1
|
Shaughnessy CA, Le K, Myhre VD, Dores RM. Functional characterization of melanocortin 2 receptor (Mc2r) from a lobe-finned fish (Protopterus annectens) and insights into the molecular evolution of melanocortin receptors. Gen Comp Endocrinol 2023; 343:114356. [PMID: 37562700 DOI: 10.1016/j.ygcen.2023.114356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Recent studies from our group on melanocortin 2 receptors (Mc2r) from basal families of actinopterygians have served to resolve that Mrap1 dependence and ACTH selectivity are features of even the most basal ray-finned fishes. However, there have been no studies on Mc2r function of the basal sarcopterygians, the lobe-finned fishes, represented by the extant members coelacanths and lungfishes. Here, we offer the first molecular and functional characterization of an Mc2r from a lobe-finned fish, the West African lungfish (Protopterus annectens). Plasmids containing cDNA constructs of lungfish (lf) Mc2r and Mrap1 were expressed in mammalian and zebrafish cell lines. Cells were then stimulated by human ACTH(1-24) and melanocyte stimulating hormone (α-MSH), as well as alanine-substituted analogs of hACTH(1-24) targeting residues within the H6F7R8W9 and K15K16R17R18P19 motifs. Activation of lfMc2r was assessed using a cAMP-responsive luciferase reporter gene assay. In these assays, lfMc2r required co-expression with lfMrap1, was selective for ACTH over α-MSH at physiological concentrations of the ligands, and was completely inhibited by multiple-alanine substitutions of the HFRW (A6-9) and KKRRP (A15-19) motifs. Single- and partial-alanine substitutions of the HFRW and KKRRP motifs varied in their impacts on receptor-ligand affinity from having no effect to completely inhibiting lfMc2r activation. This characterization of the Mc2r of a lobe-finned fish fulfills the last major extant vertebrate group for which Mc2r function had yet to be characterized. In doing so, we resolve that all basal bony vertebrate groups exhibit Mc2r function that substantially differs from that of the cartilaginous fishes, indicating that rapid and dramatic shift in Mc2r function occurred between the radiation of cartilaginous fishes and the emergence of bony fishes. We support this interpretation with a molecular clock analysis of the melanocortin receptors, which demonstrates the uniquely high rate of sequence divergence in Mc2r. Much remains to be understood regarding the molecular evolution of Mc2r during the early radiation of vertebrates that resulted in the derived functional characteristics of Mrap1 dependence and exclusive selectivity for ACTH.
Collapse
Affiliation(s)
| | - Khoa Le
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Valorie D Myhre
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Robert M Dores
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| |
Collapse
|
2
|
Bouyoucos IA, Shaughnessy CA, Gary Anderson W, Dores RM. Molecular and pharmacological analysis of the melanocortin-2 receptor and its accessory proteins Mrap1 and Mrap2 in a Squalomorph shark, the Pacific spiny dogfish. Gen Comp Endocrinol 2023; 342:114342. [PMID: 37454980 DOI: 10.1016/j.ygcen.2023.114342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
The hypothalamus-pituitary-adrenal/interrenal (HPA/I) axis is a conserved vertebrate neuroendocrine mechanism regulating the stress response. The penultimate step of the HPA/I axis is the exclusive activation of the melanocortin-2 receptor (Mc2r) by adrenocorticotropic hormone (ACTH), requiring an accessory protein, Mrap1 or Mrap2. Limited data for only three cartilaginous fishes support the hypothesis that Mc2r/Mrap1 function in bony vertebrates is a derived trait. Further, Mc2r/Mrap1 functional properties appear to contrast among cartilaginous fishes (i.e., the holocephalans and elasmobranchs). This study sought to determine whether functional properties of Mc2r/Mrap1 are conserved across elasmobranchs and in contrast to holocephalans. The deduced amino acid sequences of Pacific spiny dogfish (Squalus suckleyi; pd) pdMc2r, pdMrap1, and pdMrap2 were obtained from a de novo transcriptome of the interrenal gland and validated against the S. suckleyi genome. pdMc2r showed high primary sequence similarity with elasmobranch and holocephalan Mc2r except at extracellular domains 1 and 2, and transmembrane domain 5. pdMraps showed similarly high sequence similarity with holocephalan and other elasmobranch Mraps, with all cartilaginous fish Mrap1 orthologs lacking an activation motif. cAMP reporter gene assays demonstrated that pdMc2r requires an Mrap for activation, and can be activated by stingray (sr) ACTH(1-24), srACTH(1-13)NH2 (i.e., α-MSH), and γ-melanocyte-stimulating hormone at physiological concentrations. However, pdMc2r was three orders of magnitude more sensitive to srACTH(1-24) than srACTH(1-13)NH2. Further, pdMc2r was two orders of magnitude more sensitive to srACTH(1-24) when expressed with pdMrap1 than with pdMrap2. These data suggest that functional properties of pdMc2r/pdMrap1 reflect other elasmobranchs and contrast what is seen in holocephalans.
