1
|
Leyria J. Endocrine factors modulating vitellogenesis and oogenesis in insects: An update. Mol Cell Endocrinol 2024; 587:112211. [PMID: 38494046 DOI: 10.1016/j.mce.2024.112211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/26/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The endocrine system plays a pivotal role in shaping the mechanisms that ensure successful reproduction. With over a million known insect species, understanding the endocrine control of reproduction has become increasingly complex. Some of the key players include the classic insect lipid hormones juvenile hormone (JH) and ecdysteroids, and neuropeptides such as insulin-like peptides (ILPs). Individual endocrine factors not only modulate their own target tissue but also play crucial roles in crosstalk among themselves, ensuring successful vitellogenesis and oogenesis. Recent advances in omics, gene silencing, and genome editing approaches have accelerated research, offering both fundamental insights and practical applications for studying in-depth endocrine signaling pathways. This review provides an updated and integrated view of endocrine factors modulating vitellogenesis and oogenesis in insect females.
Collapse
Affiliation(s)
- Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| |
Collapse
|
2
|
Colizzi FS, Veenstra JA, Rezende GL, Helfrich-Förster C, Martínez-Torres D. Pigment-dispersing factor is present in circadian clock neurons of pea aphids and may mediate photoperiodic signalling to insulin-producing cells. Open Biol 2023; 13:230090. [PMID: 37369351 PMCID: PMC10299861 DOI: 10.1098/rsob.230090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The neuropeptide pigment-dispersing factor (PDF) plays a pivotal role in the circadian clock of most Ecdysozoa and is additionally involved in the timing of seasonal responses of several photoperiodic species. The pea aphid, Acyrthosiphon pisum, is a paradigmatic photoperiodic species with an annual life cycle tightly coupled to the seasonal changes in day length. Nevertheless, PDF could not be identified in A. pisum so far. In the present study, we identified a PDF-coding gene that has undergone significant changes in the otherwise highly conserved insect C-terminal amino acid sequence. A newly generated aphid-specific PDF antibody stained four neurons in each hemisphere of the aphid brain that co-express the clock protein Period and have projections to the pars lateralis that are highly plastic and change their appearance in a daily and seasonal manner, resembling those of the fruit fly PDF neurons. Most intriguingly, the PDF terminals overlap with dendrites of the insulin-like peptide (ILP) positive neurosecretory cells in the pars intercerebralis and with putative terminals of Cryptochrome (CRY) positive clock neurons. Since ILP has been previously shown to be crucial for seasonal adaptations and CRY might serve as a circadian photoreceptor vital for measuring day length, our results suggest that PDF plays a critical role in aphid seasonal timing.
Collapse
Affiliation(s)
- Francesca Sara Colizzi
- Neurobiology and Genetics, University of Würzburg, Biocenter, Am Hubland, 97074 Würzburg, Germany
| | - Jan A. Veenstra
- Université de Bordeaux, INCIA CNRS UMR, 5287 Talence, France
| | - Gustavo L. Rezende
- Universitat de València, Institut de Biologia Integrativa de Sistemes, Parc Cientific, C/ Catedrático Agustín Escardino Benlloch no. 9, 46980 Paterna, València, Spain
| | | | - David Martínez-Torres
- Universitat de València, Institut de Biologia Integrativa de Sistemes, Parc Cientific, C/ Catedrático Agustín Escardino Benlloch no. 9, 46980 Paterna, València, Spain
| |
Collapse
|
3
|
Transcriptome-Based Traits of Radioresistant Sublines of Non-Small Cell Lung Cancer Cells. Int J Mol Sci 2023; 24:ijms24033042. [PMID: 36769365 PMCID: PMC9917840 DOI: 10.3390/ijms24033042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Radioresistance is a major obstacle for the successful therapy of many cancers, including non-small cell lung cancer (NSCLC). To elucidate the mechanism of radioresistance of NSCLC cells and to identify key molecules conferring radioresistance, the radioresistant subclones of p53 wild-type A549 and p53-deficient H1299 cell cultures were established. The transcriptional changes between parental and radioresistant NSCLC cells were investigated by RNA-seq. In total, expression levels of 36,596 genes were measured. Changes in the activation of intracellular molecular pathways of cells surviving irradiation relative to parental cells were quantified using the Oncobox bioinformatics platform. Following 30 rounds of 2 Gy irradiation, a total of 322 genes were differentially expressed between p53 wild-type radioresistant A549IR and parental A549 cells. For the p53-deficient (H1299) NSCLC cells, the parental and irradiated populations differed in the expression of 1628 genes and 1616 pathways. The expression of genes associated with radioresistance reflects the complex biological processes involved in clinical cancer cell eradication and might serve as a potential biomarker and therapeutic target for NSCLC treatment.
