1
|
Bosi G, Maynard BJ, Pironi F, Sayyaf Dezfuli B. Parasites and the neuroendocrine control of fish intestinal function: an ancient struggle between pathogens and host. Parasitology 2022; 149:1842-1861. [PMID: 36076315 PMCID: PMC11010486 DOI: 10.1017/s0031182022001160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 12/29/2022]
Abstract
Most individual fish in wild and farmed populations can be infected with parasites. Fish intestines can harbour protozoans, myxozoans and helminths, which include several species of digeneans, cestodes, nematodes and acanthocephalans. Enteric parasites often induce inflammation of the intestine; the pathogen provokes changes in the host physiology, which will be genetically selected for if they benefit the parasite. The host response to intestinal parasites involves neural, endocrine and immune systems and interaction among these systems is coordinated by hormones, chemokines, cytokines and neurotransmitters including peptides. Intestinal fish parasites have effects on the components of the enteric nervous and endocrine systems; mechanical/chemical changes impair the activity of these systems, including gut motility and digestion. Investigations on the role of the neuroendocrine system in response to fish intestinal parasites are very few. This paper provides immunohistochemical and ultrastructural data on effects of parasites on the enteric nervous system and the enteric endocrine system in several fish–parasite systems. Emphasis is on the occurrence of 21 molecules including cholecystokinin-8, neuropeptide Y, enkephalins, galanin, vasoactive intestinal peptide and serotonin in infected tissues.
Collapse
Affiliation(s)
- Giampaolo Bosi
- Department of Veterinary Medicine and Animal Science, University of Milan, St. dell'Università 6, 26900 Lodi, Italy
| | - Barbara J. Maynard
- The Institute for Learning and Teaching, Colorado State University, Fort Collins, CO 80523, USA
| | - Flavio Pironi
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| | - Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
2
|
Cardoso JCR, Garcia MG, Power DM. Tracing the Origins of the Pituitary Adenylate-Cyclase Activating Polypeptide (PACAP). Front Neurosci 2020; 14:366. [PMID: 32508559 PMCID: PMC7251081 DOI: 10.3389/fnins.2020.00366] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/25/2020] [Indexed: 11/13/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a well-conserved neuropeptide characteristic of vertebrates. This pluripotent hypothalamic neuropeptide regulates neurotransmitter release, intestinal motility, metabolism, cell division/differentiation, and immunity. In vertebrates, PACAP has a specific receptor (PAC1) but it can also activate the Vasoactive Intestinal Peptide receptors (VPAC1 and VPAC2). The evolution of the vertebrate PACAP ligand - receptor pair has been well-described. In contrast, the situation in invertebrates is much less clear. The PACAP ligand - receptor pair in invertebrates has mainly been studied using heterologous antibodies raised against mammalian peptides. A few partial PACAP cDNA clones sharing >87% aa identity with vertebrate PACAP have been isolated from a cnidarian, several protostomes and tunicates but no gene has been reported. Moreover, current evolutionary models of the peptide and receptors using molecular data from phylogenetically distinct invertebrate species (mostly nematodes and arthropods) suggests the PACAP ligand and receptors are exclusive to vertebrate genomes. A basal deuterostome, the cephalochordate amphioxus (Branchiostoma floridae), is the only invertebrate in which elements of a PACAP-like system exists but the peptides and receptor share relatively low sequence conservation with the vertebrate homolog system and are a hybrid with the vertebrate glucagon system. In this study, the evolution of the PACAP system is revisited taking advantage of the burgeoning sequence data (genome and transcriptomes) available for invertebrates to uncover clues about when it first appeared. The results suggest that elements of the PACAP system are absent from protozoans, non-bilaterians, and protostomes and they only emerged after the protostome-deuterostome divergence. PACAP and its receptors appeared in vertebrate genomes and they probably shared a common ancestral origin with the cephalochordate PACAP/GCG-like system which after the genome tetraploidization events that preceded the vertebrate radiation generated the PACAP ligand and receptor pair and also the other members of the Secretin family peptides and their receptors.
Collapse
Affiliation(s)
- João C R Cardoso
- Comparative Molecular and Integrative Biology, Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Manuel G Garcia
- Comparative Molecular and Integrative Biology, Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Deborah M Power
- Comparative Molecular and Integrative Biology, Centre of Marine Sciences, University of Algarve, Faro, Portugal
| |
Collapse
|
3
|
Zhang C, Lian A, Xu Y, Jiang Q. Signal Transduction Mechanisms for Glucagon-Induced Somatolactin Secretion and Gene Expression in Nile Tilapia ( Oreochromis niloticus) Pituitary Cells. Front Endocrinol (Lausanne) 2020; 11:629077. [PMID: 33613457 PMCID: PMC7890253 DOI: 10.3389/fendo.2020.629077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
Glucagon (GCG) plays a stimulatory role in pituitary hormone regulation, although previous studies have not defined the molecular mechanism whereby GCG affects pituitary hormone secretion. To this end, we identified two distinct proglucagons, Gcga and Gcgb, as well as GCG receptors, Gcgra and Gcgrb, in Nile tilapia (Oreochromis niloticus). Using the cAMP response element (CRE)-luciferase reporter system, tilapia GCGa and GCGb could reciprocally activate the two GCG receptors expressed in human embryonic kidney 293 (HEK293) cells. Quantitative real-time PCR analysis revealed that differential expression of the Gcga and Gcgb and their cognate receptors Gcgra and Gcgrb was found in the various tissues of tilapia. In particular, the Gcgrb is abundantly expressed in the neurointermediate lobe (NIL) of the pituitary gland. In primary cultures of tilapia NIL cells, GCGb effectively stimulated SL release, with parallel rises in the mRNA levels, and co-incubation with the GCG antagonist prevented GCGb-stimulated SL release. In parallel experiments, GCGb treatment dose-dependently enhanced intracellular cyclic adenosine monophosphate (cAMP) accumulation with increasing inositol 1,4,5-trisphosphate (IP3) concentration and the resulting in transient increases of Ca2+ signals in the primary NIL cell culture. Using selective pharmacological approaches, the adenylyl cyclase (AC)/cAMP/protein kinase A (PKA) and phospholipase C (PLC)/IP3/Ca2+/calmodulin (CaM)/CaMK-II pathways were shown to be involved in GCGb-induced SL release and mRNA expression. Together, these results provide evidence for the first time that GCGb can act at the pituitary level to stimulate SL release and gene expression via GCGRb through the activation of the AC/cAMP/PKA and PLC/IP3/Ca2+/CaM/CaMK-II cascades.