Collapse
Affiliation(s)
- Ian A Bouyoucos
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Bamfield Marine Sciences Centre, Bamfield, BC V0R 1B0, Canada.
| | | | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Bamfield Marine Sciences Centre, Bamfield, BC V0R 1B0, Canada
| | - Robert M Dores
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| |
Collapse
|
3
|
Akat E, Yenmiş M, Pombal MA, Molist P, Megías M, Arman S, Veselỳ M, Anderson R, Ayaz D. Comparison of Vertebrate Skin Structure at Class Level: A Review. Anat Rec (Hoboken) 2022; 305:3543-3608. [DOI: 10.1002/ar.24908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Esra Akat
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| | - Melodi Yenmiş
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| | - Manuel A. Pombal
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Pilar Molist
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Manuel Megías
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Sezgi Arman
- Sakarya University, Faculty of Science and Letters, Biology Department Sakarya Turkey
| | - Milan Veselỳ
- Palacky University, Faculty of Science, Department of Zoology Olomouc Czechia
| | - Rodolfo Anderson
- Departamento de Zoologia, Instituto de Biociências Universidade Estadual Paulista São Paulo Brazil
| | - Dinçer Ayaz
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| |
Collapse
|
4
|
Watanabe K, Konno N, Nakamachi T, Matsuda K. Intracerebroventricular administration of α-melanocyte-stimulating hormone (α-MSH) enhances thigmotaxis and induces anxiety-like behavior in the goldfish Carassius auratus. Peptides 2021; 145:170623. [PMID: 34375685 DOI: 10.1016/j.peptides.2021.170623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/23/2022]
Abstract
α-Melanocyte-stimulating hormone (α-MSH) is a body pigmentation-regulating hormone secreted from the intermediate lobe of the pituitary in vertebrates. It is also produced in the brain, and acts as an anorexigenic neuropeptide involved in feeding regulation. In rodents, intracerebroventricular (ICV) administration of α-MSH has been shown to affect not only feeding behavior, but also psychomotor activity. However, there is still no information regarding the psychophysiological effects of α-MSH on behavior in fish. Therefore, we examined the effect of synthetic α-MSH on psychomotor activity in goldfish. Since this species prefers the edge to the central area of a tank, we used this as a preference test for assessing psychomotor activity. When α-MSH was administered ICV at 1 and 10 pmol g-1 body weight (BW), the time spent in the edge area of a tank was prolonged at 10 pmol g-1 BW. However, α-MSH at these doses did not affect locomotor activity. The action of α-MSH mimicked those of FG-7142 (a central-type benzodiazepine receptor (CBR) inverse agonist with an anxiogenic effect) at 10 pmol g-1 BW and melanotan II (a melanocortin 4 receptor (MC4R) agonist) at 50 pmol g-1 BW, whereas ICV administration of tofisopam (a CBR agonist with an anxiolytic effect) at 10 pmol g-1 BW prolonged the time spent in the central area. The anxiogenic-like effect of α-MSH was abolished by treatment with the MC4R antagonist HS024 at 50 pmol g-1 BW. These data indicate that α-MSH affects psychomotor activity in goldfish, and exerts an anxiogenic-like effect via the MC4R-signaling pathway.
