1
|
Fleming T, Tachizawa M, Nishiike Y, Koiwa A, Homan Y, Okubo K. Estrogen-dependent expression and function of secretogranin 2a in female-specific peptidergic neurons. PNAS NEXUS 2023; 2:pgad413. [PMID: 38111823 PMCID: PMC10726998 DOI: 10.1093/pnasnexus/pgad413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023]
Abstract
Secretogranin 2 (Scg2) is a member of the secretogranin/chromogranin family of proteins that is involved in neuropeptide and hormone packaging to secretory granules and serves as a precursor for several secreted pleiotropic peptides. A recent study in zebrafish showed that the teleost Scg2 orthologs, scg2a and scg2b, play an important role in mating behavior, but its modes of action and regulatory mechanisms remain unclear. In this study, we identify scg2a in another teleost species, medaka, by transcriptomic analysis as a gene that is expressed in an ovarian secretion-dependent manner in a group of neurons relevant to female sexual receptivity, termed FeSP neurons. Investigation of scg2a expression in the FeSP neurons of estrogen receptor (Esr)-deficient medaka revealed that it is dependent on estrogen signaling through Esr2b, the major determinant of female-typical mating behavior. Generation and characterization of scg2a-deficient medaka showed no overt changes in secretory granule packaging in FeSP neurons. This, along with the observation that Scg2a and neuropeptide B, a major neuropeptide produced by FeSP neurons, colocalize in a majority of secretory granules, suggests that Scg2a mainly serves as a precursor for secreted peptides that act in conjunction with neuropeptide B. Further, scg2a showed sexually biased expression in several brain nuclei implicated in mating behavior. However, we found no significant impact of scg2a deficiency on the performance of mating behavior in either sex. Collectively, our results indicate that, although perhaps not essential for mating behavior, scg2a acts in an estrogen/Esr2b signaling-dependent manner in neurons that are relevant to female sexual receptivity.
Collapse
Affiliation(s)
- Thomas Fleming
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masaya Tachizawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yuji Nishiike
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Ai Koiwa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yuki Homan
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
2
|
Hollander-Cohen L, Meir I, Shulman M, Levavi-Sivan B. Identifying the Interaction of the Brain and the Pituitary in Social - and Reproductive - State of Tilapia by Transcriptome Analyses. Neuroendocrinology 2022; 112:1237-1260. [PMID: 35381588 DOI: 10.1159/000524437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/23/2022] [Indexed: 12/26/2022]
Abstract
INTRODUCTION As in all vertebrates, reproduction in fish is regulated by gonadotrophin-releasing hormone (GnRH) control on gonadotrophic hormones (GtHs) activity. However, the neuroendocrine factors that promote GnRH and GtH activity are unknown. In Nile tilapia (Oreochromis niloticus), sexual activity and reproduction ability depend on social rank; only dominant males and females reproduce. Here, this characteristic of dominant fish allows us to compare brain and pituitary gene expression in animals that do and do not reproduce, aiming to reveal mechanisms that regulate reproduction. METHODS An extensive transcriptome analysis was performed, combining two sets of transcriptomes: a novel whole-brain and pituitary transcriptome of established dominant and subordinate males, together with a cell-specific transcriptome of luteinizing hormone (LH) and follicle-stimulating hormone cells. Pituitary incubation assay validated the direct effect of steroid application on chosen genes and GtH secretion. RESULTS In most dominant fish, as determined behaviorally, the gonadosomatic index was higher than in subordinate fish, and the leading upregulated pituitary genes were those coding for GtHs. In the brain, various neuropeptide genes, including isotocin, cholecystokinin, and MCH, were upregulated; these may be related to reproductive status through effects on behavior and feeding. In a STRING network analysis combining the two transcriptome sets, brain aromatase, highly expressed in LH cells, is the most central gene with the highest number of connections. In the pituitary incubation assay, testosterone and estradiol increased the secretion of LH and specific gene transcription. CONCLUSIONS The close correlation between behavioral dominance and reproductive capacity in tilapia allows unraveling novel genes that may regulate the hypothalamic-pituitary-gonadal axis, highlighting aromatase as the main factor affecting the brain and pituitary in maintaining a sexually active organism.
