1
|
Wang B, Paullada-Salmerón JA, Muñoz-Cueto JA. Gonadotropin-inhibitory hormone and its receptors in teleosts: Physiological roles and mechanisms of actions. Gen Comp Endocrinol 2024; 350:114477. [PMID: 38387532 DOI: 10.1016/j.ygcen.2024.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Gonadotropin-inhibitory hormone (GnIH) was the first reported hypothalamic neuropeptide inhibiting reproduction in vertebrates. Since its discovery in the quail brain, its orthologs have been identified in a variety of vertebrate species and even protochordates. Depending on the species, the GnIH precursor polypeptides comprise two, three or four mature peptides of the RFamide family. It has been well documented that GnIH inhibits reproduction at the brain-pituitary-gonadal levels and participates in metabolism, stress response, and social behaviors in birds and mammals. However, most studies in fish have mainly been focused on the physiological roles of GnIH in the control of reproduction and results obtained are in some cases conflicting, leaving aside its potential roles in the regulation of other functions. In this manuscript we summarize the information available in fish with respect to the structural diversity of GnIH peptides and functional roles of GnIH in reproduction and other physiological processes. We also highlight the molecular mechanisms of GnIH actions on target cells and possible interactions with other neuroendocrine factors.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China; Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real (Cádiz), Spain
| | - José A Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real (Cádiz), Spain; Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real (Cádiz), Spain; The European University of the Seas (SEA-EU), Cádiz, Spain
| | - José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real (Cádiz), Spain; Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real (Cádiz), Spain; The European University of the Seas (SEA-EU), Cádiz, Spain.
| |
Collapse
|
2
|
Muñoz-Cueto JA, Zmora N, Paullada-Salmerón JA, Marvel M, Mañanos E, Zohar Y. The gonadotropin-releasing hormones: Lessons from fish. Gen Comp Endocrinol 2020; 291:113422. [PMID: 32032603 DOI: 10.1016/j.ygcen.2020.113422] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 12/26/2022]
Abstract
Fish have been of paramount importance to our understanding of vertebrate comparative neuroendocrinology and the mechanisms underlying the physiology and evolution of gonadotropin-releasing hormones (GnRH) and their genes. This review integrates past and recent knowledge on the Gnrh system in the fish model. Multiple Gnrh isoforms (two or three forms) are present in all teleosts, as well as multiple Gnrh receptors (up to five types), which differ in neuroanatomical localization, pattern of projections, ontogeny and functions. The role of the different Gnrh forms in reproduction seems to also differ in teleost models possessing two versus three Gnrh forms, Gnrh3 being the main hypophysiotropic hormone in the former and Gnrh1 in the latter. Functions of the non-hypothalamic Gnrh isoforms are still unclear, although under suboptimal physiological conditions (e.g. fasting), Gnrh2 may increase in the pituitary to ensure the integrity of reproduction under these conditions. Recent developments in transgenesis and mutagenesis in fish models have permitted the generation of fish lines expressing fluorophores in Gnrh neurons and to elucidate the dynamics of the elaborate innervations of the different neuronal populations, thus enabling a more accurate delineation of their reproductive roles and regulations. Moreover, in combination with neuronal electrophysiology, these lines have clarified the Gnrh mode of actions in modulating Lh and Fsh activities. While loss of function and genome editing studies had the premise to elucidate the exact roles of the multiple Gnrhs in reproduction and other processes, they have instead evoked an ongoing debate about these roles and opened new avenues of research that will no doubt lead to new discoveries regarding the not-yet-fully-understood Gnrh system.