Collapse
Affiliation(s)
- Keisuke Watanabe
- Laboratory of Regulatory Biology, Graduate School of Innovative Life Sciences, University of Toyama, Toyama, 930-8555, Japan
| | - Norifumi Konno
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, 930-8555, Japan; Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama, 930-8555, Japan
| | - Tomoya Nakamachi
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, 930-8555, Japan; Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama, 930-8555, Japan
| | - Kouhei Matsuda
- Laboratory of Regulatory Biology, Graduate School of Innovative Life Sciences, University of Toyama, Toyama, 930-8555, Japan; Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, 930-8555, Japan; Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama, 930-8555, Japan.
| |
Collapse
|
5
|
Ancient fishes and the functional evolution of the corticosteroid stress response in vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2021; 260:111024. [PMID: 34237466 DOI: 10.1016/j.cbpa.2021.111024] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/13/2022]
Abstract
The neuroendocrine mechanism underlying stress responses in vertebrates is hypothesized to be highly conserved and evolutionarily ancient. Indeed, elements of this mechanism, from the brain to steroidogenic tissue, are present in all vertebrate groups; yet, evidence of the function and even identity of some elements of the hypothalamus-pituitary-adrenal/interrenal (HPA/I) axis is equivocal among the most basal vertebrates. The purpose of this review is to discuss the functional evolution of the HPA/I axis in vertebrates with a focus on our understanding of this neuroendocrine mechanism in the most ancient vertebrates: the agnathan (i.e., hagfish and lamprey) and chondrichthyan fishes (i.e., sharks, rays, and chimeras). A review of the current literature presents evidence of a conserved HPA/I axis in jawed vertebrates (i.e., gnathostomes); yet, available data in jawless (i.e., agnathan) and chondrichthyan fishes are limited. Neuroendocrine regulation of corticosteroidogenesis in agnathans and chondrichthyans appears to function through similar pathways as in bony fishes and tetrapods; however, key elements have yet to be identified and the involvement of melanotropins and gonadotropin-releasing hormone in the stress axis in these ancient fishes warrants further investigation. Further, the identities of physiological glucocorticoids are uncertain in hagfishes, chondrichthyans, and even coelacanths. Resolving these and other knowledge gaps in the stress response of ancient fishes will be significant for advancing knowledge of the evolutionary origins of the vertebrate stress response.
Collapse
|
6
|
Bertolesi GE, Zhang JZ, McFarlane S. Plasticity for colour adaptation in vertebrates explained by the evolution of the genes pomc, pmch and pmchl. Pigment Cell Melanoma Res 2019; 32:510-527. [PMID: 30791235 PMCID: PMC7167667 DOI: 10.1111/pcmr.12776] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/27/2019] [Accepted: 02/16/2019] [Indexed: 02/06/2023]
Abstract
Different camouflages work best with some background matching colour. Our understanding of the evolution of skin colour is based mainly on the genetics of pigmentation ("background matching"), with little known about the evolution of the neuroendocrine systems that facilitate "background adaptation" through colour phenotypic plasticity. To address the latter, we studied the evolution in vertebrates of three genes, pomc, pmch and pmchl, that code for α-MSH and two melanin-concentrating hormones (MCH and MCHL). These hormones induce either dispersion/aggregation or the synthesis of pigments. We find that α-MSH is highly conserved during evolution, as is its role in dispersing/synthesizing pigments. Also conserved is the three-exon pmch gene that encodes MCH, which participates in feeding behaviours. In contrast, pmchl (known previously as pmch), is a teleost-specific intron-less gene. Our data indicate that in zebrafish, pmchl-expressing neurons extend axons to the pituitary, supportive of an MCHL hormonal role, whereas zebrafish and Xenopus pmch+ neurons send axons dorsally in the brain. The evolution of these genes and acquisition of hormonal status for MCHL explain different mechanisms used by vertebrates to background-adapt.