Collapse
Affiliation(s)
- Lian Hollander-Cohen
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel,
| | - Inbar Meir
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Miriam Shulman
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
3
|
Sharma S, Chaube R. Molecular cloning and characterization of secretogranin II in the catfish Heteropneustes fossilis: Sex and seasonal brain regional variations and its gonadotropin regulation. Comp Biochem Physiol A Mol Integr Physiol 2019; 232:13-27. [DOI: 10.1016/j.cbpa.2019.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 12/11/2022]
|
4
|
Mizrahi N, Gilon C, Atre I, Ogawa S, Parhar IS, Levavi-Sivan B. Deciphering Direct and Indirect Effects of Neurokinin B and GnRH in the Brain-Pituitary Axis of Tilapia. Front Endocrinol (Lausanne) 2019; 10:469. [PMID: 31354632 PMCID: PMC6639853 DOI: 10.3389/fendo.2019.00469] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/28/2019] [Indexed: 02/03/2023] Open
Abstract
Neurokinin B (NKB) and its cognate receptor (NK3R) are emerging as important components of the neuroendocrine regulation of reproduction. Unlike mammalian tac3, which encodes only one mature peptide (namely NKB), two mature peptides are predicted for each tac3 gene in fish and frogs. Therefore, it was designated as Neurokinin F (NKF). Hormone analogs with high and long-lasting biological activity are important tools for physiological and biological research; however, the availability of piscine-specific analogs is very limited. Therefore, we have developed specific NKB and NKF analogs based on the structure of the mammalian NKB analog-senktide. These analogs, specifically designed for longer half-lives by methylation of proteolysis sites, exhibited activity equal to those of the native NKB and NKF in short-term signal-transduction assays of tilapia NKB receptors. However, the analogs were found to be able to significantly increase the release of luteinizing hormone (LH), follicle stimulating hormone (FSH) and growth hormone (GH) in tilapia, as fast as 1 h after intraperitoneal (IP) injection. The impact of the analogs on LH and FSH secretion lasted longer compared to the effect of native peptides and salmon GnRH analog (sGnRHa). In addition, we harvested pituitaries 24 h post injection and measured LH, FSH and GH mRNA synthesis. Both analogs elevated mRNA levels of LH and GH, but only NKB analog increased FSH mRNA levels in the pituitary and all GnRH forms in the brain. NKB receptors were co-localized with all three types the GnRH neurons in tilapia brain in situ. We previously showed a direct effect of NKB at the pituitary level, and these new results suggest that the stronger impact of the NKB analog on GTH release is also due to an indirect effect through the activation of GnRH neurons. These results suggest that novel synthetic NKB analogs may serve as a tool for both research and agricultural purposes. Finally, the biological activity and regulatory role of NKB in tilapia brain and pituitary suggest that the NKB/NKBR system in fish is an important reproductive regulator in a similar way to the kisspeptin system in mammals.
Collapse
Affiliation(s)
- Naama Mizrahi
- Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
| | - Chaim Gilon
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ishwar Atre
- Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
| | - Satoshi Ogawa
- Jeffrey Cheah School of Medicine and Health Sciences, Brain Research Institute, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Ishwar S. Parhar
- Jeffrey Cheah School of Medicine and Health Sciences, Brain Research Institute, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Berta Levavi-Sivan
- Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
- *Correspondence: Berta Levavi-Sivan
| |
Collapse
|
5
|
Shu H, Yang L, Zhang Y, Liu X, Lin H, Li S. Identification and functional characterization of two Secretogranin II genes in orange-spotted grouper (Epinephelus coioides). Gen Comp Endocrinol 2018; 261:115-126. [PMID: 29486146 DOI: 10.1016/j.ygcen.2018.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 02/08/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022]
Abstract
Secretoneurin (SN) is an important stimulator of pituitary luteinizing hormone (LH) synthesis and secretion in goldfish. It is unknown whether this neuropeptide performs the same role in other fish species. In this study, the full-length cDNAs encoding Secretogranin IIa (SgIIa) and b (SgIIb) were cloned from the brain of orange-spotted grouper. Sequence analysis showed that a 34-amino acid SN peptide (SNa) is present in SgIIa proprotein, and a 33-amino acid SN peptide (SNb) is present in SgIIb proprotein. The two SN peptides share a low degree of similarity but contain the signature YTPQ-X-LA-X7-EL sequence. Real-time PCR showed that two SgII genes are mainly expressed in the brain and pituitary. During ovarian development, the expression levels of two SgII genes in the hypothalamus and pituitary were significantly reduced at the stage when the ovary contained full-grown oocytes. The biological functions of the two SN peptides were further investigated in vitro and in vivo. Both SN peptides could significantly elevate the mRNA levels of Gonadotropin-Releasing Hormone 1 (GnRH1) and 3 (GnRH3) in the hypothalamic fragments and upregulated the expression of Follicle-Stimulating Hormone beta (FSHb) and Luteinizing Hormone beta (LHb) in the pituitary cells. The stimulatory effects on the expression of GnRHs and Gonadotropins were also observed after intraperitoneal injection of SN peptides. Our study indicated that the SgII/SN system has stimulatory effects on the reproductive axis of orange-spotted grouper.
