1
|
Wang C, Xiong S, Hu S, Yang L, Huang Y, Chen H, Xu B, Xiao T, Liu Q. Genome-wide identification of Gα family in grass carp (Ctenopharyngodon idella) and reproductive regulation functional characteristics of Cignaq. BMC Genomics 2024; 25:800. [PMID: 39182029 PMCID: PMC11344465 DOI: 10.1186/s12864-024-10717-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND The Gα family plays a crucial role in the complex reproductive regulatory network of teleosts. However, the characterization and function of Gα family members, especially Gαq, remain poorly understood in teleosts. To analyze the characterization, expression, and function of grass carp (Ctenopharyngodon idella) Gαq, we identified the Gα family members in grass carp genome, and analyzed the expression, distribution, and signal transduction of Gαq/gnaq. We also explored the role of Gαq in the reproductive regulation of grass carp. RESULTS Our results showed that the grass carp genome contains 27 Gα genes with 46 isoforms, which are divided into four subfamilies: Gαs, Gαi/o, Gαq/11, and Gα12/13. The expression level of Cignaq in the testis was the highest and significantly higher than in other tissues, followed by the hypothalamus and brain. The luteinizing hormone receptor (LHR) was mainly localized to the nucleus in grass carp oocytes, with signals also present in follicular cells. In contrast, Gαq signal was mainly found in the cytoplasm of oocytes, with no signal in follicular cells. In the testis, Gαq and LHR were co-localized in the cytoplasm. Furthermore, the grass carp Gαq recombinant protein significantly promoted Cipgr expression. CONCLUSIONS These results provided preliminary evidence for understanding the role of Gαq in the reproductive regulation of teleosts.
Collapse
Affiliation(s)
- Chong Wang
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Shuting Xiong
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Shitao Hu
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Le Yang
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Yuhong Huang
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Haitai Chen
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Baohong Xu
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Tiaoyi Xiao
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China.
| | - Qiaolin Liu
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
2
|
Gao X, Lv Y, Dai Q, Zhu L, Liu S, Hu Z, Lu J, Zhou H, Mei Z. Histological and Transcriptomic Insights into the Ovary Development of Hemibarbus labeo Injected with Spawn-Inducing Hormones. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:672-686. [PMID: 38913221 DOI: 10.1007/s10126-024-10335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/07/2024] [Indexed: 06/25/2024]
Abstract
Naturally, the ovaries of many farmed fish can only develop to stage IV (mainly including stage IV oocytes, known as full-grown postvitellogenic oocytes). Therefore, spawn-inducing hormone injections are used to promote ovary development and oocyte maturation, facilitating reproduction in the aquaculture industry. The study of spawn-inducing hormones and their underlying neuroendocrine mechanisms has been a recent focus in fish reproductive biology. However, the intra-ovarian regulatory mechanisms of ovary development and oocyte maturation after hormone injection require further investigation. In this study, we explored the histological and transcriptomic map of the ovary of Hemibarbus labeo after hormone injection to reveal changes in the ovary. The gonad index significantly increased after hormone injection for 5.5 h, after which no significant change was observed. Histological analysis showed that the nuclei had moved to one side of the oocytes at 5.5 h after hormone injection. Moreover, the volume of the oocytes increased and their yolk membranes thickened. Oocytes then underwent their first meiotic division at 5.5-11 h after hormone injection. Subsequently, the follicular membrane was ruptured, and ovulation was completed at 11-16.5 h after hormone injection. In addition, we identified 3189 differentially expressed genes (DEGs) on comparing the transcriptomes at different time points after hormone injection. These DEGs were significantly enriched in the GO terms of nervous system process, molecular transducer activity, and extracellular region, and the KEGG pathways of TNF signaling and cytokine-cytokine receptor interaction; these may play important roles in ovary development and oocyte maturation. Within these pathways, genes such as apoe, creb3, jun, junb, il11, and il8 may play important roles in steroid hormone synthesis and ovulation. Conclusively, our results show detailed sequential dynamics of oocyte development and provide new insights into the intra-ovarian regulatory mechanisms of ovarian development and oocyte maturation in H. labeo. These findings may be important for research on improving egg quality and reproduction in aquaculture.