Collapse
Affiliation(s)
- José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, The European University of the Seas (SEA-EU), Puerto Real (Cádiz), Spain.
| | - Nilli Zmora
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - José A Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, The European University of the Seas (SEA-EU), Puerto Real (Cádiz), Spain
| | - Miranda Marvel
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Evaristo Mañanos
- Institute of Aquaculture of Torre de la Sal, CSIC, Castellón, Spain
| | - Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
3
|
Chung-Davidson YW, Bussy U, Fissette SD, Huerta B, Li W. Waterborne pheromones modulate gonadotropin-inhibitory hormone levels in sea lamprey (Petromyzon marinus). Gen Comp Endocrinol 2020; 288:113358. [PMID: 31837303 DOI: 10.1016/j.ygcen.2019.113358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 12/31/2022]
Abstract
The relationships between pheromone stimuli and neuropeptides are not well established in vertebrates due to the limited number of unequivocally identified pheromone molecules. The sea lamprey (Petromyzon marinus) is an advantageous vertebrate model to study the effects of pheromone exposure on neuropeptides since many pheromone molecules and neuropeptides have been identified in this species. Sexually mature male sea lamprey release pheromones 7α, 12α, 24-trihydroxy-5α-cholan-3-one 24-sulfate (3 keto-petromyzonol sulfate, 3kPZS) and 7α, 12α-dihydroxy-5α-cholan-3-one-24-oic acid (3-keto allocholic acid, 3kACA) that differentially regulate gonadotropin-releasing hormone (lGnRH) and steroid levels in sexually immature sea lamprey. However, the effects of these pheromones on gonadotropin-inhibitory hormones (GnIHs), hypothalamic neuropeptides that regulate lGnRH release, are still elusive. In this report, we sought to examine the effects of waterborne pheromones on lamprey GnIH-related neuropeptide levels in sexually immature sea lamprey. Ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) analyses revealed sex differences in GnIH-related neuropeptide levels in the brain and plasma of immature sea lamprey. Exposure to 3kPZS and 3kACA exerted differential effects on GnIH-related neuropeptide levels in both sexes, but the effects were more prominent in female brains. We conclude that sea lamprey pheromones regulate GnIH-related neuropeptide levels in a sexually dimorphic manner.
Collapse
Affiliation(s)
- Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, Natural Resources Building, Rm. 13, 480 Wilson Road, East Lansing, MI 48824, USA.
| | - Ugo Bussy
- Department of Fisheries and Wildlife, Michigan State University, Natural Resources Building, Rm. 13, 480 Wilson Road, East Lansing, MI 48824, USA
| | - Skye Daniel Fissette
- Department of Fisheries and Wildlife, Michigan State University, Natural Resources Building, Rm. 13, 480 Wilson Road, East Lansing, MI 48824, USA.
| | - Belinda Huerta
- Department of Fisheries and Wildlife, Michigan State University, Natural Resources Building, Rm. 13, 480 Wilson Road, East Lansing, MI 48824, USA.
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, Natural Resources Building, Rm. 13, 480 Wilson Road, East Lansing, MI 48824, USA.
| |
Collapse
|
4
|
Dufour S, Quérat B, Tostivint H, Pasqualini C, Vaudry H, Rousseau K. Origin and Evolution of the Neuroendocrine Control of Reproduction in Vertebrates, With Special Focus on Genome and Gene Duplications. Physiol Rev 2019; 100:869-943. [PMID: 31625459 DOI: 10.1152/physrev.00009.2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In humans, as in the other mammals, the neuroendocrine control of reproduction is ensured by the brain-pituitary gonadotropic axis. Multiple internal and environmental cues are integrated via brain neuronal networks, ultimately leading to the modulation of the activity of gonadotropin-releasing hormone (GnRH) neurons. The decapeptide GnRH is released into the hypothalamic-hypophysial portal blood system and stimulates the production of pituitary glycoprotein hormones, the two gonadotropins luteinizing hormone and follicle-stimulating hormone. A novel actor, the neuropeptide kisspeptin, acting upstream of GnRH, has attracted increasing attention in recent years. Other neuropeptides, such as gonadotropin-inhibiting hormone/RF-amide related peptide, and other members of the RF-amide peptide superfamily, as well as various nonpeptidic neuromediators such as dopamine and serotonin also provide a large panel of stimulatory or inhibitory regulators. This paper addresses the origin and evolution of the vertebrate gonadotropic axis. Brain-pituitary neuroendocrine axes are typical of vertebrates, the pituitary gland, mediator and amplifier of brain control on peripheral organs, being a vertebrate innovation. The paper reviews, from molecular and functional perspectives, the evolution across vertebrate radiation of some key actors of the vertebrate neuroendocrine control of reproduction and traces back their origin along the vertebrate lineage and in other metazoa before the emergence of vertebrates. A focus is given on how gene duplications, resulting from either local events or from whole genome duplication events, and followed by paralogous gene loss or conservation, might have shaped the evolutionary scenarios of current families of key actors of the gonadotropic axis.