Collapse
|
4
|
Kaitetzidou E, Katsiadaki I, Lagnel J, Antonopoulou E, Sarropoulou E. Unravelling paralogous gene expression dynamics during three-spined stickleback embryogenesis. Sci Rep 2019; 9:3752. [PMID: 30842559 PMCID: PMC6403355 DOI: 10.1038/s41598-019-40127-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/08/2019] [Indexed: 12/24/2022] Open
Abstract
Development requires the implementation of a plethora of molecular mechanisms, involving a large set of genes to ensure proper cell differentiation, morphogenesis of tissues and organs as well as the growth of the organism. Genome duplication and resulting paralogs are considered to provide the raw genetic materials important for new adaptation opportunities and boosting evolutionary innovation. The present study investigated paralogous genes, involved in three-spined stickleback (Gasterosteus aculeatus) development. Therefore, the transcriptomes of five early stages comprising developmental leaps were explored. Obtained expression profiles reflected the embryo's needs at different stages. Early stages, such as the morula stage comprised transcripts mainly involved in energy requirements while later stages were mostly associated with GO terms relevant to organ development and morphogenesis. The generated transcriptome profiles were further explored for differential expression of known and new paralogous genes. Special attention was given to hox genes, with hoxa13a being of particular interest and to pigmentation genes where itgb1, involved in the melanophore development, displayed a complementary expression pattern throughout studied stages. Knowledge obtained by untangling specific paralogous gene functions during development might not only significantly contribute to the understanding of teleost ontogenesis but might also shed light on paralogous gene evolution.
Collapse
Affiliation(s)
- Elisavet Kaitetzidou
- Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Institute for Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Greece
| | - Ioanna Katsiadaki
- Centre for Environment Fisheries and Aquaculture Science, (Cefas), Weymouth, UK
| | - Jacques Lagnel
- Institute for Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Greece.,Institut National de la Recherche Agronomique (INRA), Génétique et Amélioration des Fruits et Légumes (GALF), Montfavet Cedex, France
| | - Efthimia Antonopoulou
- Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Elena Sarropoulou
- Institute for Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Greece.
| |
Collapse
|
5
|
Cardoso JCR, Félix RC, Costa C, Palma PFS, Canário AVM, Power DM. Evolution of the glucagon-like system across fish. Gen Comp Endocrinol 2018; 264:113-130. [PMID: 29056448 DOI: 10.1016/j.ygcen.2017.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 12/25/2022]
Abstract
In fishes, including the jawless lampreys, the most ancient lineage of extant vertebrates, plasma glucose levels are highly variable and regulation is more relaxed than in mammals. The regulation of glucose and lipid in fishes in common with mammals involves members of the glucagon (GCG)-like family of gastrointestinal peptides. In mammals, four peptides GCG, glucagon-like peptide 1 and 2 (GLP1 and GLP2) and glucose-dependent insulinotropic peptide (GIP) that activate four specific receptors exist. However, in lamprey and other fishes the glucagon-like family evolved differently and they retained additional gene family members (glucagon-related peptide, gcrp and its receptor, gcrpr) that are absent from mammals. In the present study, we analysed the evolution of the glucagon-like system in fish and characterized gene expression of the family members in the European sea bass (Dicentrarchus labrax) a teleost fish. Phylogenetic analysis revealed that multiple receptors and peptides of the glucagon-like family emerged early during the vertebrate radiation and evolved via lineage specific events. Synteny analysis suggested that family member gene loss is likely to be the result of a single gene deletion event. Lamprey was the only fish where a putative glp1r persisted and the presence of the receptor gene in the genomes of the elephant shark and coelacanth remains unresolved. In the coelacanth and elephant shark, unique proglucagon genes were acquired which in the former only encoded Gcg and Glp2 and in the latter, shared a similar structure to the teleost proglucagon gene but possessed an extra exon coding for Glp-like peptide that was most similar to Glp2. The variable tissue distribution of the gene transcripts encoding the ligands and receptors of the glucagon-like system in an advanced teleost, the European sea bass, suggested that, as occurs in mammals, they have acquired distinct functions. Statistically significant (p < .05) down-regulation of teleost proglucagon a in sea bass with modified plasma glucose levels confirmed the link between these peptides and metabolism. The tissue distribution of members of the glucagon-like system in sea bass and human suggests that evolution of the brain-gut-peptide regulatory loop diverged between teleosts and mammals despite the overall conservation and similarity of glucagon-like family members.
Collapse
Affiliation(s)
- João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Rute C Félix
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Carina Costa
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Pedro F S Palma
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Adelino V M Canário
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
6
|
Shimizu M, Dickhoff WW. Circulating insulin-like growth factor binding proteins in fish: Their identities and physiological regulation. Gen Comp Endocrinol 2017; 252:150-161. [PMID: 28782538 DOI: 10.1016/j.ygcen.2017.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/28/2017] [Accepted: 08/02/2017] [Indexed: 01/29/2023]
Abstract
Insulin-like growth factor binding proteins (IGFBPs) play crucial roles in regulating the availability of IGFs to receptors and prolong the half-lives of IGFs. There are six IGFBPs present in the mammalian circulation with IGFBP-3 being most abundant. In mammals IGFBP-3 is the major carrier of circulating IGFs, facilitated by forming a ternary complex with IGF and an acid-labile subunit (ALS). IGFBP-1 is generally inhibitory to IGF action by preventing it from interacting with its receptors. In teleosts, the third-round of vertebrate whole genome duplication created paralogs of each IGFBP, except IGFBP-4. In the fish circulation, three major IGFBPs are typically detected at molecular ranges of 20-25, 28-32 and 40-50kDa. However, their identities are not well established. Three major circulating IGFBPs in Chinook salmon have been identified through protein purification and cDNA cloning. Salmon 28- and 22-kDa IGFBPs are co-orthologs of IGFBP-1, termed IGFBP-1a and -1b, respectively. They are induced under catabolic conditions such as stress and fasting but their responses are somewhat different, with IGFBP-1b being the most sensitive of the two. Cortisol stimulates production and secretion of these IGFBP-1 subtypes while, unlike in mammals, insulin may not be a primary suppressor. Salmon 41-kDa IGFBP, a major carrier of IGF-I, is not IGFBP-3, as might be expected extrapolating from mammals, but is in fact IGFBP-2b. Salmon IGFBP-2b levels in plasma are high when fish are fed, and GH treatment increases its circulating levels similar to mammalian IGFBP-3. These findings suggest that salmon IGFBP-2b acquired the role and regulation similar to mammalian IGFBP-3. Multiple replications of fish IGFBPs offer a unique opportunity to investigate molecular evolution of IGFBPs.