Collapse
Affiliation(s)
- Gabriel E Bertolesi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - John Zhijia Zhang
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
Dores RM, Scuba-Gray M, McNally B, Davis P, Takahashi A. Evaluating the interactions between red stingray (Dasyatis akajei) melanocortin receptors and elephant shark (Callorhinchus milii) MRAP1 and MRAP2 following stimulation with either stingray ACTH(1-24) or stingray Des-Acetyl-αMSH: A pharmacological study in Chinese Hamster Ovary cells. Gen Comp Endocrinol 2018. [PMID: 29524525 DOI: 10.1016/j.ygcen.2018.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Previous studies on bony vertebrate MC2R orthologs (i.e., ray finned fishes, amphibians, reptiles, birds, and mammals) have shown that these MC2R orthologs have an obligatory requirement for interaction with bony vertebrate MRAP1 orthologs to a) allow for the trafficking of the MC2R ortholog to the plasma membrane; and b) to allow activation by ACTH, but not by any MSH-sized ligand. In addition, previous studies have found that co-expression of teleost and mammalian MC4R orthologs with corresponding MRAP2 has positive effects on sensitivity to stimulation by αMSH or ACTH. MRAP1 and MRAP2 paralogs have been detected in the genome of a cartilaginous fish (elephant shark), yet two cartilaginous fish MC2R orthologs (elephant shark and red stingray) do not apparently require MRAP1 for trafficking to the plasma membrane when expressed in Chinese Hamster Ovary (CHO) cells, and both orthologs can be activated by either ACTH or MSH-sized ligands. This study was done to determine whether sensitivity to stimulation by ACTH(1-24) or Des-Acetyl-αMSH is affected when stingray (sr) MC1R, MC2R, MC3R, MC4R or MC5R were co-expressed in CHO cells with either elephant shark (es) MRAP1 or esMRAP2. The results indicated that co-expression with heterologous MRAP1 increased the sensitivity of all five stingray melanocortin receptors for srACTH(1-24), but had not statistically significant effect on stimulation by srDes-Acetyl-αMSH for any of the stingray melanocortin receptors. Conversely, co-expression with esMRAP2 only enhanced sensitivity for srDes-Acetyl-αMSH for srMC4R, but had no effect on the other stingray orthologs, and there was no increase in sensitivity for srACTH(1-24) for any of the stingray melanocortin receptors. It appears then that some stingray melanocortin receptors have retained the ability to interact with a cartilaginous MRAP1 paralog. These results are discussed with reference to radiation of MRAP-related accessory proteins in cartilaginous fishes.
Collapse
Affiliation(s)
- Robert M Dores
- Department of Biological Sciences, University of Denver, Denver, CO, USA.
| | | | - Bridgette McNally
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Perry Davis
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | | |
Collapse
|
8
|
Takahashi A, Davis P, Reinick C, Mizusawa K, Sakamoto T, Dores RM. Characterization of melanocortin receptors from stingray Dasyatis akajei, a cartilaginous fish. Gen Comp Endocrinol 2016; 232:115-24. [PMID: 27021018 DOI: 10.1016/j.ygcen.2016.03.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 11/27/2022]
Abstract
Melanocortin (MC) systems are composed of MC peptides such as adrenocorticotropic hormone (ACTH), several molecular forms of melanocyte-stimulating hormones (MSHs) and MC receptors (MCRs). Here we demonstrated that the cartilaginous fish, Dasyatis akajei (stingray) expresses five subtypes of MCR genes-mc1r to mc5r-as in the case of teleost and tetrapod species. This is the first evidence showing the presence of the full repertoire of melanocortin receptors in a single of cartilaginous fish. Expression of respective stingray mcr cDNAs in Chinese hamster ovary cells revealed that Des-acetyl-α-MSH exhibited cAMP-producing activity indistinguishable to ACTH(1-24) on MC1R and MC2R, while the activity of Des-acetyl-α-MSH on MC3R, MC4R, and MC5R were similar to or slightly greater than that of ACTH(1-24). Notably, in contrast to the other vertebrates, MC2R did not require coexpression with a melanocortin receptor-2 accessory protein 1 (mrap1) cDNA for functional expression. One of the roles of MC system resides in regulation of the pituitary-interrenal (PI) axis-a homologue of tetrapod pituitary-adrenal axis. In stingray, interrenal tissues were shown to express mc2r and mc5r as major MCR genes. These results established the presence of functional PI axis in stingray at the level of receptor molecule. While MC2R participates in adrenal functions together with MRAP1 in tetrapod species, the fact that sensitivity of MC5R to Des-acetyl-α-MSH and ACTH(1-24) were two order of magnitude higher than MC2R without coexpression with MRAP1 suggested that MC5R could play a more important role than MC2R to transmit signals conveyed by ACTH and MSHs if MRAP1 is really absent in the stingray.
