Zhan Q, Kong F, Shao S, Zhang B, Huang S. Pathogenesis of Depression in Alzheimer's Disease. Neurochem Res 2024; 49:548-556. [PMID: 38015411 DOI: 10.1007/s11064-023-04061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
Depression is a prevalent occurrence among Alzheimer's disease (AD) patients, yet its underlying mechanism remains unclear. Recent investigations have revealed that several pathophysiological changes associated with Alzheimer's disease can lead to mood disorders. These alterations include irregularities in monoamine neurotransmitters, disruptions in glutamatergic synaptic transmission, neuro-inflammation, dysfunction within the hypothalamic-pituitary-adrenocortical (HPA) axis, diminished levels of brain-derived neurotrophic factor (BDNF), and hippocampal atrophy. This review consolidates research findings from pertinent fields to elucidate the mechanisms underlying depression in Alzheimer's disease, aiming to provide valuable insights for the study of its mechanisms and clinical treatment.
Collapse
Affiliation(s)
- Qingyang Zhan
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Fanyi Kong
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Shuai Shao
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Bo Zhang
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Shuming Huang
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| |
Collapse
|
3
|
Numakawa T, Kajihara R. An Interaction between Brain-Derived Neurotrophic Factor and Stress-Related Glucocorticoids in the Pathophysiology of Alzheimer's Disease. Int J Mol Sci 2024; 25:1596. [PMID: 38338875 PMCID: PMC10855648 DOI: 10.3390/ijms25031596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Both the brain-derived neurotrophic factor (BDNF) and glucocorticoids (GCs) play multiple roles in various aspects of neurons, including cell survival and synaptic function. BDNF and its receptor TrkB are extensively expressed in neurons of the central nervous system (CNS), and the contribution of the BDNF/TrkB system to neuronal function is evident; thus, its downregulation has been considered to be involved in the pathogenesis of Alzheimer's disease (AD). GCs, stress-related molecules, and glucocorticoid receptors (GRs) are also considered to be associated with AD in addition to mental disorders such as depression. Importantly, a growing body of evidence suggests a close relationship between BDNF/TrkB-mediated signaling and the GCs/GR system in the CNS. Here, we introduce the current studies on the interaction between the neurotrophic system and stress in CNS neurons and discuss their involvement in the pathophysiology of AD.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Ryutaro Kajihara
- Department of Biomedical Laboratory Sciences, Faculty of Life Science, Kumamoto University, Kumamoto 862-0976, Japan
| |
Collapse
|
4
|
Numakawa T, Kajihara R. Involvement of brain-derived neurotrophic factor signaling in the pathogenesis of stress-related brain diseases. Front Mol Neurosci 2023; 16:1247422. [PMID: 37781095 PMCID: PMC10537938 DOI: 10.3389/fnmol.2023.1247422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Neurotrophins including brain-derived neurotrophic factor, BDNF, have critical roles in neuronal differentiation, cell survival, and synaptic function in the peripheral and central nervous system. It is well known that a variety of intracellular signaling stimulated by TrkB, a high-affinity receptor for BDNF, is involved in the physiological and pathological neuronal aspects via affecting cell viability, synaptic function, neurogenesis, and cognitive function. As expected, an alteration of the BDNF/TrkB system is suspected to be one of the molecular mechanisms underlying cognitive decline in cognitive diseases and mental disorders. Recent evidence has also highlighted a possible link between the alteration of TrkB signaling and chronic stress. Furthermore, it has been demonstrated that downregulation of the BDNF/TrkB system and chronic stress have a role in the pathogenesis of Alzheimer's disease (AD) and mental disorders. In this review, we introduce current evidence showing a close relationship between the BDNF/TrkB system and the development of cognition impairment in stress-related disorders, and the possible contribution of the upregulation of the BDNF/TrkB system in a therapeutic approach against these brain diseases.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Ryutaro Kajihara
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Department of Biomedical Laboratory Sciences, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
5
|
Li X, Qiu W, Deng L, Lin J, Huang W, Xu Y, Zhang M, Jones NC, Lin R, Xu H, Lin L, Li P, Wang X. 11β-HSD1 participates in epileptogenesis and the associated cognitive impairment by inhibiting apoptosis in mice. J Transl Med 2022; 20:406. [PMID: 36064418 PMCID: PMC9446697 DOI: 10.1186/s12967-022-03618-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
