1
|
Demin KA, Taranov AS, Ilyin NP, Lakstygal AM, Volgin AD, de Abreu MS, Strekalova T, Kalueff AV. Understanding neurobehavioral effects of acute and chronic stress in zebrafish. Stress 2021; 24:1-18. [PMID: 32036720 DOI: 10.1080/10253890.2020.1724948] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stress is a common cause of neuropsychiatric disorders, evoking multiple behavioral, endocrine and neuro-immune deficits. Animal models have been extensively used to understand the mechanisms of stress-related disorders and to develop novel strategies for their treatment. Complementing rodent and clinical studies, the zebrafish (Danio rerio) is one of the most important model organisms in biomedicine. Rapidly becoming a popular model species in stress neuroscience research, zebrafish are highly sensitive to both acute and chronic stress, and show robust, well-defined behavioral and physiological stress responses. Here, we critically evaluate the utility of zebrafish-based models for studying acute and chronic stress-related CNS pathogenesis, assess the advantages and limitations of these aquatic models, and emphasize their relevance for the development of novel anti-stress therapies. Overall, the zebrafish emerges as a powerful and sensitive model organism for stress research. Although these fish generally display evolutionarily conserved behavioral and physiological responses to stress, zebrafish-specific aspects of neurogenesis, neuroprotection and neuro-immune responses may be particularly interesting to explore further, as they may offer additional insights into stress pathogenesis that complement (rather than merely replicate) rodent findings. Compared to mammals, zebrafish models are also characterized by increased availability of gene-editing tools and higher throughput of drug screening, thus being able to uniquely empower translational research of genetic determinants of stress and resilience, as well as to foster innovative CNS drug discovery and the development of novel anti-stress therapies.
Collapse
Affiliation(s)
- Konstantin A Demin
- Institute of Experimental Biomedicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Alexander S Taranov
- Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Nikita P Ilyin
- Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Anton M Lakstygal
- Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Andrey D Volgin
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Tatyana Strekalova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Maastricht University, Maastricht, The Netherlands
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China
- Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
2
|
Abstract
Sexual maturation and somatic growth cessation are associated with adolescent development, which is precisely controlled by interconnected neuroendocrine regulatory pathways in the endogenous endocrine system. The pituitary gland is one of the key regulators of the endocrine system. By analyzing the RNA sequencing (RNA-seq) transcriptome before and after sexual maturation, in this study, we characterized the global gene expression patterns in zebrafish pituitaries at 45 and 90 days post-fertilization (dpf). A total of 15 043 annotated genes were expressed in the pituitary tissue, 3072 of which were differentially expressed with a greater than or equal to twofold change between pituitaries at 45 and 90 dpf. In the pituitary transcriptome, the most abundant transcript was gh. The expression levels of gh remained high even after sexual maturation at 90 dpf. Among the eight major pituitary hormone genes, lhb was the only gene that exhibited a significant change in its expression levels between 45 and 90 dpf. Significant changes in the pituitary transcripts included genes involved in the regulation of immune responses, bone metabolism, and hormone secretion processes during the juvenile-sexual maturity transition. Real-time quantitative PCR analysis was carried out to verify the RNA-seq transcriptome results and demonstrated that the expression patterns of the eight major pituitary hormone genes did not exhibit a significant gender difference at 90 dpf. For the first time, we report the quantitative global gene expression patterns at the juvenile and sexual maturity stages. These expression patterns may account for the dynamic neuroendocrine regulation observed in body metabolism.
Collapse
Affiliation(s)
- Wenxia He
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of SciencesInstitute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan, Hubei 430072, People's Republic of ChinaUniversity of Chinese Academy of SciencesBeijing, People's Republic of ChinaKey Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of SciencesInstitute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan, Hubei 430072, People's Republic of ChinaUniversity of Chinese Academy of SciencesBeijing, People's Republic of China
| | - Xiangyan Dai
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of SciencesInstitute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan, Hubei 430072, People's Republic of ChinaUniversity of Chinese Academy of SciencesBeijing, People's Republic of ChinaKey Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of SciencesInstitute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan, Hubei 430072, People's Republic of ChinaUniversity of Chinese Academy of SciencesBeijing, People's Republic of China
| | - Xiaowen Chen
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of SciencesInstitute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan, Hubei 430072, People's Republic of ChinaUniversity of Chinese Academy of SciencesBeijing, People's Republic of ChinaKey Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of SciencesInstitute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan, Hubei 430072, People's Republic of ChinaUniversity of Chinese Academy of SciencesBeijing, People's Republic of China
| | - Jiangyan He
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of SciencesInstitute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan, Hubei 430072, People's Republic of ChinaUniversity of Chinese Academy of SciencesBeijing, People's Republic of China
| | - Zhan Yin
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of SciencesInstitute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan, Hubei 430072, People's Republic of ChinaUniversity of Chinese Academy of SciencesBeijing, People's Republic of China
| |
Collapse
|
3
|
|
4
|
Fuzzen MLM, Alderman SL, Bristow EN, Bernier NJ. Ontogeny of the corticotropin-releasing factor system in rainbow trout and differential effects of hypoxia on the endocrine and cellular stress responses during development. Gen Comp Endocrinol 2011; 170:604-12. [PMID: 21130089 DOI: 10.1016/j.ygcen.2010.11.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 11/23/2010] [Accepted: 11/24/2010] [Indexed: 12/20/2022]
Abstract
To further our understanding of the development of the stress axis and the responsiveness of embryonic and larval fish to environmental stressors, this study examined the ontogeny of whole-body cortisol levels and of the corticotropin-releasing factor (CRF) system in rainbow trout, as well as the endocrine and cellular stress responses to hypoxia. After depletion of a maternal deposit, de novo synthesis of cortisol increased exponentially between the 'eyed' stage and first feeding. Whole body CRF mRNA levels dominated over those of the related peptide urotensin I (UI) from hatch through complete yolk sac absorption. The mRNA levels of CRF-binding protein (CRF-BP) closely paralleled those of CRF and UI throughout ontogeny except at first feeding when an increase in CRF gene expression was not matched by change in CRF-BP transcript abundance. In the hypoxia challenge, fish were exposed to 15% O(2) saturation for either 90 min or 24h at three key developmental stages: hatch, swim up and first feeding. While the embryos were unaffected, chronic hypoxia elicited a transient 2-fold increase in whole-body cortisol levels in the larval stages. The hypoxia challenge also generally suppressed the mRNA levels of CRF and CRF-BP, had no effect on the expression of UI, but had a marked stimulatory effect on heat shock protein 70 (Hsp70) gene expression. Taken together, these results suggest a role for the CRF system in the ontogenic regulation of corticosteroidogenesis and show that hypoxia has developmental stage-specific effects on the endocrine and cellular stress responses in rainbow trout.