Collapse
Affiliation(s)
- Akiyoshi Takahashi
- School of Marine Biosciences, Kitasato University, Sagaminara 252-0373, Japan.
| | - Perry Davis
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Christina Reinick
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Kanta Mizusawa
- School of Marine Biosciences, Kitasato University, Sagaminara 252-0373, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute, Faculty of Science, Okayama University, Ushimado, Setouchi 701-4303 Japan
| | - Robert M Dores
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| |
Collapse
|
9
|
Dores RM, Liang L, Davis P, Thomas AL, Petko B. 60 YEARS OF POMC: Melanocortin receptors: evolution of ligand selectivity for melanocortin peptides. J Mol Endocrinol 2016; 56:T119-33. [PMID: 26792827 DOI: 10.1530/jme-15-0292] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/20/2016] [Indexed: 01/31/2023]
Abstract
The evolution of the melanocortin receptors (MCRs) is linked to the evolution of adrenocorticotrophic hormone (ACTH), the melanocyte-stimulating hormones (MSHs), and their common precursor pro-opiomelanocortin (POMC). The origin of the MCRs and POMC appears to be grounded in the early radiation of the ancestral protochordates. During the genome duplications that have occurred during the evolution of the chordates, the organization plan for POMC was established, and features that have been retained include, the high conservation of the amino acid sequences of α-MSH and ACTH, and the presence of the HFRW MCR activation motif in all of the melanocortin peptides (i.e. ACTH, α-MSH, β-MSH, γ-MSH, and δ-MSH). For the MCRs, the chordate genome duplication events resulted in the proliferation of paralogous receptor genes, and a divergence in ligand selectivity. While most gnathostome MCRs can be activated by either ACTH or the MSHs, teleost and tetrapod MC2R orthologs can only be activated by ACTH. The appearance of the accessory protein, MRAP1, paralleled the emergence of teleost and tetrapods MC2R ligand selectivity, and the dependence of these orthologs on MRAP1 for trafficking to the plasma membrane. The accessory protein, MRAP2, does not affect MC2R ligand selectivity, but does influence the functionality of MC4R orthologs. In this regard, the roles that these accessory proteins may play in the physiology of the five MCRs (i.e. MC1R, MC2R, MC3R, MC4R, and MC5R) are discussed.
Collapse
Affiliation(s)
- Robert M Dores
- Department of Biological SciencesUniversity of Denver, Denver, Colorado, USA
| | - Liang Liang
- Department of Biological SciencesUniversity of Denver, Denver, Colorado, USA
| | - Perry Davis
- Department of Biological SciencesUniversity of Denver, Denver, Colorado, USA
| | - Alexa L Thomas
- Department of Biological SciencesUniversity of Denver, Denver, Colorado, USA
| | - Bogdana Petko
- Department of Biological SciencesUniversity of Denver, Denver, Colorado, USA
| |
Collapse
|
10
|
Dores RM, Garcia Y. Views on the co-evolution of the melanocortin-2 receptor, MRAPs, and the hypothalamus/pituitary/adrenal-interrenal axis. Mol Cell Endocrinol 2015; 408:12-22. [PMID: 25573240 DOI: 10.1016/j.mce.2014.12.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/26/2014] [Accepted: 12/27/2014] [Indexed: 12/30/2022]
Abstract
A critical regulatory component of the hypothalamus/pituitary/adrenal axis (HPA) in mammals, reptiles and birds, and in the hypothalamus/pituitary/interrenal (HPI) axis of amphibians and teleosts (modern bony fishes) is the strict ligand selectivity of the melanocortin-2 receptor (MC2R). Tetrapod and teleost MC2R orthologs can only be activated by the anterior pituitary hormone, ACTH, but not by any of the MSH-sized ligands coded in POMC. In addition, both tetrapod and teleost MC2R orthologs require co-expression with the accessory protein, MRAP. However, the MC2R ortholog of the elephant shark, a cartilaginous fish, can be activated by either ACTH or the MSH-sized ligands, and the elephant shark MC2R ortholog does not require co-expression with an MRAP for activation. Given these observations, this review will provide a scenario for the co-evolution of MC2R and MRAP, based on the assumption that the obligate interaction between MC2R and MRAP evolved during the early radiation of the ancestral bony fishes.