Collapse
Affiliation(s)
- Xinming Gao
- College of Ecology, Lishui University, Lishui , Zhejiang, 323000, China
| | - Yaoping Lv
- College of Ecology, Lishui University, Lishui , Zhejiang, 323000, China.
| | - Qingmin Dai
- College of Ecology, Lishui University, Lishui , Zhejiang, 323000, China
| | - Ling Zhu
- College of Ecology, Lishui University, Lishui , Zhejiang, 323000, China
| | - Siqi Liu
- College of Ecology, Lishui University, Lishui , Zhejiang, 323000, China
| | - Zehui Hu
- Zhejiang Marine Fisheries Research Institute, Zhoushan , Zhejiang, 316100, China
| | - Junkai Lu
- Cixi Aquatic Technology Promotion Center, Ningbo , Zhejiang, 315300, China
| | - Haidong Zhou
- Suichang Aquatic and Agricultural Machinery Technology Extension Station, Lishui , Zhejiang, 323399, China
| | - Zufei Mei
- Jinman Aquatic Seedling Farm, Lishui , Zhejiang, 323006, China
| |
Collapse
|
3
|
Sallemi JE, Di Yorio MP, Hermida GN, Breccia A, Battista AG, Vissio PG. The saccus vasculosus of the neotropical cichlid fish Cichlasoma dimerus: characterization, developmental studies and its response to photoperiod. Cell Tissue Res 2024:10.1007/s00441-024-03895-6. [PMID: 38771348 DOI: 10.1007/s00441-024-03895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/09/2024] [Indexed: 05/22/2024]
Abstract
The saccus vasculosus is an organ present in gnathostome fishes, located ventral to the hypothalamus and posterior to the pituitary gland, whose structure is highly variable among species. In some fishes, this organ is well-developed; however, its physiological function is still under debate. Recently, it has been proposed that this organ is a seasonal regulator of reproduction. In the present work, we examined the histology, ultrastructure, and development of the saccus vasculosus in Cichlasoma dimerus. In addition, immunohistochemical studies of proteins related to reproductive function were performed. Finally, the potential response of this organ to different photoperiods was explored. C. dimerus presented a well-developed saccus vasculosus consisting of a highly folded epithelium, composed of coronet and supporting cells, closely associated with blood vessels, and a highly branched lumen connected to the third ventricle. Coronet cells showed all the major characteristics described in other fish species. In addition, some of the vesicles of the globules were positive for thyrotropin beta subunit, while luteinizing hormone beta subunit immunostaining was observed at the edge of the apical processes of some coronet cells. Furthermore, neuropeptide Y and gonadotropin inhibitory hormone innervation in the saccus vasculosus of C. dimerus were shown. Finally, animals exposed to the long photoperiod showed lower levels of thyrotropin beta and common alpha subunits expression in the saccus compared to those of animals exposed to short photoperiod. All these results support the hypothesis that the saccus vasculosus is involved in the regulation of reproductive function in fish.