Collapse
Affiliation(s)
- Hu Shu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Lidong Yang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; Basic Education College of Lingnan Normal University, Zhanjiang 524037, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
6
|
Trudeau VL, Martyniuk CJ, Zhao E, Hu H, Volkoff H, Decatur WA, Basak A. Is secretoneurin a new hormone? Gen Comp Endocrinol 2012; 175:10-8. [PMID: 22036841 DOI: 10.1016/j.ygcen.2011.10.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 10/05/2011] [Accepted: 10/12/2011] [Indexed: 11/25/2022]
Abstract
Numerous small potentially bioactive peptides are derived from the selective processing of the ~600 amino acid secretogranin II (SgII) precursor, but only the 31-42 amino acid segment termed secretoneurin (SN) is well-conserved from sharks to mammals. Both SNa and SNb paralogs have been identified in some teleosts, likely arising as a result of the specific genome duplication event in this lineage. Only one copy of the putative lamprey SgII (188 amino acids) could be identified which gives rise to a divergent agnathan SN that contains the signature YTPQ-X-LA-X(7)-EL sequence typical of the central core of all known SN peptides. In rodent models, SN has regulatory effects on neuroinflammation and neurotransmitter release, and possesses therapeutic potential for the induction of angiogenesis. The wide distribution of SN in neuroendocrine neurons and pituitary cells suggests important endocrine roles. The clearest example of the endocrine action of SN is the stimulatory effects on pituitary luteinizing hormone release from goldfish pituitary and mouse LβT2 gonadotroph cells, indicative of an important role in reproduction. Several lines of evidence suggest that the SN receptor is most likely a G-protein coupled protein. Microarray analysis of SN effects on dispersed goldfish pituitary cells in vitro reveals novel SN actions that include effects on genes involved in notch signaling and the guanylate cyclase pathway. Intracerebroventricular injection of SN increases feeding and locomotory behaviors in goldfish. Given that SgII appeared early in vertebrate evolution, SN is an old peptide with emerging implications as a new multifunctional hormone.
Collapse
Affiliation(s)
- Vance L Trudeau
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada.
| | | | | | | | | | | | | |
Collapse
|
7
|
Canosa L, Lopez G, Scharrig E, Lesaux-Farmer K, Somoza G, Kah O, Trudeau V. Forebrain mapping of secretoneurin-like immunoreactivity and its colocalization with isotocin in the preoptic nucleus and pituitary gland of goldfish. J Comp Neurol 2011; 519:3748-65. [DOI: 10.1002/cne.22688] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Tam JKV, Lee LTO, Cheng CHK, Chow BKC. Discovery of a new reproductive hormone in teleosts: pituitary adenylate cyclase-activating polypeptide-related peptide (PRP). Gen Comp Endocrinol 2011; 173:405-10. [PMID: 21703272 DOI: 10.1016/j.ygcen.2011.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Revised: 05/30/2011] [Accepted: 06/05/2011] [Indexed: 01/21/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP)-related peptide (PRP) is a peptide encoded with PACAP in the same precursor protein. Non-mammalian PRPs were previously termed growth hormone-releasing hormone (GHRH)-like peptide, and was regarded as the mammalian GHRH homologue in non-mammalian vertebrates until the discovery of authentic GHRH genes in teleosts and amphibians. Although a highly specific receptor for PRP, which is lost in mammals, is present in non-mammals, a clear function of PRP in vertebrates remains unknown. Using goldfish as a model, here we show the expression of PRP and its cognate receptor in the brain-pituitary-gonadal (BPG) axis, thus suggesting a function of goldfish (gf) PRP in regulating reproduction. We found that gfPRP controls the expression of reproductive hormones in the brain, pituitary and ovary. Goldfish PRP exerts stimulatory effects on the expression of salmon gonadotropin-releasing hormone (sGnRH) in the brain, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in pituitary primary culture cells, but inhibits the expression of LH in the ovary. Using the same technique, we showed that gfPRP did not alter the mRNA level of growth hormone in the pituitary primary culture. In summary, we have discovered the first function of vertebrate PRP in regulating reproduction, which provides a new research direction in studying the neuroendocrine control of reproduction not only in teleosts, but also in other non-mammalian vertebrates.