Collapse
Affiliation(s)
- Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan.
| | - Walton W Dickhoff
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| |
Collapse
|
7
|
Rønnestad I, Gomes AS, Murashita K, Angotzi R, Jönsson E, Volkoff H. Appetite-Controlling Endocrine Systems in Teleosts. Front Endocrinol (Lausanne) 2017; 8:73. [PMID: 28458653 PMCID: PMC5394176 DOI: 10.3389/fendo.2017.00073] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/27/2017] [Indexed: 12/15/2022] Open
Abstract
Mammalian studies have shaped our understanding of the endocrine control of appetite and body weight in vertebrates and provided the basic vertebrate model that involves central (brain) and peripheral signaling pathways as well as environmental cues. The hypothalamus has a crucial function in the control of food intake, but other parts of the brain are also involved. The description of a range of key neuropeptides and hormones as well as more details of their specific roles in appetite control continues to be in progress. Endocrine signals are based on hormones that can be divided into two groups: those that induce (orexigenic), and those that inhibit (anorexigenic) appetite and food consumption. Peripheral signals originate in the gastrointestinal tract, liver, adipose tissue, and other tissues and reach the hypothalamus through both endocrine and neuroendocrine actions. While many mammalian-like endocrine appetite-controlling networks and mechanisms have been described for some key model teleosts, mainly zebrafish and goldfish, very little knowledge exists on these systems in fishes as a group. Fishes represent over 30,000 species, and there is a large variability in their ecological niches and habitats as well as life history adaptations, transitions between life stages and feeding behaviors. In the context of food intake and appetite control, common adaptations to extended periods of starvation or periods of abundant food availability are of particular interest. This review summarizes the recent findings on endocrine appetite-controlling systems in fish, highlights their impact on growth and survival, and discusses the perspectives in this research field to shed light on the intriguing adaptations that exist in fish and their underlying mechanisms.
Collapse
Affiliation(s)
- Ivar Rønnestad
- Department of Biology, University of Bergen, Bergen, Norway
| | - Ana S. Gomes
- Department of Biology, University of Bergen, Bergen, Norway
| | - Koji Murashita
- Department of Biology, University of Bergen, Bergen, Norway
- Research Center for Aquaculture Systems, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Tamaki, Mie, Japan
| | - Rita Angotzi
- Department of Biology, University of Bergen, Bergen, Norway
| | - Elisabeth Jönsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St John’s, NL, Canada
| |
Collapse
|
8
|
Oren DA, Wei Y, Skrabanek L, Chow BKC, Mommsen T, Mojsov S. Structural Mapping and Functional Characterization of Zebrafish Class B G-Protein Coupled Receptor (GPCR) with Dual Ligand Selectivity towards GLP-1 and Glucagon. PLoS One 2016; 11:e0167718. [PMID: 27930690 PMCID: PMC5145181 DOI: 10.1371/journal.pone.0167718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/19/2016] [Indexed: 12/31/2022] Open
Abstract
GLP-1 and glucagon regulate glucose metabolism through a network of metabolic pathways initiated upon binding to their specific receptors that belong to class B G-protein coupled receptors (GPCRs). The therapeutic potential of glucagon is currently being evaluated, while GLP-1 is already used in the treatment of type 2 diabetes and obesity. Development of a second generation of GLP-1 based therapeutics depends on a molecular and structural understanding of the interactions between the GLP-1 receptor (GLP-1R) and its ligand GLP-1. There is considerable sequence conservation between GLP-1 and glucagon and between the hGLP-1R and human glucagon receptor (hGCGR), yet each receptor recognizes only its own specific ligand. Glucagon receptors in fish and frogs also exhibit ligand selectivity only towards glucagon and not GLP-1. Based on competitive binding experiments and assays of increase in intracellular cAMP, we demonstrate here that a GPCR in zebrafish (Danio rerio) exhibits dual ligand selectivity towards GLP-1 and glucagon, a characteristic not found in mammals. Further, many structural features found in hGLP-1R and hGCGR are also found in this zebrafish GPCR (zfGPCR). We show this by mapping of its sequence and structural features onto the hGLP-1R and hGCGR based on their partial and complementary crystal structures. Thus, we propose that zfGPCR represents a dual GLP-1R/GCGR. The main differences between the three receptors are in their stalk regions that connect their N-terminal extracellular domains (NECDs) with their transmembrane domains and the absence of loop 3 in the NECD in zfGLP-1R/GCGR. These observations suggest that the interactions between GLP-1 and glucagon with loop 3 and the stalk regions may induce different conformational changes in hGLP-1R and hGCGR upon ligand binding and activation that lead to selective recognition of their native ligands.
Collapse
Affiliation(s)
- Deena A. Oren
- The Rockefeller University, New York, New York, United States of America
| | - Yang Wei
- The Rockefeller University, New York, New York, United States of America
| | - Luce Skrabanek
- Applied Bioinformatics Core, Weill Cornell Medical College, New York, New York, United States of America
| | - Billy K. C. Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Thomas Mommsen
- Department of Biochemistry, University of Victoria, Victoria, British Columbia, Canada
| | - Svetlana Mojsov
- The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
9
|
Hu CK, Southey BR, Romanova EV, Maruska KP, Sweedler JV, Fernald RD. Identification of prohormones and pituitary neuropeptides in the African cichlid, Astatotilapia burtoni. BMC Genomics 2016; 17:660. [PMID: 27543050 PMCID: PMC4992253 DOI: 10.1186/s12864-016-2914-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 07/06/2016] [Indexed: 12/14/2022] Open
Abstract
Background Cichlid fishes have evolved remarkably diverse reproductive, social, and feeding behaviors. Cell-to-cell signaling molecules, notably neuropeptides and peptide hormones, are known to regulate these behaviors across vertebrates. This class of signaling molecules derives from prohormone genes that have undergone multiple duplications and losses in fishes. Whether and how subfunctionalization, neofunctionalization, or losses of neuropeptides and peptide hormones have contributed to fish behavioral diversity is largely unknown. Information on fish prohormones has been limited and is complicated by the whole genome duplication of the teleost ancestor. We combined bioinformatics, mass spectrometry-enabled peptidomics, and molecular techniques to identify the suite of neuropeptide prohormones and pituitary peptide products in Astatotilapia burtoni, a well-studied member of the diverse African cichlid clade. Results Utilizing the A. burtoni genome, we identified 148 prohormone genes, with 21 identified as a single copy and 39 with at least 2 duplicated copies. Retention of prohormone duplicates was therefore 41 %, which is markedly above previous reports for the genome-wide average in teleosts. Beyond the expected whole genome duplication, differences between cichlids and mammals can be attributed to gene loss in tetrapods and additional duplication after divergence. Mass spectrometric analysis of the pituitary identified 620 unique peptide sequences that were matched to 120 unique proteins. Finally, we used in situ hybridization to localize the expression of galanin, a prohormone with exceptional sequence divergence in cichlids, as well as the expression of a proopiomelanocortin, prohormone that has undergone an additional duplication in some bony fish lineages. Conclusion We characterized the A. burtoni prohormone complement. Two thirds of prohormone families contain duplications either from the teleost whole genome duplication or a more recent duplication. Our bioinformatic and mass spectrometric findings provide information on a major vertebrate clade that will further our understanding of the functional ramifications of these prohormone losses, duplications, and sequence changes across vertebrate evolution. In the context of the cichlid radiation, these findings will also facilitate the exploration of neuropeptide and peptide hormone function in behavioral diversity both within A. burtoni and across cichlid and other fish species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2914-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caroline K Hu
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.,Present address: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Elena V Romanova
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Russell D Fernald
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
10
|
Busby ER, Mommsen TP. Proglucagons in vertebrates: Expression and processing of multiple genes in a bony fish. Comp Biochem Physiol B Biochem Mol Biol 2016; 199:58-66. [PMID: 26927880 DOI: 10.1016/j.cbpb.2016.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 11/16/2022]
Abstract
In contrast to mammals, where a single proglucagon (PG) gene encodes three peptides: glucagon, glucagon-like peptide 1 and glucagon-like peptide 2 (GLP-1; GLP-2), many non-mammalian vertebrates carry multiple PG genes. Here, we investigate proglucagon mRNA sequences, their tissue expression and processing in a diploid bony fish. Copper rockfish (Sebastes caurinus) express two independent genes coding for distinct proglucagon sequences (PG I, PG II), with PG II lacking the GLP-2 sequence. These genes are differentially transcribed in the endocrine pancreas, the brain, and the gastrointestinal tract. Alternative splicing identified in rockfish is only one part of this complex regulation of the PG transcripts: the system has the potential to produce two glucagons, four GLP-1s and a single GLP-2, or any combination of these peptides. Mass spectrometric analysis of partially purified PG-derived peptides in endocrine pancreas confirms translation of both PG transcripts and differential processing of the resulting peptides. The complex differential regulation of the two PG genes and their continued presence in this extant teleostean fish strongly suggests unique and, as yet largely unidentified, roles for the peptide products encoded in each gene.