Collapse
Affiliation(s)
- Robert M Dores
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA.
| | - Yesenia Garcia
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| |
Collapse
|
11
|
Cortés R, Navarro S, Agulleiro MJ, Guillot R, García-Herranz V, Sánchez E, Cerdá-Reverter JM. Evolution of the melanocortin system. Gen Comp Endocrinol 2014; 209:3-10. [PMID: 24768673 DOI: 10.1016/j.ygcen.2014.04.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 11/17/2022]
Abstract
The melanocortin system is one of the most complex of the hormonal systems. It involves different agonists encoded in the multiplex precursor proopiomelanocortin (POMC) or in different genes as β-defensins, endogenous antagonist, like agouti-signalling protein (ASIP) or agouti-related protein (AGRP), and five different melanocortin receptors (MCRs). Rounds of whole genome duplication events have preceded the functional and molecular diversification of the family in addition some co-evolutionary and tandem duplication processes have been proposed. The evolutionary patterns of the different partners are controversial and different hypotheses have emerged from a study of the sequenced genomes. In this review, we summarize the different evolutionary hypotheses proposed for the different melanocortin partners.
Collapse
Affiliation(s)
- Raúl Cortés
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Sandra Navarro
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Maria Josep Agulleiro
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Raúl Guillot
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Víctor García-Herranz
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Elisa Sánchez
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - José Miguel Cerdá-Reverter
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain.
| |
Collapse
|
12
|
Barlock TK, Gehr DT, Dores RM. Analysis of the pharmacological properties of chicken melanocortin-2 receptor (cMC2R) and chicken melanocortin-2 accessory protein 1 (cMRAP1). Gen Comp Endocrinol 2014; 205:260-7. [PMID: 24726989 DOI: 10.1016/j.ygcen.2014.03.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/23/2014] [Accepted: 03/25/2014] [Indexed: 01/02/2023]
Abstract
The chicken (Gallus gallus) melanocortin-2 receptor (cMC2R) can be functionally expressed in CHO cells when chicken melanocortin-2 receptor accessory protein 1 (cMRAP1) is co-expressed. The transiently transfected CHO cells responded in a robust manner to stimulation by hACTH(1-24) (EC50 value=2.7 × 10(-12)M +/- 1.3 × 10(-12)), but the transfected CHO cells could not be stimulated by NDP-MSH at concentrations as high as 10(-7)M. Incubation of cMC2R/cMRAP1 transfected cells with alanine substituted analogs of hACTH(1-24) at amino acid positions F(7) or W(9) completely blocked stimulation of the transfected cells. Similarly, incubation of cMC2R/cMRAP1 transfected cells with an analog of hACTH(1-24) with alanine substitutions at amino acid positions R(17)R(18)P(19) resulted in a 276 fold shift in EC50 value relative to the positive control (p<0.004). Collectively these observations suggest that cMC2R has binding sites for the HFRW motif and KKRRP motif of hACTH(1-24), and both motifs are required for full activation of the receptor. While previous studies had shown that Anolis carolinensis MC2R and Xenopus tropicalis MC2R could be functionally expressed in CHO cells that co-expressed mouse MRAP1, co-expression of these non-mammalian tetrapod MC2Rs with cMRAP1 resulted in a significant increase in sensitivity to hACTH(1-24), as measured by EC50 value, for A. carolinensis MC2R (p<0.005) and X. tropicalis MC2R (p<0.007). The implications of these observations are discussed.