Collapse
Affiliation(s)
- Julieta Emilse Sallemi
- Laboratorio de Neuroendocrinología del Crecimiento y la Reproducción, DBBE-FCEN, UBA/IBBEA-UBA-CONICET, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - María Paula Di Yorio
- Laboratorio de Neuroendocrinología del Crecimiento y la Reproducción, DBBE-FCEN, UBA/IBBEA-UBA-CONICET, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
| | - Gladys Noemí Hermida
- Laboratorio Biología de Anfibios-Histología Animal, DBBE-FCEN-UBA, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Andrés Breccia
- Laboratorio de Neuroendocrinología del Crecimiento y la Reproducción, DBBE-FCEN, UBA/IBBEA-UBA-CONICET, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | | | - Paula Gabriela Vissio
- Laboratorio de Neuroendocrinología del Crecimiento y la Reproducción, DBBE-FCEN, UBA/IBBEA-UBA-CONICET, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
4
|
de Mello F, Alonso DJ, de Faria NPVM, Marques VH, de Oliveira EF, de Mello PH, de Godoy LC, Moreira RG. Alterations in Gene Expression and the Fatty Acid Profile Impact but Do Not Compromise the In Vitro Maturation of Zebrafish ( Danio rerio) Stage III Ovarian Follicles after Cryopreservation. Animals (Basel) 2023; 13:3563. [PMID: 38003179 PMCID: PMC10668701 DOI: 10.3390/ani13223563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/18/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The vitrification of ovarian follicles is a strategic tool that may contribute to advances in aquaculture and the conservation of many important species. Despite the difficulties inherent to the cryopreservation of oocytes, some successful protocols have been developed for different species, but little is known about the capacity of oocytes to develop after thawing. Therefore, the profiles of the reproductive pathway genes and fatty acid membrane composition during the initial stages of development were analyzed in fresh ovarian follicles and follicles after the vitrification process. There were differences in the expression of the hypothalamic-pituitary-gonad axis genes during the follicular development in the control group as well as in the vitrified group. Similarly, alterations in the composition of fatty acids were observed after vitrification. Despite this, many alterations were observed in the vitrified group; more than half of the stage III ovarian follicles were able to grow and mature in vitro. Therefore, the vitrification of ovarian follicles may impact them at molecular and membrane levels, but it does not compromise their capability for in vitro maturation, which indicates that the technique can be a strategic tool for aquaculture.
Collapse
Affiliation(s)
- Fernanda de Mello
- Department of Physiology, Bioscience Institute, University of Sao Paulo (IB/USP), 101 Matão Street, Travessa 14, Butantã District, São Paulo 05508-090, SP, Brazil; (D.J.A.); (N.P.V.M.d.F.); (V.H.M.); (R.G.M.)
| | - Daniel Jaen Alonso
- Department of Physiology, Bioscience Institute, University of Sao Paulo (IB/USP), 101 Matão Street, Travessa 14, Butantã District, São Paulo 05508-090, SP, Brazil; (D.J.A.); (N.P.V.M.d.F.); (V.H.M.); (R.G.M.)
| | - Natália Pires Vieira Morais de Faria
- Department of Physiology, Bioscience Institute, University of Sao Paulo (IB/USP), 101 Matão Street, Travessa 14, Butantã District, São Paulo 05508-090, SP, Brazil; (D.J.A.); (N.P.V.M.d.F.); (V.H.M.); (R.G.M.)
| | - Victor Hugo Marques
- Department of Physiology, Bioscience Institute, University of Sao Paulo (IB/USP), 101 Matão Street, Travessa 14, Butantã District, São Paulo 05508-090, SP, Brazil; (D.J.A.); (N.P.V.M.d.F.); (V.H.M.); (R.G.M.)
| | - Ethiene Fernandes de Oliveira
- Aquaculture Center, São Paulo State University “Julio de Mesquita Filho” (CAUNESP), Access Road Professor Paulo Donato Castellane, Vila Industrial District, Jaboticabal 14884-900, SP, Brazil;
| | - Paulo Henrique de Mello
- Beacon Development, King Abdullah University of Science and Technology, 2713, Jeddah 23955, Saudi Arabia;
| | - Leandro César de Godoy
- Department of Animal Science, Federal University of Rio Grande do Sul, 7712 Bento Gonçalves Avenue, Agronomia District, Porto Alegre 91540-000, RS, Brazil;
| | - Renata Guimaraes Moreira
- Department of Physiology, Bioscience Institute, University of Sao Paulo (IB/USP), 101 Matão Street, Travessa 14, Butantã District, São Paulo 05508-090, SP, Brazil; (D.J.A.); (N.P.V.M.d.F.); (V.H.M.); (R.G.M.)