Collapse
Affiliation(s)
- Ellen R Busby
- Department of Biochemistry and Microbiology, and Department of Biology, University of Victoria, Victoria, BC, Canada.
| | - Thomas P Mommsen
- Department of Biochemistry and Microbiology, and Department of Biology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
11
|
Cardoso JCR, Félix RC, Martins RST, Trindade M, Fonseca VG, Fuentes J, Power DM. PACAP system evolution and its role in melanophore function in teleost fish skin. Mol Cell Endocrinol 2015; 411:130-45. [PMID: 25933704 DOI: 10.1016/j.mce.2015.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 01/12/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) administered to tilapia melanophores ex-vivo causes significant pigment aggregation and this is a newly identified function for this peptide in fish. The G-protein coupled receptors (GPCRs), adcyap1r1a (encoding Pac1a) and vipr2a (encoding Vpac2a), are the only receptors in melanophores with appreciable levels of expression and are significantly (p < 0.05) down-regulated in the absence of light. Vpac2a is activated exclusively by peptide histidine isoleucine (PHI), which suggests that Pac1a mediates the melanin aggregating effect of PACAP on melanophores. Paradoxically activation of Pac1a with PACAP caused a rise in cAMP, which in fish melanophores is associated with melanin dispersion. We hypothesise that the duplicate adcyap1ra and vipr2a genes in teleosts have acquired a specific role in skin and that the melanin aggregating effect of PACAP results from the interaction of Pac1a with Ramp that attenuates cAMP-dependent PKA activity and favours the Ca(2+)/Calmodulin dependent pathway.
Collapse
Affiliation(s)
- João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Rute C Félix
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Rute S T Martins
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Marlene Trindade
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Vera G Fonseca
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Juan Fuentes
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
12
|
Neuroendocrine regulation of somatic growth in fishes. SCIENCE CHINA-LIFE SCIENCES 2015; 58:137-47. [DOI: 10.1007/s11427-015-4805-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 09/19/2014] [Indexed: 10/24/2022]
|
13
|
Irwin DM. Evolution of receptors for peptides similar to glucagon. Gen Comp Endocrinol 2014; 209:50-60. [PMID: 24650782 DOI: 10.1016/j.ygcen.2014.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/24/2014] [Accepted: 03/05/2014] [Indexed: 12/25/2022]
Abstract
The genes encoding the peptide precursors for glucagon (GCG), glucose-dependent insulinotropic peptide (GIP), and ortholog of exendin belong to the same family as shown by sequence similarity. The peptides similar to glucagon encoded by these genes signal through a closely related subfamily of G-protein coupled receptors. A total of five types of genes for receptors for these peptides have been identified, three for the products of GCG (GCGR, GLP1R, and GLP2R) and one each for the products of GIP (GIPR) and the ortholog of exendin (Grlr). Phylogenetic and genomic neighborhood analyses clearly show that these genes originated very early in vertebrate evolution and all were present in the common ancestor of tetrapods and bony fish. Despite their ancient origins, some of these genes are dispensable, with the Glp1r, Gipr, and Grlr being lost on the lineages leading to bony fish, birds, and mammals, respectively. The loss of the genes for these receptors may have been driving forces in the evolution of new functions for these peptides similar to glucagon.
Collapse
Affiliation(s)
- David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ont. M5S 1A8, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto, Ont. M5S 1A8, Canada.
| |
Collapse
|
14
|
Cardoso JCR, Félix RC, Trindade M, Power DM. Fish genomes provide novel insights into the evolution of vertebrate secretin receptors and their ligand. Gen Comp Endocrinol 2014; 209:82-92. [PMID: 24906176 DOI: 10.1016/j.ygcen.2014.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/12/2014] [Accepted: 05/15/2014] [Indexed: 01/21/2023]
Abstract
The secretin receptor (SCTR) is a member of Class 2 subfamily B1 GPCRs and part of the PAC1/VPAC receptor subfamily. This receptor has long been known in mammals but has only recently been identified in other vertebrates including teleosts, from which it was previously considered to be absent. The ligand for SCTR in mammals is secretin (SCT), an important gastrointestinal peptide, which in teleosts has not yet been isolated, or the gene identified. This study revises the evolutionary model previously proposed for the secretin-GPCRs in metazoan by analysing in detail the fishes, the most successful of the extant vertebrates. All the Actinopterygii genomes analysed and the Chondrichthyes and Sarcopterygii fish possess a SCTR gene that shares conserved sequence, structure and synteny with the tetrapod homologue. Phylogenetic clustering and gene environment comparisons revealed that fish and tetrapod SCTR shared a common origin and diverged early from the PAC1/VPAC subfamily group. In teleosts SCTR duplicated as a result of the fish specific whole genome duplication but in all the teleost genomes analysed, with the exception of tilapia (Oreochromis niloticus), one of the duplicates was lost. The function of SCTR in teleosts is unknown but quantitative PCR revealed that in both sea bass (Dicentrarchus labrax) and tilapia (Oreochromis mossambicus) transcript abundance is high in the gastrointestinal tract suggesting it may intervene in similar processes to those in mammals. In contrast, no gene encoding the ligand SCT was identified in the ray-finned fishes (Actinopterygii) although it was present in the coelacanth (lobe finned fish, Sarcopterygii) and in the elephant shark (holocephalian). The genes in linkage with SCT in tetrapods and coelacanth were also identified in ray-finned fishes supporting the idea that it was lost from their genome. At present SCTR remains an orphan receptor in ray-finned fishes and it will be of interest in the future to establish why SCT was lost and which ligand substitutes for it so that full characterization of the receptor can occur.