Collapse
Affiliation(s)
- Janice K V Tam
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | | | | | | |
Collapse
|
9
|
Zhao E, McNeilly JR, McNeilly AS, Fischer-Colbrie R, Basak A, Seong JY, Trudeau VL. Secretoneurin stimulates the production and release of luteinizing hormone in mouse L{beta}T2 gonadotropin cells. Am J Physiol Endocrinol Metab 2011; 301:E288-97. [PMID: 21521715 PMCID: PMC3154532 DOI: 10.1152/ajpendo.00070.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Secretoneurin (SN) is a functional secretogranin II (SgII)-derived peptide that stimulates luteinizing hormone (LH) production and its release in the goldfish. However, the effects of SN on the pituitary of mammalian species and the underlying mechanisms remain poorly understood. To study SN in mammals, we adopted the mouse LβT2 gonadotropin cell line that has characteristics consistent with normal pituitary gonadotrophs. Using radioimmunoassay and real-time RT-PCR, we demonstrated that static treatment with SN induced a significant increment of LH release and production in LβT2 cells in vitro. We found that GnRH increased cellular SgII mRNA level and total SN-immunoreactive protein release into the culture medium. We also report that SN activated the extracellular signal-regulated kinases (ERK) in either 10-min acute stimulation or 3-h chronic treatment. The SN-induced ERK activation was significantly blocked by pharmacological inhibition of MAPK kinase (MEK) with PD-98059 and protein kinase C (PKC) with bisindolylmaleimide. SN also increased the total cyclic adenosine monophosphate (cAMP) levels similarly to GnRH. However, SN did not activate the GnRH receptor. These data indicate that SN activates the protein kinase A (PKA) and cAMP-induced ERK signaling pathways in the LH-secreting mouse LβT2 pituitary cell line.
Collapse
Affiliation(s)
- E Zhao
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhao E, Grey CL, Zhang D, Mennigen JA, Basak A, Chang JP, Trudeau VL. Secretoneurin is a potential paracrine factor from lactotrophs stimulating gonadotropin release in the goldfish pituitary. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1290-7. [PMID: 20811004 DOI: 10.1152/ajpregu.00407.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Secretoneurin (SN) is a functional neuropeptide derived from the evolutionarily conserved part of precursor protein secretogranin II (SgII). In the time course study, SN (10 nM) stimulates luteinizing hormone (LH) production and secretion after 6 h of static incubation of goldfish pituitary cells. Due to the existence of SN-immunoreactivity (SN-IR) in goldfish lactotrophs, endogenous SN might exert a paracrine effect on LH in the pituitary. In an in vitro immunoneutralization experiment, coincubation with anti-SN antiserum reduces the stimulatory effect of salmon gonadotropin-releasing hormone (sGnRH) on LH release by 64%. Using Western blot analysis, we demonstrate that sGnRH significantly increases the expression of the major SgII-derived peptide (∼57 kDa, with SN-IR) and prolactin (PRL) after 12 h in the static culture of goldfish pituitary cells. Furthermore, there exists a significant correlation between the levels of these two proteins (R = 0.76, P = 0.004). Another ∼30 kDa SgII-derived peptide containing SN is only observed in sGnRH-treated pituitary cells. Consistent with the Western blot analysis results, real-time RT-PCR analysis shows that a 12-h treatment with sGnRH induced 1.6- and 1.7-fold increments in SgII and PRL mRNA levels, respectively. SgII gene expression was also associated with PRL gene expression (R = 0.66; P = 0.02). PRL cells loaded with the calcium-sensitive dye, fura 2/AM, respond to sGnRH treatment with increases in intracellular Ca(2+) concentration level, suggesting a potential mechanism of GnRH on PRL cells and thus SgII processing and SN secretion. Taken together, endogenous lactotroph-generated SN, under the control of hypothalamic GnRH, exerts a paracrine action on neighboring gonadotrophs to stimulate LH release.