| |
Collapse
|
5
|
Aizen J, Sharma S, Elizur A, Joy KP, Chaube R. Regulation of steroid production and key genes in catfish Heteropneustes fossilis using recombinant gonadotropins. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:911-923. [PMID: 37548828 DOI: 10.1007/s10695-023-01230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
The two gonadotropins, FSH and LH, stimulate growth and development of the gonads through gonadal biosynthesis of steroid hormones and growth factors. To date, cDNA sequences encoding gonadotropin subunits have been isolated and characterized from a large number of fish species. Recently, we successfully cloned and characterized gonadotropins (LHβ, FSHβ, and GPα) from the pituitary glands of the catfish, Heteropneustes fossilis. In the present study, we describe herein the production of recombinant stinging catfish, H. fossilis (hf) FSH (rhfFSH) and LH (rhfLH) using the methylotrophic yeast P. pastoris expression system. We further explored the hypothesis that the recombinant gonadotropins can modulate the hypothalamus-pituitary-ovarian (HPO) axis genes (avt, it, gnrh2, kiss2, and cyp19a1a) and regulate their transcriptional profile and steroid levels in relation to their annual developmental stage during preparatory and pre-spawning phases under in-vitro conditions. We found that the different concentrations of recombinant rhfFSH and rhfLH significantly stimulated E2 levels in the preparatory and prespawning season, and also upregulated gonadal aromatase gene expression in a dose dependent manner. Our results demonstrate that the yeast expression system produced biologically active recombinant catfish gonadotropins, enabling the study of their function in the catfish.
Collapse
Affiliation(s)
- Joseph Aizen
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret, Israel.
| | - Sandhya Sharma
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Abigail Elizur
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - K P Joy
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, India
| | - Radha Chaube
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
6
|
Soloperto S, Olivier S, Poret A, Minier C, Halm-Lemeille MP, Jozet-Alves C, Aroua S. Effects of 17α-ethinylestradiol on the neuroendocrine gonadotropic system and behavior of European sea bass larvae ( Dicentrarchus labrax). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:198-215. [PMID: 36803253 DOI: 10.1080/15287394.2023.2177781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The widespread use of 17α-ethinylestradiol (EE2), and other estrogenic endocrine disruptors, results in a continuous release of estrogenic compounds into aquatic environments. Xenoestrogens may interfere with the neuroendocrine system of aquatic organisms and may produce various adverse effects. The aim of the present study was to expose European sea bass larvae (Dicentrarchus labrax) to EE2 (0.5 and 50 nM) for 8 d and determine the expression levels of brain aromatase (cyp19a1b), gonadotropin-releasing hormones (gnrh1, gnrh2, gnrh3), kisspeptins (kiss1, kiss2) and estrogen receptors (esr1, esr2a, esr2b, gpera, gperb). Growth and behavior of larvae as evidenced by locomotor activity and anxiety-like behaviors were measured 8 d after EE2 treatment and a depuration period of 20 d. Exposure to 0.5 nM EE2 induced a significant increase in cyp19a1b expression levels, while upregulation of gnrh2, kiss1, and cyp19a1b expression was noted after 8 d at 50 nM EE2. Standard length at the end of the exposure phase was significantly lower in larvae exposed to 50 nM EE2 than in control; however, this effect was no longer observed after the depuration phase. The upregulation of gnrh2, kiss1, and cyp19a1b expression levels was found in conjunction with elevation in locomotor activity and anxiety-like behaviors in larvae. Behavioral alterations were still detected at the end of the depuration phase. Evidence indicates that the long-lasting effects of EE2 on behavior might impact normal development and subsequent fitness of exposed fish.