Collapse
Affiliation(s)
- João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Rute C Félix
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Marlene Trindade
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
15
|
Expression of neuropeptides and anoctamin 1 in the embryonic and adult zebrafish intestine, revealing neuronal subpopulations and ICC-like cells. Cell Tissue Res 2013; 354:355-70. [PMID: 23881406 DOI: 10.1007/s00441-013-1685-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 06/17/2013] [Indexed: 12/12/2022]
Abstract
This immunohistochemical study in zebrafish aims to extend the neurochemical characterization of enteric neuronal subpopulations and to validate a marker for identification of interstitial cells of Cajal (ICC). The expression of neuropeptides and anoctamin 1 (Ano1), a selective ICC marker in mammals, was analyzed in both embryonic and adult intestine. Neuropeptides were present from 3 days postfertilization (dpf). At 3 dpf, galanin-positive nerve fibers were found in the proximal intestine, while calcitonin gene-related peptide (CGRP)- and substance P-expressing fibers appeared in the distal intestine. At 5 dpf, immunoreactive fibers were present along the entire intestinal length, indicating a well-developed peptidergic innervation at the onset of feeding. In the adult intestine, vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating peptide (PACAP), galanin, CGRP and substance P were detected in nerve fibers. Colchicine pretreatment enhanced only VIP and PACAP immunoreactivity. VIP and PACAP were coexpressed in enteric neurons. Colocalization stainings revealed three neuronal subpopulations expressing VIP and PACAP: a nitrergic noncholinergic subpopulation, a serotonergic subpopulation and a subpopulation expressing no other markers. Ano1-immunostaining revealed a 3-dimensional network in the adult intestine containing multipolar cells at the myenteric plexus and bipolar cells interspersed between circular smooth muscle cells. Ano1 immunoreactivity first appeared at 3 dpf, indicative of the onset of proliferation of ICC-like cells. It is shown that the Ano1 antiserum is a selective marker of ICC-like cells in the zebrafish intestine. Finally, it is hypothesized that ICC-like cells mediate the spontaneous regular activity of the embryonic intestine.
Collapse
|
16
|
Park CR, Moon MJ, Park S, Kim DK, Cho EB, Millar RP, Hwang JI, Seong JY. A novel glucagon-related peptide (GCRP) and its receptor GCRPR account for coevolution of their family members in vertebrates. PLoS One 2013; 8:e65420. [PMID: 23776481 PMCID: PMC3679108 DOI: 10.1371/journal.pone.0065420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 04/24/2013] [Indexed: 12/25/2022] Open
Abstract
The glucagon (GCG) peptide family consists of GCG, glucagon-like peptide 1 (GLP1), and GLP2, which are derived from a common GCG precursor, and the glucose-dependent insulinotropic polypeptide (GIP). These peptides interact with cognate receptors, GCGR, GLP1R, GLP2R, and GIPR, which belong to the secretin-like G protein-coupled receptor (GPCR) family. We used bioinformatics to identify genes encoding a novel GCG-related peptide (GCRP) and its cognate receptor, GCRPR. The GCRP and GCRPR genes were found in representative tetrapod taxa such as anole lizard, chicken, and Xenopus, and in teleosts including medaka, fugu, tetraodon, and stickleback. However, they were not present in mammals and zebrafish. Phylogenetic and genome synteny analyses showed that GCRP emerged through two rounds of whole genome duplication (2R) during early vertebrate evolution. GCRPR appears to have arisen by local tandem gene duplications from a common ancestor of GCRPR, GCGR, and GLP2R after 2R. Biochemical ligand-receptor interaction analyses revealed that GCRP had the highest affinity for GCRPR in comparison to other GCGR family members. Stimulation of chicken, Xenopus, and medaka GCRPRs activated Gαs-mediated signaling. In contrast to chicken and Xenopus GCRPRs, medaka GCRPR also induced Gαq/11-mediated signaling. Chimeric peptides and receptors showed that the K16M17K18 and G16Q17A18 motifs in GCRP and GLP1, respectively, may at least in part contribute to specific recognition of their cognate receptors through interaction with the receptor core domain. In conclusion, we present novel data demonstrating that GCRP and GCRPR evolved through gene/genome duplications followed by specific modifications that conferred selective recognition to this ligand-receptor pair.
Collapse
Affiliation(s)
- Cho Rong Park
- Laboratory of G-protein Coupled Receptors, Graduate School of Medicine Korea University, Seoul, Republic of Korea
| | - Mi Jin Moon
- Laboratory of G-protein Coupled Receptors, Graduate School of Medicine Korea University, Seoul, Republic of Korea
| | - Sumi Park
- Laboratory of G-protein Coupled Receptors, Graduate School of Medicine Korea University, Seoul, Republic of Korea
| | - Dong-Kyu Kim
- Laboratory of G-protein Coupled Receptors, Graduate School of Medicine Korea University, Seoul, Republic of Korea
| | - Eun Bee Cho
- Laboratory of G-protein Coupled Receptors, Graduate School of Medicine Korea University, Seoul, Republic of Korea
| | - Robert Peter Millar
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Hatfield, South Africa
- Medical Research Council Receptor Biology Unit, University of Cape Town, Observatory 7925, South Africa
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, Scotland
| | - Jong-Ik Hwang
- Laboratory of G-protein Coupled Receptors, Graduate School of Medicine Korea University, Seoul, Republic of Korea
- * E-mail: (JIH); (JYS)
| | - Jae Young Seong
- Laboratory of G-protein Coupled Receptors, Graduate School of Medicine Korea University, Seoul, Republic of Korea
- * E-mail: (JIH); (JYS)
| |
Collapse
|
17
|
Faria MT, Carvalho RF, Sevilhano TCA, Oliveira NAJ, Silva CFP, Oliveira JE, Soares CRJ, Garcez R, Santo PRE, Bartolini P. Isolation of the pituitary gonadotrophic α-subunit hormone of the giant amazonian fish: pirarucu (Arapaima gigas). FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:683-693. [PMID: 23073850 DOI: 10.1007/s10695-012-9730-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 09/26/2012] [Indexed: 06/01/2023]
Abstract
The cDNAs of the α-subunit of the pituitary gonadotrophic hormones (GTHα) of fish of the order Osteoglossiformes or the superorder Osteoglossomorpha have never been sequenced. For a better understanding the phylogenetic diversity and evolution of PGHα in fish and for future biotechnological synthesis of the gonadotrophic hormones (ag-FSH and ag-LH), of Arapaima gigas, one of the largest freshwater fishes of the world, its GTHα cDNA was synthesized by reverse transcriptase and the polymerase chain reaction starting from total pituitary RNA. The ag-GTHα-subunit was found to be encoded by 348 bp, corresponding to a protein of 115 amino acids, with a putative signal peptide of 24 amino acids and a mature peptide of 91 amino acids. Ten cysteine residues, responsible for forming 5 disulfide linkages, 2 putative N-linked glycosylation sites and 3 proline residues, were found to be conserved on the basis of the known sequences of vertebrate gonadotrophic hormones. Phylogenetic analysis, based on the amino acid sequences of 38 GTHα-subunits, revealed the highest identity of A. gigas with members of the Acipenseriformes, Anguilliformes, Siluriformes and Cypriniformes (87.1-89.5 %) and the lowest with Gadiformes and Cyprinodontiformes (55.0 %). The obtained phylogenetic tree agrees with previous analysis of teleostei, since A. gigas, of the order of Osteoglossiformes, appears as the sister group of Clupeocephala, while Elopomorpha forms the most basal group of all other teleosts.
