1
|
Li M, Yao L, Chen H, Ni X, Xu Y, Dong W, Fang M, Chen D, Xu L, Zhao B, Deng J, Kwok KW, Yang J, Dong W. Chiral toxicity of muscone to embryonic zebrafish heart. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 222:105451. [PMID: 32097808 DOI: 10.1016/j.aquatox.2020.105451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Musk compounds are often used as to treat heart-related diseases and are widely used in Asia. Muscone is one of the most important physiologically active compounds of natural musk. Muscone is a chiral compound and can be further classified into S-muscone and R-muscone and both are present in synthetic musk. While these two chiral isomers have significant differences in odor properties, their difference in toxicity is still unknown. This study used zebrafish as an animal model to compare cardiac toxicities of S-muscone and R-muscone. Results showed that both compounds were acutely toxic to zebrafish embryos causing mortality, decreased hatching rate, pericardial edema, and decreased heart beat rate. These toxicities were modulated through increased Myh6 and Myh7 mRNA expression, and decreased thyroid genes (Trh, Thrβ, and Dio3) expression. R-muscone caused higher toxicity than S-muscone at the same concentration. For safety, the chiral isomer composition of synthetic muscone should be carefully regulated in the future.
Collapse
Affiliation(s)
- Ming Li
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicant and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Liang Yao
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicant and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Hao Chen
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicant and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Xuan Ni
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicant and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Yao Xu
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicant and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Wengjing Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicant and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environment Pollution and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | - Liang Xu
- College of Chemistry and Chemical Engineering, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Baoquan Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Toxicology and Pharmacology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China
| | - Jiang Deng
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi Guizhou563000, China
| | - Kevin Wh Kwok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong.
| | - Jingfeng Yang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicant and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China.
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicant and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China.
| |
Collapse
|
2
|
Saha I, Chakraborty SB, Chatterjee A, Pradhan D, Chatterji U, Maiti BR. Arecoline inhibits pineal-testis function in experimentally induced hypothyroid rats. Arch Physiol Biochem 2020; 126:7-16. [PMID: 30145920 DOI: 10.1080/13813455.2018.1486428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Arecoline is known to cause endocrine dysfunction. In the current article role of arecoline on pineal-testis activity was investigated in hypothyroid rats induced by propylthiouracil (PTU). PTU treatment caused thyroid dysfunction ultrastructurally with a fall in T3 and T4 levels followed by a rise of thyroid stimulating hormone (TSH) level. Pineal activity was impaired by PTU treatment, as evident from degenerated synaptic ribbons and mitochondria of the pinealocytes with depletion of pineal and serum N-acetyl serotonin and melatonin levels. Leydig cell function was suppressed, evident from reduced smooth endoplasmic reticulum and depletion of testosterone level. Sex accessories function was impaired by showing scanty rough endoplasmic reticulum with depletion of fructose and sialic acid levels. Arecoline treatment that caused pineal dysfunction and testicular stimulation in control rats, suppressed both pineal and testis functions after PTU treatment. The findings suggest that arecoline inhibits pineal-testis function in experimentally induced hypothyroid rats.
Collapse
Affiliation(s)
- Indraneel Saha
- Department of Zoology, University of Calcutta, Calcutta, India
| | | | | | | | - Urmi Chatterji
- Department of Zoology, University of Calcutta, Calcutta, India
| | - B R Maiti
- Department of Zoology, University of Calcutta, Calcutta, India
| |
Collapse
|
3
|
Martinez B, Ortiz RM. Thyroid Hormone Regulation and Insulin Resistance: Insights From Animals Naturally Adapted to Fasting. Physiology (Bethesda) 2017; 32:141-151. [PMID: 28202624 DOI: 10.1152/physiol.00018.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The contribution of thyroidal status in insulin signaling and glucose homeostasis has been implicated as a potential pathophysiological factor in humans, but the specific mechanisms remain largely elusive. Fasting induces changes in both thyroid hormone secretion and insulin signaling. Here, we explore how mammals that undergo natural, prolonged bouts of fasting provide unique insight into evolved physiological adaptations that allow them to tolerate such conditions despite intermittent states of reversible insulin resistance. Such insights from nature may provide clues to better understand the basis of thyroidal involvement in insulin dysregulation in humans.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Molecular & Cellular Biology, University of California, Merced, California