Collapse
Affiliation(s)
- Sylvie Dufour
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Bruno Quérat
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Catherine Pasqualini
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hubert Vaudry
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Karine Rousseau
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| |
Collapse
|
5
|
Li Q, Wen H, Li Y, Zhang Z, Zhou Y, Qi X. Evidence for the Direct Effect of the NPFF Peptide on the Expression of Feeding-Related Factors in Spotted Sea Bass ( Lateolabrax maculatus). Front Endocrinol (Lausanne) 2019; 10:545. [PMID: 31447787 PMCID: PMC6691130 DOI: 10.3389/fendo.2019.00545] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 07/22/2019] [Indexed: 01/02/2023] Open
Abstract
Neuropeptide FF (NPFF) is a family member of RF-amide peptides, which are suggested to be involved in the control of vertebrate feeding behavior. However, little is known about the effect of the NPFF peptide on feeding-related processes in basal vertebrates. In this study, four full-length cDNAs, npff, npffr1, npffr2-1, and npffr2-2, were cloned from spotted sea bass and characterized. The conserved NPFF peptide is biologically active because it functionally interacts with different receptors expressed in cultured eukaryotic cells to enhance CRE promoter activity. Tissue distribution analysis showed that the highest npff mRNA expression occurred in the telencephalon, hypothalamus, medulla, gonad and muscle, but the npffrs mRNAs were mainly distributed within the central nervous system (CNS). In situ hybridization (ISH) detected npff-expressing cells in several specific regions ranging across the telencephalon and midbrain to the hypothalamus. Incubation of the spotted sea bass conserved NPFF peptide significantly increased the expression of orexin (orx) and neuropeptide Y (npy) mRNA and decreased the expression of leptin (lep), somatostatin (ss), and cholecystokinin (cck) mRNA in brain cells. Similarly, the conserved NPFF peptide also heightened the expression of gastrin (gas), ghrelin (ghrl), and motilin (mtl) mRNA and significantly reduced the expression of cck mRNA in the intestine and stomach. Taken together, these data suggest that the NPFF peptide may play a stimulating role in regulating feeding-related processes in spotted sea bass.