Collapse
Affiliation(s)
- Meghan L M Fuzzen
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | | | | | | |
Collapse
|
5
|
Abstract
Proprotein convertases (PCs) are secretory proteolytic enzymes that activate precursor proteins into biologically active forms by limited proteolysis at one or multiple internal sites. PCs are implicated in the processing of multiple protein precursors, including hormones, proteases, growth factors, angiogenic factors, and receptors. PCs have been linked recently to various pathologies such as Alzheimer's disease, tumorigenesis, and infections. The zebrafish has emerged as an attractive model for studying the role of PCs not only in substrate production but also in development. Herein we describe methods that are used to characterize DNA sequences of PCs in zebrafish, as well as to evaluate the ontogeny and tissue distribution of their transcripts. We also provide information on the morpholino-mediated knockdown of proprotein convertases.
Collapse
Affiliation(s)
- Michael G Morash
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada.
| | | | | |
Collapse
|
6
|
Gonzalez R, Kerbel B, Chun A, Unniappan S. Molecular, cellular and physiological evidences for the anorexigenic actions of nesfatin-1 in goldfish. PLoS One 2010; 5:e15201. [PMID: 21151928 PMCID: PMC2997068 DOI: 10.1371/journal.pone.0015201] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 10/31/2010] [Indexed: 01/08/2023] Open
Abstract
Background Nesfatin-1 is a recently discovered anorexigen encoded in the precursor peptide, nucleobindin-2 (NUCB2) in mammals. To date, nesfatin-1 has not been described in any non-mammalian species, although some information is available in the sequenced genomes of several species. Our objective was to characterize nesfatin-1 in fish. Methodology/Principal Findings In the present study, we employed molecular, immunohistochemical, and physiological studies to characterize the structure, distribution, and appetite regulatory effects of nesfatin-1 in a non-mammalian vertebrate. A very high conservation in NUCB2 sequences, especially in the nesfatin-1 region was found in lower vertebrates. Abundant expression of NUCB2 mRNA was detected in several tissues including the brain and liver of goldfish. Nesfatin-1-like immunoreactive cells are present in the feeding regulatory nucleus of the hypothalamus and in the gastrointestinal tract of goldfish. Approximately 6-fold increase in NUCB2 mRNA levels was found in the liver after 7-day food-deprivation, and a similar increase was also found after short-term fasting. This points toward a possible liver specific role for NUCB2 in the control of metabolism during food-deprivation. Meanwhile, ∼2-fold increase at 1 and 3 h post-feeding and an ∼3-fold reduction after a 7-day food-deprivation was observed in NUCB2 mRNA in the goldfish hypothalamus. In vivo, a single intraperitoneal injection of the full-length native (goldfish; gf) nesfatin-1 at a dose of 50 ng/g body weight induced a 23% reduction of food intake one hour post-injection in goldfish. Furthermore, intracerebroventricular injection of gfnesfatin-1 at a dose of 5 ng/g body weight resulted in ∼50% reduction in food intake. Conclusions/Significance Our results provide molecular, anatomical and functional evidences to support potential anorectic and metabolic roles for endogenous nesfatin-1 in goldfish. Collectively, we provide novel information on NUCB2 in non-mammals and an anorexigenic role for nesfatin-1 in goldfish.
Collapse
Affiliation(s)
- Ronald Gonzalez
- Laboratory of Integrative Neuroendocrinology, Department of Biology, York University, Toronto, Ontario, Canada
| | - Brent Kerbel
- Laboratory of Integrative Neuroendocrinology, Department of Biology, York University, Toronto, Ontario, Canada
| | - Alexander Chun
- Laboratory of Integrative Neuroendocrinology, Department of Biology, York University, Toronto, Ontario, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Biology, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
7
|
Zhou J, Cai ZH. Molecular cloning and characterization of prohormone convertase 1 gene in abalone (Haliotis diversicolor supertexta). Comp Biochem Physiol B Biochem Mol Biol 2010; 155:331-9. [DOI: 10.1016/j.cbpb.2009.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 12/20/2009] [Accepted: 12/22/2009] [Indexed: 11/26/2022]
|