Background Glucocorticoid signalling is closely related to both epilepsy and associated cognitive impairment, possibly through mechanisms involving neuronal apoptosis. As a critical enzyme for glucocorticoid action, the role of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in epileptogenesis and associated cognitive impairment has not previously been studied. Methods We first investigated the expression of 11β-HSD1 in the pentylenetetrazole (PTZ) kindling mouse model of epilepsy. We then observed the effect of overexpressing 11β-HSD1 on the excitability of primary cultured neurons in vitro using whole-cell patch clamp recordings. Further, we assessed the effects of adeno-associated virus (AAV)-induced hippocampal 11β-HSD1 knockdown in the PTZ model, conducting behavioural observations of seizures, assessment of spatial learning and memory using the Morris water maze, and biochemical and histopathological analyses. Results We found that 11β-HSD1 was primarily expressed in neurons but not astrocytes, and its expression was significantly (p < 0.05) increased in the hippocampus of PTZ epilepsy mice compared to sham controls. Whole-cell patch clamp recordings showed that overexpression of 11β-HSD1 significantly decreased the threshold voltage while increasing the frequency of action potential firing in cultured hippocampal neurons. Hippocampal knockdown of 11β-HSD1 significantly reduced the severity score of PTZ seizures and increased the latent period required to reach the fully kindled state compared to control knockdown. Knockdown of 11β-HSD1 also significantly mitigated the impairment of spatial learning and memory, attenuated hippocampal neuronal damage and increased the ratio of Bcl-2/Bax, while decreasing the expression of cleaved caspase-3. Conclusions 11β-HSD1 participates in the pathogenesis of both epilepsy and the associated cognitive impairment by elevating neuronal excitability and contributing to apoptosis and subsequent hippocampal neuronal damage. Inhibition of 11β-HSD1, therefore, represents a promising strategy to treat epilepsy and cognitive comorbidity.
Collapse
Affiliation(s)
- Xueying Li
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Ouhai District, Wenzhou, Zhejiang Province, People's Republic of China
| | - Wanhua Qiu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Lu Deng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People's Republic of China
| | - Jingjing Lin
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People's Republic of China
| | - Wenting Huang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Ouhai District, Wenzhou, Zhejiang Province, People's Republic of China
| | - Yuchen Xu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Ouhai District, Wenzhou, Zhejiang Province, People's Republic of China
| | - Mulan Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Ouhai District, Wenzhou, Zhejiang Province, People's Republic of China
| | - Nigel C Jones
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 2004, Australia.,Department of Neurology, The Alfred Hospital, Commercial Road, Melbourne, VIC, 3004, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Runxuan Lin
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 2004, Australia
| | - Huiqin Xu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Ouhai District, Wenzhou, Zhejiang Province, People's Republic of China
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, People's Republic of China. .,Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Peijun Li
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People's Republic of China.
| | - Xinshi Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Ouhai District, Wenzhou, Zhejiang Province, People's Republic of China. .,Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
6
|
Reichardt SD, Amouret A, Muzzi C, Vettorazzi S, Tuckermann JP, Lühder F, Reichardt HM. The Role of Glucocorticoids in Inflammatory Diseases. Cells 2021; 10:cells10112921. [PMID: 34831143 PMCID: PMC8616489 DOI: 10.3390/cells10112921] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
For more than 70 years, glucocorticoids (GCs) have been a powerful and affordable treatment option for inflammatory diseases. However, their benefits do not come without a cost, since GCs also cause side effects. Therefore, strong efforts are being made to improve their therapeutic index. In this review, we illustrate the mechanisms and target cells of GCs in the pathogenesis and treatment of some of the most frequent inflammatory disorders affecting the central nervous system, the gastrointestinal tract, the lung, and the joints, as well as graft-versus-host disease, which often develops after hematopoietic stem cell transplantation. In addition, an overview is provided of novel approaches aimed at improving GC therapy based on chemical modifications or GC delivery using nanoformulations. GCs remain a topic of highly active scientific research despite being one of the oldest class of drugs in medical use.