Collapse
|
6
|
Sower SA. Landmark discoveries in elucidating the origins of the hypothalamic-pituitary system from the perspective of a basal vertebrate, sea lamprey. Gen Comp Endocrinol 2018; 264:3-15. [PMID: 29111305 DOI: 10.1016/j.ygcen.2017.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/26/2017] [Indexed: 12/12/2022]
Abstract
The hypothalamic-pituitary (HP) system, which is specific to vertebrates, is considered to be an evolutionary innovation that emerged prior to or during the differentiation of the ancestral jawless vertebrates (agnathans) leading to the neuroendocrine control of many complex functions. Along with hagfish, lampreys represent the oldest lineage of vertebrates, agnathans (jawless fish). This review will highlight our discoveries of the major components of the lamprey HP axis. Generally, gnathostomes (jawed vertebrates) have one or two hypothalamic gonadotropin-releasing hormones (GnRH) while lampreys have three hypothalamic GnRHs. GnRH(s) regulate reproduction in all vertebrates via the pituitary. In gnathostomes, there are three classical pituitary glycoprotein hormones (luteinizing hormone, LH; follicle stimulating hormone, FSH; and thyrotropin, TSH) interacting specifically with three receptors, LH-R, FSH-R, and TSH-R, respectively. In general, FSH and LH regulate gonadal activity and TSH regulates thyroidal activity. In contrast to gnathostomes, we propose that lampreys only have two heterodimeric pituitary glycoprotein hormones, lamprey glycoprotein hormone (lGpH) and thyrostimulin, and two lamprey glycoprotein hormone receptors (lGpH-R I and -R II). Our existing data also suggest the existence of a primitive, overlapping yet functional hypothalamic-pituitary-gonadal (HPG) and HP-thyroidal (HPT) endocrine systems in lampreys. The study of basal vertebrates provides promising models for understanding the evolution of the hypothalamic-pituitary-thyroidal and gonadal axes in vertebrates. We hypothesize that the glycoprotein hormone/glycoprotein hormone receptor systems emerged as a link between the neuroendocrine and peripheral control levels during the early stages of gnathostome divergence. Our discovery of a functional HPG axis in lamprey has provided important clues for understanding the forces that ensured a common organization of the hypothalamus and pituitary as essential regulatory systems in all vertebrates. This paper will provide a brief snapshot of my discoveries, collaborations and latest findings including phylogenomic analyses on the origins, co-evolution and divergence of ligand and receptor protein families from the perspective of the lamprey hypothalamic-pituitary system.
Collapse
Affiliation(s)
- Stacia A Sower
- Department of Molecular, Cellular and Biomedical Sciences and Center for Molecular and Comparative Endocrinology, University of New Hampshire, Durham, NH, USA.
| |
Collapse
|
7
|
Tsutsui K, Osugi T, Son YL, Ubuka T. Review: Structure, function and evolution of GnIH. Gen Comp Endocrinol 2018; 264:48-57. [PMID: 28754274 DOI: 10.1016/j.ygcen.2017.07.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 12/27/2022]
Abstract
Neuropeptides that possess the Arg-Phe-NH2 motif at their C-termini (i.e., RFamide peptides) have been characterized in the nervous system of both invertebrates and vertebrates. In vertebrates, RFamide peptides make a family and consist of the groups of gonadotropin-inhibitory hormone (GnIH), neuropeptide FF (NPFF), prolactin-releasing peptide (PrRP), kisspeptin (kiss1 and kiss2), and pyroglutamylated RFamide peptide/26RFamide peptide (QRFP/26RFa). It now appears that these vertebrate RFamide peptides exert important neuroendocrine, behavioral, sensory, and autonomic functions. In 2000, GnIH was discovered as a novel hypothalamic RFamide peptide inhibiting gonadotropin release in quail. Subsequent studies have demonstrated that GnIH acts on the brain and pituitary to modulate reproductive physiology and behavior across vertebrates. To clarify the origin and evolution of GnIH, the existence of GnIH was investigated in agnathans, the most ancient lineage of vertebrates, and basal chordates, such as tunicates and cephalochordates (represented by amphioxus). This review first summarizes the structure and function of GnIH and other RFamide peptides, in particular NPFF having a similar C-terminal structure of GnIH, in vertebrates. Then, this review describes the evolutionary origin of GnIH based on the studies in agnathans and basal chordates.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan.
| | - Tomohiro Osugi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto 619-0284, Japan
| | - You Lee Son
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan
| | - Takayoshi Ubuka
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia
| |
Collapse
|
8
|
Kim JS. What's in a Name? Roles of RFamide-Related Peptides Beyond Gonadotrophin Inhibition. J Neuroendocrinol 2016; 28. [PMID: 27369805 DOI: 10.1111/jne.12407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 12/29/2022]
Abstract
RFamide-related peptides (RFRPs) have been heavily implicated in the control of reproductive function subsequent to their discovery more than 16 years ago. However, recent studies using genetic and pharmacological tools have challenged their importance in regulating the hypothalamic-pituitary-gonadal axis. It is generally accepted that RFRPs act as part of a wider RFamide system, which involves two receptors, called the neuropeptide FF receptors (NPFFR1 and R2), and includes the closely-related neuropeptide NPFF. NPFF has been studied ever since the 1980s and many of the functions of NPFF are also shared by RFRPs. The current review questions whether these functions of NPFF are indeed specific to just NPFF alone and presents evidence from both neuroendocrine and pharmacological perspectives. Furthermore, recently emerging new functions of RFRPs are discussed with the overall goal of clarifying the functions of RFRPs beyond the hypothalamic-pituitary-gonadal axis.