Collapse
Affiliation(s)
- S Soloperto
- Normandie Univ, UNIHAVRE, Le Havre Cedex, France
| | - S Olivier
- Normandie Univ, UNIHAVRE, Le Havre Cedex, France
| | - A Poret
- Normandie Univ, UNIHAVRE, Le Havre Cedex, France
| | - C Minier
- Normandie Univ, UNIHAVRE, Le Havre Cedex, France
| | - M P Halm-Lemeille
- Ifremer Port-en-Bessin, LaboratoireEnvironnement Ressources de Normandie, Port-en-Bessin, France
| | - C Jozet-Alves
- Normandie Univ, Unicaen, CNRS, Caen, France
- Univ Rennes, CNRS, Rennes, France
| | - S Aroua
- Normandie Univ, UNIHAVRE, Le Havre Cedex, France
| |
Collapse
|
7
|
Soloperto S, Nihoul F, Olivier S, Poret A, Couteau J, Halm-Lemeille MP, Danger JM, Aroua S. Effects of 17α-Ethinylestradiol (EE2) exposure during early life development on the gonadotropic axis ontogenesis of the European sea bass, Dicentrarchus labrax. Comp Biochem Physiol A Mol Integr Physiol 2022; 271:111260. [PMID: 35724955 DOI: 10.1016/j.cbpa.2022.111260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/27/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
Exposure of young organisms to oestrogenic endocrine disrupting chemicals (EDCs) can elicit adverse effects, particularly on the reproductive function. In fish, as in other vertebrates, reproduction is controlled by the neuroendocrine gonadotropic axis, whose components are mainly regulated by sex steroids and may then be targets for EDCs. In the present study, we investigated the effects of a xenoestrogen exposure on the ontogenesis of the gonadotropic axis in European sea bass. After exposure of hatching larvae for 8 days to 17α-ethinylestradiol (EE2) (0.5 nM and 50 nM), gene expression for kisspeptins (kiss1, kiss2), gonadotropin-releasing hormones (gnrh1, gnrh2, gnrh3), gonadotropin beta subunits (lhβ and fshβ) and brain type aromatase (cyp19a1b) were measured using quantitative real-time PCR. Our results demonstrate that EE2 strongly stimulated the expression of brain type aromatase (cyp19a1b) in sea bass larvae. In addition, EE2 exposure also affected the mRNA levels of kiss1, gnrh1 and gnrh3 by inducing a downregulation of these genes during the early developmental stages, while no effect was seen in gnrh2, lhβ and fshβ. These results reinforce the idea that the larval development is a sensitive critical period in regard to endocrine disruption and that the gonadotropic axis in the developing sea bass is sensitive to xenoestrogen exposure.
Collapse
Affiliation(s)
- Sofia Soloperto
- UMR-I 02 INERIS-URCA-ULH SEBIO, Normandie Univ, UNIHAVRE, FR CNRS 3730 Scale, Le Havre, France
| | - Florent Nihoul
- UMR-I 02 INERIS-URCA-ULH SEBIO, Normandie Univ, UNIHAVRE, FR CNRS 3730 Scale, Le Havre, France
| | - Stéphanie Olivier
- UMR-I 02 INERIS-URCA-ULH SEBIO, Normandie Univ, UNIHAVRE, FR CNRS 3730 Scale, Le Havre, France
| | - Agnès Poret
- UMR-I 02 INERIS-URCA-ULH SEBIO, Normandie Univ, UNIHAVRE, FR CNRS 3730 Scale, Le Havre, France
| | | | | | - Jean-Michel Danger
- UMR-I 02 INERIS-URCA-ULH SEBIO, Normandie Univ, UNIHAVRE, FR CNRS 3730 Scale, Le Havre, France
| | - Salima Aroua
- UMR-I 02 INERIS-URCA-ULH SEBIO, Normandie Univ, UNIHAVRE, FR CNRS 3730 Scale, Le Havre, France.
| |
Collapse
|