Collapse
Affiliation(s)
- Sybille D. Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Agathe Amouret
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Chiara Muzzi
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081 Ulm, Germany; (S.V.); (J.P.T.)
| | - Jan P. Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081 Ulm, Germany; (S.V.); (J.P.T.)
| | - Fred Lühder
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Holger M. Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
- Correspondence: ; Tel.: +49-551-3963365
| |
Collapse
|
7
|
Gomez-Sanchez EP, Gomez-Sanchez CE. 11β-hydroxysteroid dehydrogenases: A growing multi-tasking family. Mol Cell Endocrinol 2021; 526:111210. [PMID: 33607268 PMCID: PMC8108011 DOI: 10.1016/j.mce.2021.111210] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023]
Abstract
This review briefly addresses the history of the discovery and elucidation of the three cloned 11β-hydroxysteroid dehydrogenase (11βHSD) enzymes in the human, 11βHSD1, 11βHSD2 and 11βHSD3, an NADP+-dependent dehydrogenase also called the 11βHSD1-like dehydrogenase (11βHSD1L), as well as evidence for yet identified 11βHSDs. Attention is devoted to more recently described aspects of this multi-functional family. The importance of 11βHSD substrates other than glucocorticoids including bile acids, 7-keto sterols, neurosteroids, and xenobiotics is discussed, along with examples of pathology when functions of these multi-tasking enzymes are disrupted. 11βHSDs modulate the intracellular concentration of glucocorticoids, thereby regulating the activation of the glucocorticoid and mineralocorticoid receptors, and 7β-27-hydroxycholesterol, an agonist of the retinoid-related orphan receptor gamma (RORγ). Key functions of this nuclear transcription factor include regulation of immune cell differentiation, cytokine production and inflammation at the cell level. 11βHSD1 expression and/or glucocorticoid reductase activity are inappropriately increased with age and in obesity and metabolic syndrome (MetS). Potential causes for disappointing results of the clinical trials of selective inhibitors of 11βHSD1 in the treatment of these disorders are discussed, as well as the potential for more targeted use of inhibitors of 11βHSD1 and 11βHSD2.
Collapse
Affiliation(s)
| | - Celso E Gomez-Sanchez
- Department of Pharmacology and Toxicology, Jackson, MS, USA; Medicine (Endocrinology), Jackson, MS, USA; University of Mississippi Medical Center and G.V. (Sonny) Montgomery VA Medical Center(3), Jackson, MS, USA
| |
Collapse
|
8
|
Tian X, Qin Y, Tian Y, Ge X, Cui J, Han H, Liu L, Yu H. Identification of vascular dementia and Alzheimer's disease hub genes expressed in the frontal lobe and temporal cortex by weighted co-expression network analysis and construction of a protein-protein interaction. Int J Neurosci 2021; 132:1049-1060. [PMID: 33401985 DOI: 10.1080/00207454.2020.1860966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background: It is difficult to distinguish cognitive decline due to AD from that sustained by cerebrovascular disease in view of the great overlap. It is uncertain in the molecular biological pathway behind AD and VaD.Objective: Our study aimed to explore the hub molecules and their associations with each other to identify potential biomarkers and therapeutic targets for the AD and VaD.Methods: We screened the differentially expressed genes of AD and VaD, used weighted gene co-expression network analysis and then constructed a VaD-AD-specific protein-protein interaction network with functional annotation to their related metabolic pathways. Finally, we performed a ROC curve analysis of hub proteins to get an idea about their diagnostic value.Results: In the frontal lobe and temporal cortex, hub genes were identified. With regard to VaD, there were only three hub genes which encoded the neuropeptides, SST, NMU and TAC1. The AUC of these genes were 0.804, 0.768 and 0.779, respectively. One signature was established for these three hub genes with AUC of 0.990. For the identification of AD and VaD, all hub genes were receptors. These genes included SH3GL2, PROK2, TAC3, HTR2A, MET, TF, PTH2R CNR1, CHRM4, PTPN3 and CRH. The AUC of these genes were 0.853, 0.859, 0.796, 0.775, 0.706, 0.677, 0.696, 0.668 and 0.652, respectively. The other signature was built for eleven hub genes with AUC of 0.990.Conclusion: In the frontal lobe and temporal cortex regions, hub genes are used as diagnostic markers, which may provide insight into personalized potential biomarkers and therapeutic targets for patients with VaD and AD.
Collapse
Affiliation(s)
- Xiaodou Tian
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, P.R. China
| | - Yao Qin
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, P.R. China
| | - Yuling Tian
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, P.R. China
| | - Xiaoyan Ge
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, P.R. China
| | - Jing Cui
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, P.R. China
| | - Hongjuan Han
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, P.R. China
| | - Long Liu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, P.R. China
| | - Hongmei Yu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, P.R. China.,Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, Shanxi Medical University, Taiyuan, P.R. China
| |
Collapse
|