Collapse
Affiliation(s)
- E Zhao
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
11
|
WU HF, SHENG JQ, HONG YJ, WANG JH, LIU TX, GUI JF. GONADAL DEVELOPMENT IN NATURAL WILDNESS TRIPLOID MUTANT PINGXIANG RED-TRANSPARENT CRUCIAN CARP, CARASSIUS AURATUS L. ACTA ACUST UNITED AC 2010. [DOI: 10.3724/sp.j.1035.2009.61185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Zhao E, Hu H, Trudeau VL. Secretoneurin as a hormone regulator in the pituitary. ACTA ACUST UNITED AC 2009; 165:117-22. [PMID: 20006654 DOI: 10.1016/j.regpep.2009.11.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 11/25/2009] [Accepted: 11/26/2009] [Indexed: 11/30/2022]
Abstract
Secretoneurin (SN) is a 33-34 amino acid peptide derived from the most conserved sequence of the secretogranin (SgII) precursor. SgII is a granin protein found in the secretory granules of neuroendocrine tissues. There are two paralogs of teleost SgII that we name here SgIIa and SgIIb. Processing of these proteins would yield SNa and SNb in fish. Secretoneurin immunoreactivity is found within all the major pituitary cell types in mammals. In goldfish, it appears to be mainly expressed in the prolactin cells of the rostral pars distalis. We have investigated the paracrine role of goldfish SN (SNa) to stimulate luteinizing hormone from gonadotrophs in the neighboring proximal pars distalis. Another source of SN is the hypophysiotropic neurons that may deliver SN to target cells by direct pituitary innervation. Little else is known about the neuroendocrine role of SN. We also discuss the evolution, distribution and production of SN in the pituitary.
Collapse
Affiliation(s)
- E Zhao
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada
| | | | | |
Collapse
|
13
|
Zhao E, Zhang D, Basak A, Trudeau VL. New insights into granin-derived peptides: evolution and endocrine roles. Gen Comp Endocrinol 2009; 164:161-74. [PMID: 19523383 DOI: 10.1016/j.ygcen.2009.01.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/31/2008] [Accepted: 01/20/2009] [Indexed: 11/22/2022]
Abstract
The granin protein family is composed of two chromogranin and five secretogranin members that are acidic, heat-stable proteins in secretory granules in cells of the nervous and endocrine systems. We report that there is little evidence for evolutionary relationships among the granins except for the chromogranin group. The main granin members, including chromogranin A and B, and secretogranin II are moderately conserved in the vertebrates. Several small bioactive peptides can be generated by proteolysis from those homologous domains existing within the granin precursors, reflecting the conservation of biological activities in different vertebrates. In this context, we focus on reviewing the distribution and function of the major granin-derived peptides, including vasostatin, bovine CgB(1-41) and secretoneurin in vertebrate endocrine systems, especially those associated with growth, glucose metabolism and reproduction.
Collapse
Affiliation(s)
- E Zhao
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada
| | | | | | | |
Collapse
|
14
|
Zhang D, Xiong H, Mennigen JA, Popesku JT, Marlatt VL, Martyniuk CJ, Crump K, Cossins AR, Xia X, Trudeau VL. Defining global neuroendocrine gene expression patterns associated with reproductive seasonality in fish. PLoS One 2009; 4:e5816. [PMID: 19503831 PMCID: PMC2686097 DOI: 10.1371/journal.pone.0005816] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 05/12/2009] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Many vertebrates, including the goldfish, exhibit seasonal reproductive rhythms, which are a result of interactions between external environmental stimuli and internal endocrine systems in the hypothalamo-pituitary-gonadal axis. While it is long believed that differential expression of neuroendocrine genes contributes to establishing seasonal reproductive rhythms, no systems-level investigation has yet been conducted. METHODOLOGY/PRINCIPAL FINDINGS In the present study, by analyzing multiple female goldfish brain microarray datasets, we have characterized global gene expression patterns for a seasonal cycle. A core set of genes (873 genes) in the hypothalamus were identified to be differentially expressed between May, August and December, which correspond to physiologically distinct stages that are sexually mature (prespawning), sexual regression, and early gonadal redevelopment, respectively. Expression changes of these genes are also shared by another brain region, the telencephalon, as revealed by multivariate analysis. More importantly, by examining one dataset obtained from fish in October who were kept under long-daylength photoperiod (16 h) typical of the springtime breeding season (May), we observed that the expression of identified genes appears regulated by photoperiod, a major factor controlling vertebrate reproductive cyclicity. Gene ontology analysis revealed that hormone genes and genes functionally involved in G-protein coupled receptor signaling pathway and transmission of nerve impulses are significantly enriched in an expression pattern, whose transition is located between prespawning and sexually regressed stages. The existence of seasonal expression patterns was verified for several genes including isotocin, ependymin II, GABA(A) gamma2 receptor, calmodulin, and aromatase b by independent samplings of goldfish brains from six seasonal time points and real-time PCR assays. CONCLUSIONS/SIGNIFICANCE Using both theoretical and experimental strategies, we report for the first time global gene expression patterns throughout a breeding season which may account for dynamic neuroendocrine regulation of seasonal reproductive development.