Collapse
Affiliation(s)
- J S Kim
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
9
|
Osugi T, Son YL, Ubuka T, Satake H, Tsutsui K. RFamide peptides in agnathans and basal chordates. Gen Comp Endocrinol 2016; 227:94-100. [PMID: 26130238 DOI: 10.1016/j.ygcen.2015.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 12/12/2022]
Abstract
Since a peptide with a C-terminal Arg-Phe-NH2 (RFamide peptide) was first identified in the ganglia of the venus clam in 1977, RFamide peptides have been found in the nervous system of both invertebrates and vertebrates. In vertebrates, the RFamide peptide family includes gonadotropin-inhibitory hormone (GnIH), neuropeptide FF (NPFF), prolactin-releasing peptide (PrRP), pyroglutamylated RFamide peptide/26RFamide peptide (QRFP/26RFa), and kisspeptins (kiss1 and kiss2). They are involved in important functions such as the release of hormones, regulation of sexual or social behavior, pain transmission, reproduction, and feeding. In contrast to tetrapods and jawed fish, the information available on RFamide peptides in agnathans and basal chordates is limited, thus preventing further insights into the evolution of RFamide peptides in vertebrates. In this review, we focus on the previous research and recent advances in the studies on RFamide peptides in agnathans and basal chordates. In agnathans, the genes encoding GnIH, NPFF, and PrRP precursors and the mature peptides have been identified in lamprey (Petromyzon marinus) and hagfish (Paramyxine atami). Putative kiss1 and kiss2 genes have also been found in the genome database of lamprey. In basal chordates, namely, in amphioxus (Branchiostoma japonicum), a common ancestral form of GnIH and NPFF genes and their mature peptides, as well as the ortholog of the QRFP gene have been identified. The studies revealed that the number of orthologs of vertebrate RFamide peptides present in agnathans and basal chordates is greater than expected, suggesting that the vertebrate RFamide peptides might have emerged and expanded at an early stage of chordate evolution.
Collapse
Affiliation(s)
- Tomohiro Osugi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan.
| | - You Lee Son
- Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Takayoshi Ubuka
- Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| |
Collapse
|
10
|
Shahjahan M, Doi H, Ando H. Differential expression patterns of PQRFamide peptide and its two receptor genes in the brain and pituitary of grass puffer during the reproductive cycle. Gen Comp Endocrinol 2015; 210:152-60. [PMID: 25034121 DOI: 10.1016/j.ygcen.2014.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 07/01/2014] [Accepted: 07/05/2014] [Indexed: 12/19/2022]
Abstract
Pain-modulatory neuropeptides, PQRFamide (PQRFa) peptides, have recently been implicated in the regulation of reproduction in fish. As a first step toward investigating the role of PQRFa peptides on reproductive function in the grass puffer Takifugu niphobles, which is a semilunar spawner, we cloned genes encoding PQRFa peptide precursor (pqrfa) and its two types of receptors (pqrfa-r1 and pqrfa-r2), and examined changes in their expression levels in the brain and pituitary over several months during the reproductive cycle. The grass puffer PQRFa peptide precursor of 126 amino acid residues contains two putative PQRFa peptides, PQRFa-1 and PQRFa-2, which correspond to NPFF and NPAF in other vertebrates, respectively. The grass puffer PQRFa-R1 and PQRFa-R2 consist of 426 and 453 amino acid residues, respectively, and contain distinct characteristics of G-protein coupled receptors. These three genes were exclusively expressed in the brain and pituitary. The expression levels of pqrfa and pqrfa-r1 were significantly increased during the late stage of sexual maturation, but low in the spawning fish just after releasing sperms and eggs. Therefore, the grass puffer PQRFa peptide may have a role in the late stage of sexual maturation before spawning via PQRFa-R1. In contrast, the pqrfa-r2 expression showed maximum levels in the spawning fish and in the post-spawning period. The present results provide fundamental data suggesting that the grass puffer PQRFa peptide may have multiple roles in the control of reproduction that are dependent on the reproductive stages.