Collapse
Affiliation(s)
- M T Faria
- Embrapa Amazônia Oriental, Trav. Dr. Enéas Pinheiro s\nº, Marco, Belém, PA 66095-100, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hwang JI, Moon MJ, Park S, Kim DK, Cho EB, Ha N, Son GH, Kim K, Vaudry H, Seong JY. Expansion of secretin-like G protein-coupled receptors and their peptide ligands via local duplications before and after two rounds of whole-genome duplication. Mol Biol Evol 2013; 30:1119-30. [PMID: 23427277 DOI: 10.1093/molbev/mst031] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In humans, the secretin-like G protein-coupled receptor (GPCR) family comprises 15 members with 18 corresponding peptide ligand genes. Although members have been identified in a large variety of vertebrate and nonvertebrate species, the origin and relationship of these proteins remain unresolved. To address this issue, we employed large-scale genome comparisons to identify genome fragments with conserved synteny and matched these fragments to linkage groups in reconstructed early gnathostome ancestral chromosomes (GAC). This genome comparison revealed that most receptor and peptide genes were clustered in three GAC linkage groups and suggested that the ancestral forms of five peptide subfamilies (corticotropin-releasing hormone-like, calcitonin-like, parathyroid hormone-like, glucagon-like, and growth hormone-releasing hormone-like) and their cognate receptor families emerged through tandem local gene duplications before two rounds (2R) of whole-genome duplication. These subfamily genes have, then, been amplified by 2R whole-genome duplication, followed by additional local duplications and gene loss prior to the divergence of land vertebrates and teleosts. This study delineates a possible evolutionary scenario for whole secretin-like peptide and receptor family members and may shed light on evolutionary mechanisms for expansion of a gene family with a large number of paralogs.
Collapse
Affiliation(s)
- Jong-Ik Hwang
- Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cottone E, Pomatto V, Bovolin P. Role of the endocannabinoid system in the central regulation of nonmammalian vertebrate reproduction. Int J Endocrinol 2013; 2013:941237. [PMID: 24101926 PMCID: PMC3786540 DOI: 10.1155/2013/941237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/12/2013] [Indexed: 12/20/2022] Open
Abstract
The endocannabinoid system (ECS) has a well-documented pivotal role in the control of mammalian reproductive functions, by acting at multiple levels, that is, central (CNS) and local (gonads) levels. Since studies performed in animal models other than mammals might provide further insight into the biology of these signalling molecules, in the present paper we review the comparative data pointing toward the endocannabinoid involvement in the reproductive control of non-mammalian vertebrates, focussing in particular on the central regulation of teleost and amphibian reproduction. The morphofunctional distribution of brain cannabinoid receptors will be discussed in relation to other crucial signalling molecules involved in the control of reproductive functions, such as GnRH, dopamine, aromatase, and pituitary gonadotropins.
Collapse
Affiliation(s)
- Erika Cottone
- Department of Life Science and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
- *Erika Cottone:
| | - Valentina Pomatto
- Department of Life Science and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
| | - Patrizia Bovolin
- Department of Life Science and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
| |
Collapse
|
20
|
Abstract
Heritable skin diseases represent a broad spectrum of clinical manifestations due to mutations in ∼500 different genes. A number of model systems have been developed to advance our understanding of the pathomechanisms of genodermatoses. Zebrafish (Danio rerio), a freshwater vertebrate, has a well-characterized genome, the expression of which can be easily manipulated. The larvae develop rapidly, with all major organs having largely developed by 5-6 days post-fertilization, including the skin which consists at that stage of the epidermis comprising two cell layers and separated from the dermal collagenous matrix by a basement membrane zone. Here, we describe the use of morpholino-based antisense oligonucleotides to knockdown the expression of specific genes in zebrafish and to examine the consequent knockdown efficiency and skin phenotypes. Zebrafish can provide a useful model system to study heritable skin diseases.
Collapse
Affiliation(s)
- Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Philadelphia, PA, USA.
| | | |
Collapse
|
21
|
Rebl A, Köbis JM, Fischer U, Takizawa F, Verleih M, Wimmers K, Goldammer T. MARCH5 gene is duplicated in rainbow trout, but only fish-specific gene copy is up-regulated after VHSV infection. FISH & SHELLFISH IMMUNOLOGY 2011; 31:1041-1050. [PMID: 21939770 DOI: 10.1016/j.fsi.2011.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/19/2011] [Accepted: 09/06/2011] [Indexed: 05/31/2023]
Abstract
Ubiquitination regulates the activity, stability, and localization of a wide variety of proteins. Several mammalian MARCH ubiquitin E3 ligase proteins have been suggested to control cell surface immunoreceptors. The mitochondrial protein MARCH5 is a positive regulator of Toll-like receptor 7-mediated NF-κB activation in mammals. In the present study, duplicated MARCH5-like cDNA sequences were isolated from rainbow trout (Oncorhynchus mykiss) comprising open reading frames of 882 bp (MARCH5A) and 885 bp (MARCH5B), respectively. Trout MARCH5A and MARCH5B-encoding sequences share only 65% sequence identity. Phylogenetic analyses including an additionally isolated MARCH5-like sequence from whitefish (Coregonus maraena) suggest that teleosts possess an additional MARCH5 gene copy resulting from a fish-specific whole genome duplication. Coding sequences of MARCH5A and MARCH5B genes from trout are distributed over six exons. Hypothetical MARCH5 proteins from trout comprise four transmembrane helices and a single motif similar to a RING variant domain (RINGv) including eight highly conserved cysteine and histidine residues. A 'reverse-northern blot' analysis revealed furthermore a MARCH5B Δexon5 transcript variant. Both MARCH5 genes from trout show a strain-, tissue- and cell-specific expression profile indicating different functional roles. Fish-specific MARCH5A gene for instance might be involved in defense mechanisms, since in vivo-challenge with the viral pathogen VHSV caused a significant 1.7-fold elevated copy number of the respective gene in gills four days after infection, whereas MARCH5B transcript level did not increase.