Collapse
Affiliation(s)
- Dapeng Zhang
- Centre for Advanced Research in Environmental Genomics (CAREG), Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Huiling Xiong
- Centre for Advanced Research in Environmental Genomics (CAREG), Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jan A. Mennigen
- Centre for Advanced Research in Environmental Genomics (CAREG), Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jason T. Popesku
- Centre for Advanced Research in Environmental Genomics (CAREG), Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Vicki L. Marlatt
- Centre for Advanced Research in Environmental Genomics (CAREG), Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Christopher J. Martyniuk
- Centre for Advanced Research in Environmental Genomics (CAREG), Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Kate Crump
- Centre for Advanced Research in Environmental Genomics (CAREG), Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrew R. Cossins
- School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Xuhua Xia
- Centre for Advanced Research in Environmental Genomics (CAREG), Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Vance L. Trudeau
- Centre for Advanced Research in Environmental Genomics (CAREG), Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
15
|
Zhao E, Basak A, Wong AOL, Ko W, Chen A, López GC, Grey CL, Canosa LF, Somoza GM, Chang JP, Trudeau VL. The secretogranin II-derived peptide secretoneurin stimulates luteinizing hormone secretion from gonadotrophs. Endocrinology 2009; 150:2273-82. [PMID: 19106223 DOI: 10.1210/en.2008-1060] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Secretoneurin (SN) is a 33- to 34-amino acid neuropeptide derived from secretogranin-II, a member of the chromogranin family. We previously synthesized a putative goldfish (gf) SN and demonstrated its ability to stimulate LH release in vivo. However, it was not known whether goldfish actually produced the free SN peptide or whether SN directly stimulates LH release from isolated pituitary cells. Using a combination of reverse-phase HPLC and mass spectrometry analysis, we isolated for the first time a 34-amino acid free gfSN peptide from the whole brain. Moreover, Western blot analysis indicated the existence of this peptide in goldfish pituitary. Immunocytochemical localization studies revealed the presence of SN immunoreactivity in prolactin cells of rostral pars distalis of the anterior pituitary. Additionally, we found that magnocellular cells of the goldfish preoptic region are highly immunoreactive for SN. These neurons send heavily labeled projections that pass through the pituitary stalk and innervate the neurointermediate and anterior lobes. In static 12-h incubation of dispersed pituitary cells, application of SN antiserum reduced LH levels, whereas 1 and 10 nM gfSN, respectively, induced 2.5-fold (P < 0.001) and 1.9-fold (P < 0.01) increments of LH release into the medium, increases similar to those elicited by 100 nM concentrations of GnRH. Like GnRH, gfSN elevated intracellular Ca(2+) in identified gonadotrophs. Whereas we do not yet know the relative contribution of neural SN or pituitary SN to LH release, we propose that SN could act as a neuroendocrine and/or paracrine factor to regulate LH release from the anterior pituitary.