Collapse
Affiliation(s)
- Md Shahjahan
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Hiroyuki Doi
- Shimonoseki Marine Science Museum "Kaikyokan", Shimonoseki Academy of Marine Science, Yamaguchi 750-0036, Japan
| | - Hironori Ando
- Sado Marine Biological Station, Faculty of Science, Niigata University, Sado, Niigata 952-2135, Japan.
| |
Collapse
|
11
|
Osugi T, Okamura T, Son YL, Ohkubo M, Ubuka T, Henmi Y, Tsutsui K. Evolutionary origin of GnIH and NPFF in chordates: insights from novel amphioxus RFamide peptides. PLoS One 2014; 9:e100962. [PMID: 24983238 PMCID: PMC4077772 DOI: 10.1371/journal.pone.0100962] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 05/30/2014] [Indexed: 11/18/2022] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a newly identified hypothalamic neuropeptide that inhibits pituitary hormone secretion in vertebrates. GnIH has an LPXRFamide (X = L or Q) motif at the C-terminal in representative species of gnathostomes. On the other hand, neuropeptide FF (NPFF), a neuropeptide characterized as a pain-modulatory neuropeptide, in vertebrates has a PQRFamide motif similar to the C-terminal of GnIH, suggesting that GnIH and NPFF have diverged from a common ancestor. Because GnIH and NPFF belong to the RFamide peptide family in vertebrates, protochordate RFamide peptides may provide important insights into the evolutionary origin of GnIH and NPFF. In this study, we identified a novel gene encoding RFamide peptides and two genes of their putative receptors in the amphioxus Branchiostoma japonicum. Molecular phylogenetic analysis and synteny analysis indicated that these genes are closely related to the genes of GnIH and NPFF and their receptors of vertebrates. We further identified mature RFamide peptides and their receptors in protochordates. The identified amphioxus RFamide peptides inhibited forskolin induced cAMP signaling in the COS-7 cells with one of the identified amphioxus RFamide peptide receptors expressed. These results indicate that the identified protochordate RFamide peptide gene is a common ancestral form of GnIH and NPFF genes, suggesting that the origin of GnIH and NPFF may date back to the time of the emergence of early chordates. GnIH gene and NPFF gene may have diverged by whole-genome duplication in the course of vertebrate evolution.