Collapse
Affiliation(s)
- Alexander Rebl
- Leibniz-Institut für Nutztierbiologie (FBN), Fachbereich Molekularbiologie, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Irwin DM, Prentice KJ. Incretin hormones and the expanding families of glucagon-like sequences and their receptors. Diabetes Obes Metab 2011; 13 Suppl 1:69-81. [PMID: 21824259 DOI: 10.1111/j.1463-1326.2011.01444.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Peptide hormones encoded by the proglucagon (Gcg) and glucose-dependent insulinotropic polypeptide (Gip) genes are evolutionarily related glucagon-like sequences and act through a subfamily of G-protein-coupled receptors. A better understanding of the evolutionary history of these hormones and receptors should yield insight into their biological functions. The availability of a large number of near-complete vertebrate genome sequences is a powerful resource to address questions concerning the evolution of sequences; here, we utilize these resources to examine the evolution of glucagon-like sequences and their receptors. These studies led to the discovery of novel genes for a glucagon receptor-like receptor (Grlr) and a glucagon-like sequence (exendin) in vertebrates. Both exendin and GRLR have ancient origins, early in vertebrate evolution, but have been lost on the ancestral lineage leading to extant mammals. We also show that exendin and GRLR are both expressed in the brain of the chicken and Xenopus tropicals, results that suggest that the products of these genes function in this tissue. The lack of exendin or Grlr genes in mammals suggests that other genes may have acquired the functions of exendin and Grlr during mammalian evolution.
Collapse
Affiliation(s)
- D M Irwin
- Department of Laboratory Medicine and Pathobiology and Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada.
| | | |
Collapse
|
23
|
Tam JKV, Lee LTO, Cheng CHK, Chow BKC. Discovery of a new reproductive hormone in teleosts: pituitary adenylate cyclase-activating polypeptide-related peptide (PRP). Gen Comp Endocrinol 2011; 173:405-10. [PMID: 21703272 DOI: 10.1016/j.ygcen.2011.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Revised: 05/30/2011] [Accepted: 06/05/2011] [Indexed: 01/21/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP)-related peptide (PRP) is a peptide encoded with PACAP in the same precursor protein. Non-mammalian PRPs were previously termed growth hormone-releasing hormone (GHRH)-like peptide, and was regarded as the mammalian GHRH homologue in non-mammalian vertebrates until the discovery of authentic GHRH genes in teleosts and amphibians. Although a highly specific receptor for PRP, which is lost in mammals, is present in non-mammals, a clear function of PRP in vertebrates remains unknown. Using goldfish as a model, here we show the expression of PRP and its cognate receptor in the brain-pituitary-gonadal (BPG) axis, thus suggesting a function of goldfish (gf) PRP in regulating reproduction. We found that gfPRP controls the expression of reproductive hormones in the brain, pituitary and ovary. Goldfish PRP exerts stimulatory effects on the expression of salmon gonadotropin-releasing hormone (sGnRH) in the brain, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in pituitary primary culture cells, but inhibits the expression of LH in the ovary. Using the same technique, we showed that gfPRP did not alter the mRNA level of growth hormone in the pituitary primary culture. In summary, we have discovered the first function of vertebrate PRP in regulating reproduction, which provides a new research direction in studying the neuroendocrine control of reproduction not only in teleosts, but also in other non-mammalian vertebrates.
Collapse
Affiliation(s)
- Janice K V Tam
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | | | | | | |
Collapse
|
24
|
He J, David IM, Zhang Y. Gene duplication plays a major role in gene co-option: Studies into the evolution of the motilin/ghrelin family and their receptors. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11434-011-4614-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Ji XS, Chen SL, Jiang YL, Xu TJ, Yang JF, Tian YS. Growth differences and differential expression analysis of pituitary adenylate cyclase activating polypeptide (PACAP) and growth hormone-releasing hormone (GHRH) between the sexes in half-smooth tongue sole Cynoglossus semilaevis. Gen Comp Endocrinol 2011; 170:99-109. [PMID: 20858497 DOI: 10.1016/j.ygcen.2010.09.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 09/09/2010] [Accepted: 09/14/2010] [Indexed: 11/20/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) and growth hormone-releasing hormone (GHRH) are regulators of growth hormone secretion. In this article, we examined the difference in growth and mRNA expression of PACAP and GHRH between the sexes in half-smooth tongue sole, an important cultured fish species indicating sexually growth dimorphism in China. Firstly, a significant body weight difference between females and males was first observed at 7 months (P<0.05) and at 18 onths the mean body weight of the females (771.0±44.3 g) was as much as 4.9 times higher than that of males (130.6±6.0 g). As a result, half-smooth tongue sole, Cynoglossus semilaevis, is a good model to investigate the effects of growth-related genes expression on sexual growth dimorphism. Secondly, the cDNAs encoding PRP/PACAP and GHRH were isolated. Two differently processed mRNA transcripts of PRP/PACAP (PRP-encoding and PRP splice variant) were found. PACAP and GHRH mRNA was highly abundant in brain and less abundant in other tissues. However, PACAP mRNA was expressed in most brain regions, and was lower in the cerebellum. GHRH mRNA was predominantly expressed in the hypothalamus and weakly expressed in all areas of the brain examined. Ontogenetic expression analysis indicated that PACAP and GHRH mRNA was detected in the early stages of embryogenesis. Finally, differential expression showed that there was no significant difference of the expression level of PACAP or GHRH between the sexes before 8 months of age. However, between 9 and 12 months of age, the GHRH mRNA expression level in males was significantly higher than in females (P<0.05), which might be associated with GH deficiency in males. In contrast, the male PACAP mRNA expression level was not significantly higher than that in females even at 9 and 12 months of age. The present results provide important clues for understanding the sexual growth dimorphism mechanisms in half-smooth tongue sole.
Collapse
Affiliation(s)
- Xiang-Shan Ji
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Heritable skin diseases represent a broad spectrum of clinical manifestations due to mutations in ∼500 different genes. A number of model systems have been developed to advance our understanding of the pathomechanisms of genodermatoses. Zebrafish (Danio rerio), a freshwater vertebrate, has a well-characterized genome, the expression of which can be easily manipulated. The larvae develop rapidly, with all major organs having developed by 5-6 days post-fertilization, including the skin, consisting of the epidermis comprising two cell layers and separated from the dermal collagenous matrix by a basement membrane. This perspective highlights the morphological and ultrastructural features of zebrafish skin, in the context of cutaneous gene expression. These observations suggest that zebrafish provide a useful model system to study the molecular aspects of skin development, as well as the pathogenesis and treatment of select heritable skin diseases.