Collapse
Affiliation(s)
- Travis K Barlock
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA
| | - Deshae T Gehr
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA
| | - Robert M Dores
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA.
| |
Collapse
|
13
|
Dores RM, Londraville RL, Prokop J, Davis P, Dewey N, Lesinski N. Molecular evolution of GPCRs: Melanocortin/melanocortin receptors. J Mol Endocrinol 2014; 52:T29-42. [PMID: 24868105 DOI: 10.1530/jme-14-0050] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The melanocortin receptors (MCRs) are a family of G protein-coupled receptors that are activated by melanocortin ligands derived from the proprotein, proopiomelanocortin (POMC). During the radiation of the gnathostomes, the five receptors have become functionally segregated (i.e. melanocortin 1 receptor (MC1R), pigmentation regulation; MC2R, glucocorticoid synthesis; MC3R and MC4R, energy homeostasis; and MC5R, exocrine gland physiology). A focus of this review is the role that ligand selectivity plays in the hypothalamus/pituitary/adrenal-interrenal (HPA-I) axis of teleosts and tetrapods as a result of the exclusive ligand selectivity of MC2R for the ligand ACTH. A second focal point of this review is the roles that the accessory proteins melanocortin 2 receptor accessory protein 1 (MRAP1) and MRAP2 are playing in, respectively, the HPA-I axis (MC2R) and the regulation of energy homeostasis by neurons in the hypothalamus (MC4R) of teleosts and tetrapods. In addition, observations are presented on trends in the ligand selectivity parameters of cartilaginous fish, teleost, and tetrapod MC1R, MC3R, MC4R, and MC5R paralogs, and the modeling of the HFRW motif of ACTH(1-24) when compared with α-MSH. The radiation of the MCRs during the evolution of the gnathostomes provides examples of how the physiology of endocrine and neuronal circuits can be shaped by ligand selectivity, the intersession of reverse agonists (agouti-related peptides (AGRPs)), and interactions with accessory proteins (MRAPs).
Collapse
Affiliation(s)
- Robert M Dores
- Department of Biological SciencesUniversity of Denver, Denver, Colorado 80210, USADepartment of BiologyUniversity of Akron, Akron, Ohio 44325, USA
| | - Richard L Londraville
- Department of Biological SciencesUniversity of Denver, Denver, Colorado 80210, USADepartment of BiologyUniversity of Akron, Akron, Ohio 44325, USA
| | - Jeremy Prokop
- Department of Biological SciencesUniversity of Denver, Denver, Colorado 80210, USADepartment of BiologyUniversity of Akron, Akron, Ohio 44325, USA
| | - Perry Davis
- Department of Biological SciencesUniversity of Denver, Denver, Colorado 80210, USADepartment of BiologyUniversity of Akron, Akron, Ohio 44325, USA
| | - Nathan Dewey
- Department of Biological SciencesUniversity of Denver, Denver, Colorado 80210, USADepartment of BiologyUniversity of Akron, Akron, Ohio 44325, USA
| | - Natalie Lesinski
- Department of Biological SciencesUniversity of Denver, Denver, Colorado 80210, USADepartment of BiologyUniversity of Akron, Akron, Ohio 44325, USA
| |
Collapse
|
14
|
Takahashi A, Kobayashi Y, Mizusawa K. The pituitary-interrenal axis of fish: a review focusing on the lamprey and flounder. Gen Comp Endocrinol 2013; 188:54-9. [PMID: 23524003 DOI: 10.1016/j.ygcen.2013.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 01/12/2023]
Abstract
In fish, the pituitary-interrenal axis is associated with stress response and a variety of biological processes such as metabolism, immune response, and growth. The major hormones involved in this axis are adrenocorticotropic hormone (ACTH), released from the pars distalis of the pituitary gland, and corticosteroid, released from the interrenal gland that is embedded in the head kidney in ray-finned fish. The ACTH signal, by which corticosteroid release is stimulated, is transmitted by melanocortin (MC) receptors on interrenal cells. Thus, the interaction of ACTH and MC receptors is the pivotal event for interrenal cells. Knowledge about ACTH and MC receptors in lamprey, cartilaginous fish, and ray-finned fish is available, and it suggests the pituitary-interrenal axis was established early in vertebrate evolution. Moreover, the data, including our recent results from flounders and lampreys, provide interesting features about ligand-receptor interactions. This review focuses on the characteristics of ACTH, the proopiomelanocortin gene encoding ACTH, and the MC receptor, and it is mostly based on the results of our investigations.