Collapse
Affiliation(s)
- Tomohiro Osugi
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo, Japan
| | - Tomoki Okamura
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo, Japan
| | - You Lee Son
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo, Japan
| | - Makoto Ohkubo
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo, Japan
| | - Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo, Japan
| | - Yasuhisa Henmi
- Aitsu Marine Station, Center for Marine Environmental Studies, Kumamoto University, Kumamoto, Japan
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
12
|
Elphick MR, Mirabeau O. The Evolution and Variety of RFamide-Type Neuropeptides: Insights from Deuterostomian Invertebrates. Front Endocrinol (Lausanne) 2014; 5:93. [PMID: 24994999 PMCID: PMC4062910 DOI: 10.3389/fendo.2014.00093] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/04/2014] [Indexed: 11/30/2022] Open
Abstract
Five families of neuropeptides that have a C-terminal RFamide motif have been identified in vertebrates: (1) gonadotropin-inhibitory hormone (GnIH), (2) neuropeptide FF (NPFF), (3) pyroglutamylated RFamide peptide (QRFP), (4) prolactin-releasing peptide (PrRP), and (5) Kisspeptin. Experimental demonstration of neuropeptide-receptor pairings combined with comprehensive analysis of genomic and/or transcriptomic sequence data indicate that, with the exception of the deuterostomian PrRP system, the evolutionary origins of these neuropeptides can be traced back to the common ancestor of bilaterians. Here, we review the occurrence of homologs of vertebrate RFamide-type neuropeptides and their receptors in deuterostomian invertebrates - urochordates, cephalochordates, hemichordates, and echinoderms. Extending analysis of the occurrence of the RFamide motif in other bilaterian neuropeptide families reveals RFamide-type peptides that have acquired modified C-terminal characteristics in the vertebrate lineage (e.g., NPY/NPF), neuropeptide families where the RFamide motif is unique to protostomian members (e.g., CCK/sulfakinins), and RFamide-type peptides that have been lost in the vertebrate lineage (e.g., luqins). Furthermore, the RFamide motif is also a feature of neuropeptide families with a more restricted phylogenetic distribution (e.g., the prototypical FMRFamide-related neuropeptides in protostomes). Thus, the RFamide motif is both an ancient and a convergent feature of neuropeptides, with conservation, acquisition, or loss of this motif occurring in different branches of the animal kingdom.
Collapse
Affiliation(s)
- Maurice R. Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
- *Correspondence: Maurice R. Elphick, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK e-mail:
| | - Olivier Mirabeau
- Institut Curie, Cancer Genetics Unit, Inserm U830, Paris, France
| |
Collapse
|
13
|
Hall JA, Decatur WA, Daukss DM, Hayes MK, Marquis TJ, Morin SJ, Kelleher TF, Sower SA. Expression of three GnRH receptors in specific tissues in male and female sea lampreys Petromyzon marinus at three distinct life stages. Front Neurosci 2013; 7:88. [PMID: 23754972 PMCID: PMC3664763 DOI: 10.3389/fnins.2013.00088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/10/2013] [Indexed: 11/17/2022] Open
Abstract
Two recently cloned gonadotropin-releasing hormone (GnRH) receptors (lamprey GnRH-R-2 and lamprey GnRH-R-3) along with lamprey (l) GnRH-R-1 were shown to share similar structural features and amino acid motifs common to other vertebrate receptors. Here we report on our findings of RNA expression of these three GnRH receptors in the three major life stages (larval, parasitic, and adult phases) of the sea lamprey, Petromyzon marinus, a basal vertebrate. For each stage, we examined the expression of messenger RNA encoding the receptors in the brain, pituitary, gonad, heart, muscle, liver, eye, intestine, kidney, skin, thyroid, gill, and endostyle by RT-PCR. In adult lampreys, the spatial expression of the three receptors in the brain and pituitary was investigated by in situ hybridization. In general, the receptors were more widely expressed in adult tissues as compared to parasitic-phase tissues and least widely expressed in the larval tissues. There were noted differences in male and female lampreys in the adult and parasitic phases for all three receptors. The data showed the presence of all three receptor transcripts in brain tissues for adult and parasitic phases and all three receptor transcripts were expressed in the adult pituitaries, but not in the parasitic pituitaries. However, in the larval phase, only lGnRH-R-1 was expressed in the larval brain and pituitary. In situ hybridization revealed that lGnRH-R-2 and -3 were expressed in the pineal tissue of adult female lampreys while lGnRH-R-1 was expressed in the pineal in adult male lampreys, all restricted to the pineal pellucida. In summary, these data provide an initial comparative analysis of expression of three lamprey GnRH receptors suggesting differential regulation within males and females at three different life/reproductive stages.
Collapse
Affiliation(s)
- Jeffrey A Hall
- Department of Molecular, Cellular and Biomedical Sciences, Center for Molecular and Comparative Endocrinology, University of New Hampshire Durham, NH, USA
| | | | | | | | | | | | | | | |
Collapse
|