Collapse
|
27
|
Sundström G, Dreborg S, Larhammar D. Concomitant duplications of opioid peptide and receptor genes before the origin of jawed vertebrates. PLoS One 2010; 5:e10512. [PMID: 20463905 PMCID: PMC2865548 DOI: 10.1371/journal.pone.0010512] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 04/13/2010] [Indexed: 12/22/2022] Open
Abstract
Background The opioid system is involved in reward and pain mechanisms and consists in mammals of four receptors and several peptides. The peptides are derived from four prepropeptide genes, PENK, PDYN, PNOC and POMC, encoding enkephalins, dynorphins, orphanin/nociceptin and beta-endorphin, respectively. Previously we have described how two rounds of genome doubling (2R) before the origin of jawed vertebrates formed the receptor family. Methodology/Principal Findings Opioid peptide gene family members were investigated using a combination of sequence-based phylogeny and chromosomal locations of the peptide genes in various vertebrates. Several adjacent gene families were investigated similarly. The results show that the ancestral peptide gene gave rise to two additional copies in the genome doublings. The fourth member was generated by a local gene duplication, as the genes encoding POMC and PNOC are located on the same chromosome in the chicken genome and all three teleost genomes that we have studied. A translocation has disrupted this synteny in mammals. The PDYN gene seems to have been lost in chicken, but not in zebra finch. Duplicates of some peptide genes have arisen in the teleost fishes. Within the prepropeptide precursors, peptides have been lost or gained in different lineages. Conclusions/Significance The ancestral peptide and receptor genes were located on the same chromosome and were thus duplicated concomitantly. However, subsequently genetic linkage has been lost. In conclusion, the system of opioid peptides and receptors was largely formed by the genome doublings that took place early in vertebrate evolution.
Collapse
Affiliation(s)
- Görel Sundström
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Susanne Dreborg
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Dan Larhammar
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
28
|
Cardoso JCR, Vieira FA, Gomes AS, Power DM. The serendipitous origin of chordate secretin peptide family members. BMC Evol Biol 2010; 10:135. [PMID: 20459630 PMCID: PMC2880984 DOI: 10.1186/1471-2148-10-135] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 05/06/2010] [Indexed: 01/15/2023] Open
Abstract
Background The secretin family is a pleotropic group of brain-gut peptides with affinity for class 2 G-protein coupled receptors (secretin family GPCRs) proposed to have emerged early in the metazoan radiation via gene or genome duplications. In human, 10 members exist and sequence and functional homologues and ligand-receptor pairs have been characterised in representatives of most vertebrate classes. Secretin-like family GPCR homologues have also been isolated in non-vertebrate genomes however their corresponding ligands have not been convincingly identified and their evolution remains enigmatic. Results In silico sequence comparisons failed to retrieve a non-vertebrate (porifera, cnidaria, protostome and early deuterostome) secretin family homologue. In contrast, secretin family members were identified in lamprey, several teleosts and tetrapods and comparative studies revealed that sequence and structure is in general maintained. Sequence comparisons and phylogenetic analysis revealed that PACAP, VIP and GCG are the most highly conserved members and two major peptide subfamilies exist; i) PACAP-like which includes PACAP, PRP, VIP, PH, GHRH, SCT and ii) GCG-like which includes GCG, GLP1, GLP2 and GIP. Conserved regions flanking secretin family members were established by comparative analysis of the Takifugu, Xenopus, chicken and human genomes and gene homologues were identified in nematode, Drosophila and Ciona genomes but no gene linkage occurred. However, in Drosophila and nematode genes which flank vertebrate secretin family members were identified in the same chromosome. Conclusions Receptors of the secretin-like family GPCRs are present in protostomes but no sequence homologues of the vertebrate cognate ligands have been identified. It has not been possible to determine when the ligands evolved but it seems likely that it was after the protostome-deuterostome divergence from an exon that was part of an existing gene or gene fragment by rounds of gene/genome duplication. The duplicate exon under different evolutionary pressures originated the chordate PACAP-like and GCG-like subfamily groups. This event occurred after the emergence of the metazoan secretin GPCRs and led to the establishment of novel peptide-receptor interactions that contributed to the generation of novel physiological functions in the chordate lineage.
Collapse
Affiliation(s)
- João C R Cardoso
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal.
| | | | | | | |
Collapse
|
29
|
|
30
|
Abstract
The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are essential components in the regulation of blood glucose levels in mammals. These two incretins are produced by evolutionarily related genes and these hormones show similarity in sequence as both are glucagon-like sequences. Genes for these hormones have been identified in a number of diverse vertebrate species indicating that they originated prior to the earliest divergences of vertebrate species. However, analysis of functional and sequence data suggest that each of these hormones acquired incretin activity independently, and only since the divergence of tetrapods from fish. Not only are the hormones related, but so are their receptors. Like the hormones, the incretin action of the receptors is not a product of a shared common ancestral history, as the receptors for GLP-1 and GIP are not most closely related. Further study of the physiological functions of GLP-1 and GIP in additional vertebrates is required to better understand the origin of incretin action.
Collapse
Affiliation(s)
- David M Irwin
- Department of Laboratory Medicine and Pathobiology, Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
The gastrointestinal tract as an endocrine/neuroendocrine/paracrine organ: organization, chemical messengers and physiological targets. FISH PHYSIOLOGY 2010. [DOI: 10.1016/s1546-5098(10)03007-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
32
|
He C, Wang C, Li B, Xie F, Chen Y, Zuo Z. Tissue-specific and embryonic expression of the retinoid X receptors in Sebastiscus marmoratus. Comp Biochem Physiol B Biochem Mol Biol 2009; 154:221-8. [PMID: 19555773 DOI: 10.1016/j.cbpb.2009.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/10/2009] [Accepted: 06/14/2009] [Indexed: 11/29/2022]
Abstract
Retinoid X receptors (RXRs) are highly conserved members of the nuclear receptor family and mediate various physiological processes in vertebrates. Most studies on RXRs have concentrated on their structure and function in mammals and their characterization and developmental expression in Danio rerio. However, there is little information concerning the distribution of RXRs in teleost tissues. In the present study, we cloned partial sequences of three RXR subtypes (RXRa, -b, -g) from Sebastiscus marmoratus by RACE PCR and analyzed the phylogeny of the teleost and the tetrapod RXR genes, and identified some inconsistencies with previous studies. The tissue-specific and embryonic expression profiles of each RXR gene were explored using real time quantitative PCR. This analysis demonstrated that these RXRs were expressed in all test tissues indicating their participation in many physiological processes. However, we found a great difference in the distribution of RXRg between teleosts and mammals. Furthermore, we followed expression of the three subtypes through various embryo developmental stages and found that the RXRa orthologues of teleosts might be involved in the development of the anterior hindbrain, tailbud and neural crest and in the formation of the pharynx and fin, that RXRb played ubiquitous roles in fish early development, and that RXRg probably played a role in brain and nervous system development and function.
Collapse
Affiliation(s)
- Chengyong He
- Key Laboratory of the Ministry of Education for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | | | | | | | | | | |
Collapse
|