Collapse
Affiliation(s)
- E Zhao
- Department of Biology, Centre for Advanced Research in Environmental Genomics, Ottawa Health Research Institute, Ottawa, Ontario, Canada K1Y 4E9
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Martyniuk CJ, Xiong H, Crump K, Chiu S, Sardana R, Nadler A, Gerrie ER, Xia X, Trudeau VL. Gene expression profiling in the neuroendocrine brain of male goldfish (Carassius auratus) exposed to 17alpha-ethinylestradiol. Physiol Genomics 2006; 27:328-36. [PMID: 16954407 DOI: 10.1152/physiolgenomics.00090.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
17-alpha ethinylestradiol (EE2), a pharmaceutical estrogen, is detectable in water systems worldwide. Although studies report on the effects of xenoestrogens in tissues such as liver and gonad, few studies to date have investigated the effects of EE2 in the vertebrate brain at a large scale. The purpose of this study was to develop a goldfish brain-enriched cDNA array and use this in conjunction with a mixed tissue carp microarray to study the genomic response to EE2 in the brain. Gonad-intact male goldfish were exposed to nominal concentrations of 0.1 nM (29.6 ng/l) and 1.0 nM (296 ng/l) EE2 for 15 days. Male goldfish treated with the higher dose of EE2 had significantly smaller gonads compared with controls. Males also had a significantly reduced level of circulating testosterone (T) and 17beta-estradiol (E2) in both treatment groups. Candidate genes identified by microarray analysis fall into functional categories that include neuropeptides, cell metabolism, and transcription/translation factors. Differentially expressed genes verified by real-time RT-PCR included brain aromatase, secretogranin-III, and interferon-related developmental regulator 1. Our results suggest that the expression of genes in the sexually mature adult brain appears to be resistant to low EE2 exposure but is affected significantly at higher doses of EE2. This study demonstrates that microarray technology is a useful tool to study the effects of endocrine disrupting chemicals on neuroendocrine function and suggest that exposure to EE2 may have significant effects on localized E2 synthesis in the brain by affecting transcription of brain aromatase.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhao E, Basak A, Trudeau VL. Secretoneurin stimulates goldfish pituitary luteinizing hormone production. Neuropeptides 2006; 40:275-82. [PMID: 16806466 DOI: 10.1016/j.npep.2006.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 04/13/2006] [Accepted: 05/02/2006] [Indexed: 10/24/2022]
Abstract
Secretoneurin (SN), a 33-34 amino acid neuropeptide is derived from endoproteolysis of secretogranin II (SgII), a member protein of the chromogranin family. SN is widely distributed in various tissues of vertebrates especially in pituitary and hypothalamus, and is a potential new hormone. In vivo, i.p. injection of SN increased luteinizing hormone (LH) release in goldfish pretreated with the dopamine antagonist domperidone. In 6-h static incubation of goldfish pituitary fragments, 10 and 100 nM but not 1 nM concentrations of goldfish SN had a direct stimulatory effect to increase LH release by 2.3- and 1.5-fold (p<0.05), respectively. In addition, 500 nM SN induced a 2.6-fold increase in LHbeta subunit messenger RNA (mRNA) levels in pituitary fragments, regardless of whether LHbeta mRNA levels were expressed relative to 18S ribosomal RNA or beta-actin mRNA. We suggest that the stimulatory actions of SN on LH release may be a part of a paracrine or autocrine feedback loop in the pituitary.
Collapse
Affiliation(s)
- E Zhao
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ont., Canada K1N 6N5
| | | | | |
Collapse
|
18
|
Zhao E, Basak A, Crump K, Trudeau VL. Proteolytic processing and differential distribution of secretogranin-II in goldfish. Gen Comp Endocrinol 2006; 146:100-7. [PMID: 16376889 DOI: 10.1016/j.ygcen.2005.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 09/28/2005] [Accepted: 10/09/2005] [Indexed: 11/22/2022]
Abstract
Secretoneurin (SN) is a 33-34 amino acid neuropeptide derived by endoproteolysis of secretogranin-II (SgII), a chromogranin. A multi-antigenic strategy was used to generate a rabbit polyclonal goldfish SN antiserum that was characterized for Western blot analysis. In the goldfish pituitary two intermediate proteins containing SN and likely processed from the 69.6-kDa SgII precursor were detected. No immunoreactive proteins were observed in the goldfish interrenal, ovary, cerebellum, and telencephalon whereas SgII mRNA was expressed in all these tissues. Immunoreactive levels of the approximately 57 kDa product were higher in the pars distalis (PD) than in the neurointermediate lobe (NIL). The abundance of the approximately 57 kDa protein indicates that this SgII-product containing the SN sequence is a major stored form in secretory granules of the goldfish pituitary. High expression and processing of SN in the hypothalamus and pituitary suggest important roles for SgII-derived peptides in neuroendocrine tissues.
Collapse
Affiliation(s)
- E Zhao
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ont., Canada
| | | | | | | |
Collapse
|