Collapse
Affiliation(s)
- Akiyoshi Takahashi
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan.
| | | | | |
Collapse
|
15
|
Dores RM. Observations on the evolution of the melanocortin receptor gene family: distinctive features of the melanocortin-2 receptor. Front Neurosci 2013; 7:28. [PMID: 23596380 PMCID: PMC3622036 DOI: 10.3389/fnins.2013.00028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 02/19/2013] [Indexed: 01/03/2023] Open
Abstract
The melanocortin receptors (MCRs) are a gene family in the rhodopsin class of G protein-coupled receptors. Based on the analysis of several metazoan genome databases it appears that the MCRs are only found in chordates. The presence of five genes in the family (i.e., mc1r, mc2r, mc3r, mc4r, mc5r) in representatives of the tetrapods indicates that the gene family is the result of two genome duplication events and one local gene duplication event during the evolution of the chordates. The MCRs are activated by melanocortin ligands (i.e., ACTH, α-MSH, β-MSH, γ-MSH, δ-MSH) which are all derived from the polypeptide hormone/neuropeptide precursor, POMC, and as a result the functional evolution of the MCRs is intimately associated with the co-evolution of POMC endocrine and neuronal circuits. This review will consider the origin of the MCRs, and discuss the evolutionary relationship between MC2R, MC5R, and MC4R. In addition, this review will analyze the functional evolution of the mc2r gene in light of the co-evolution of the MRAP (Melanocortin-2 Receptor Accessory Protein) gene family.
Collapse
Affiliation(s)
- Robert M Dores
- Department of Biological Sciences, University of Denver Denver, CO, USA
| |
Collapse
|
16
|
Larhammar D, Bergqvist CA. Ancient Grandeur of the Vertebrate Neuropeptide Y System Shown by the Coelacanth Latimeria chalumnae. Front Neurosci 2013; 7:27. [PMID: 23483106 PMCID: PMC3591787 DOI: 10.3389/fnins.2013.00027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/15/2013] [Indexed: 12/13/2022] Open
Abstract
The neuropeptide Y (NPY) family receptors and peptides have previously been characterized in several tetrapods, teleost fishes, and in a holocephalan cartilaginous fish. This has shown that the ancestral NPY system in the jawed vertebrates consisted of the peptides NPY and peptide YY (PYY) and seven G-protein-coupled receptors named Y1–Y8 (Y3 does not exist). The different vertebrate lineages have subsequently lost or gained a few receptor genes. For instance, the human genome has lost three of the seven receptors while the zebrafish has lost two and gained two receptor genes. Here we describe the NPY system of a representative of an early diverging lineage among the sarcopterygians, the West Indian Ocean coelacanth Latimeria chalumnae. The coelacanth was found to have retained all seven receptors from the ancestral jawed vertebrate. The receptors display the typical characteristics found in other vertebrates. Interestingly, the coelacanth was found to have the local duplicate of the PYY gene, called pancreatic polypeptide, previously only identified in tetrapods. Thus, this duplication took place very early in the sarcopterygian lineage, before the origin of tetrapods. These findings confirm the ancient complexity of the NPY system and show that mammals have lost more NPY receptors than any other vertebrate lineage. The coelacanth has all three peptides found in tetrapods and has retained the ancestral jawed vertebrate receptor repertoire with neither gains or losses.
Collapse
Affiliation(s)
- Dan Larhammar
- Unit of Pharmacology, Department of Neuroscience, Science for Life Laboratory - Uppsala University Uppsala, Sweden
| | | |
Collapse
|