| | - Rudy M Ortiz
- Department of Molecular & Cellular Biology, University of California, Merced, California
| |
Collapse
|
4
|
Martinez B, Soñanez-Organis JG, Vázquez-Medina JP, Viscarra JA, MacKenzie DS, Crocker DE, Ortiz RM. Prolonged food deprivation increases mRNA expression of deiodinase 1 and 2, and thyroid hormone receptor β-1 in a fasting-adapted mammal. J Exp Biol 2013; 216:4647-54. [PMID: 24307712 PMCID: PMC3851149 DOI: 10.1242/jeb.085290] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 09/04/2013] [Indexed: 12/21/2022]
Abstract
Food deprivation in mammals is typically associated with reduced thyroid hormone (TH) concentrations and deiodinase content and activity to suppress metabolism. However, in prolonged-fasted, metabolically active elephant seal pups, TH levels are maintained, if not elevated. The functional relevance of this apparent paradox is unknown and demonstrates variability in the regulation of TH levels, metabolism and function in food-deprived mammals. To address our hypothesis that cellular TH-mediated activity is upregulated with fasting duration, we quantified the mRNA expression and protein content of adipose and muscle deiodinase type I (DI1) and type II (DI2), and TH receptor beta-1 (THrβ-1) after 1, 3 and 7 weeks of fasting in northern elephant seal pups (N=5-7 per week). Fasting did not decrease the concentrations of plasma thyroid stimulating hormone, total triiodothyronine (tT3), free T3, total thyroxine (tT4) or free T4, suggesting that the hypothalamic-pituitary-thyroid axis is not suppressed, but rather maintained during fasting. Mean mRNA expression of adipose DI1 and DI2 increased threefold and fourfold, respectively, and 20- and 30-fold, respectively, in muscle. With the exception of adipose DI1, protein expression of adipose DI2 and muscle DI1 and DI2 increased twofold to fourfold. Fasting also increased adipose (fivefold) and muscle (fourfold) THrβ-1 mRNA expression, suggesting that the mechanisms mediating cellular TH activity are upregulated with prolonged fasting. The data demonstrate a unique, atypical mechanism of TH activity and regulation in mammals adapted to prolonged food deprivation in which the potential responsiveness of peripheral tissues and cellular TH activity are increased, which may contribute to their lipid-based metabolism.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Molecular and Cellular Biology, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - José G. Soñanez-Organis
- Department of Molecular and Cellular Biology, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - José Pablo Vázquez-Medina
- Department of Molecular and Cellular Biology, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Jose A. Viscarra
- Department of Molecular and Cellular Biology, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Duncan S. MacKenzie
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Daniel E. Crocker
- Department of Biology, Sonoma State University, Rohnert Park, CA 94928, USA
| | - Rudy M. Ortiz
- Department of Molecular and Cellular Biology, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| |
Collapse
|
5
|
Ahmed O, Abd El‐Tawab S, Ahmed R. Effects of experimentally induced maternal hypothyroidism and hyperthyroidism on the development of rat offspring: I. The development of the thyroid hormones–neurotransmitters and adenosinergic system interactions. Int J Dev Neurosci 2010; 28:437-54. [PMID: 20599606 DOI: 10.1016/j.ijdevneu.2010.06.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 06/16/2010] [Accepted: 06/18/2010] [Indexed: 01/05/2023] Open
Affiliation(s)
- O.M. Ahmed
- Zoology DepartmentDivision of Physiology, Faculty of ScienceBeni Suef UniversityBeni SuefEgypt
| | - S.M. Abd El‐Tawab
- Zoology DepartmentDivision of Physiology, Faculty of ScienceBeni Suef UniversityBeni SuefEgypt
| | - R.G. Ahmed
- Zoology DepartmentDivision of Comparative Anatomy and Embryology, Faculty of ScienceBeni Suef UniversityEgypt
| |
Collapse
|
6
|
Suzuki D, Murata Y, Oda SI. Changes in Ucp1, D2 (Dio2) and Glut4 (Slc2a4) mRNA expression in response to short-term cold exposure in the house musk shrew (Suncus murinus). Exp Anim 2007; 56:279-88. [PMID: 17660682 DOI: 10.1538/expanim.56.279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The house musk shrew (Suncus murinus), or so-called suncus, is a cold-intolerant mammal, but it is unclear why it is susceptible to low temperatures. Cold-intolerance may be the result of lower thermogenic activity in brown adipose tissue (BAT). The early phase of severe cold exposure is a critical period for suncus. Therefore, we exposed suncus to mildly cold temperatures (10-12 degrees C) for 1 to 48 h to increase non-shivering thermogenesis without causing stress and measured changes in the expression of uncoupling protein 1 (Ucp1), type II iodothyronine 5'-deiodinase (Dio2=D2), and glucose transporter 4 (Slc2a4=Glut4) in BAT. These mRNAs play a major role in non-shivering thermogenesis and are mainly regulated by the sympathetic nervous system via direct beta-noradrenergic innervation of BAT. During cold exposure, Ucp1 expression in BAT increased steadily over time, albeit only slightly. Neither D2 nor Glut4 expression in BAT increased immediately; however, they had increased significantly after 24 h and 48 h of cold exposure. These findings suggest that the responsiveness of mRNA regulation is weak and thus may be involved in cold-intolerance in suncus.
Collapse
Affiliation(s)
- Daisuke Suzuki
- Laboratory of Animal Management & Resources, School of Bio-Agricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | |
Collapse
|