Collapse
|
4
|
Vafopoulou X, Donaldson LW, Steel CGH. The prothoracicotropic hormone (PTTH) of Rhodnius prolixus (Hemiptera) is noggin-like: Molecular characterisation, functional analysis and evolutionary implications. Gen Comp Endocrinol 2023; 332:114184. [PMID: 36455643 DOI: 10.1016/j.ygcen.2022.114184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Prothoracicotropic hormone (PTTH) is a central regulator of insect development that regulates the production of the steroid moulting hormones (ecdysteroids) from the prothoracic glands (PGs). Rhodnius PTTH was the first brain neurohormone discovered in any animal almost 100 years ago but has eluded identification and no homologue of Bombyx mori PTTH occurs in its genome. Here, we report Rhodnius PTTH is the first noggin-like PTTH found. It differs in important respects from known PTTHs and is the first PTTH from the Hemimetabola (Exopterygota) to be fully analysed. Recorded PTTHs are widespread in Holometabola but close to absent in hemimetabolous orders. We concluded Rhodnius PTTH likely differed substantially from the known ones. We identified one Rhodnius gene that coded a noggin-like protein (as defined by Molina et al., 2009) that had extensive similarities with known PTTHs but also had two additional cysteines. Sequence and structural analysis showed known PTTHs are closely related to noggin-like proteins, as both possess a growth factor cystine knot preceded by a potential cleavage site. The gene is significantly expressed only in the brain, in a few cells of the dorsal protocerebrum. We vector-expressed the sequence from the potential cleavage site to the C-terminus. This protein was strongly steroidogenic on PGs in vitro. An antiserum to the protein removed the steroidogenic protein released by the brain. RNAi performed on brains in vitro showed profound suppression of transcription of the gene and of production and release of PTTH and thus of ecdysteroid production by PGs. In vivo, the gene is expressed throughout development, in close synchrony with PTTH release, ecdysteroid production by PGs and the ecdysteroid titre. The Rhodnius PTTH monomer is 17kDa and immunoreactive to anti-PTTH of Bombyx mori (a holometabolan). Bombyx PTTH also mildly stimulated Rhodnius PGs. The two additional cysteines form a disulfide at the tip of finger 2, causing a loop of residues to protrude from the finger. A PTTH variant without this loop failed to stimulate PGs, showing the loop is essential for PTTH activity. It is considered that PTTHs of Holometabola evolved from a noggin-like protein in the ancestor of Holometabola and Hemiptera, c.400ma, explaining the absence of holometabolous-type PTTHs from hemimetabolous orders and the differences of Rhodnius PTTH from them. Noggin-like proteins studied from Hemiptera to Arachnida were homologous with Rhodnius PTTH and may be common as PTTHs or other hormones in lower insects.
Collapse
Affiliation(s)
- Xanthe Vafopoulou
- Department of Biology, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
| | - Logan W Donaldson
- Department of Biology, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
| | - Colin G H Steel
- Department of Biology, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
5
|
Nevoa JC, Latorre-Estivalis JM, Pais FSM, Marliére NP, Fernandes GDR, Lorenzo MG, Guarneri AA. Global characterization of gene expression in the brain of starved immature Rhodnius prolixus. PLoS One 2023; 18:e0282490. [PMID: 36867641 PMCID: PMC9983911 DOI: 10.1371/journal.pone.0282490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Rhodnius prolixus is a vector of Chagas disease and has become a model organism to study physiology, behavior, and pathogen interaction. The publication of its genome allowed initiating a process of comparative characterization of the gene expression profiles of diverse organs exposed to varying conditions. Brain processes control the expression of behavior and, as such, mediate immediate adjustment to a changing environment, allowing organisms to maximize their chances to survive and reproduce. The expression of fundamental behavioral processes like feeding requires fine control in triatomines because they obtain their blood meals from potential predators. Therefore, the characterization of gene expression profiles of key components modulating behavior in brain processes, like those of neuropeptide precursors and their receptors, seems fundamental. Here we study global gene expression profiles in the brain of starved R. prolixus fifth instar nymphs by means of RNA sequencing (RNA-Seq). RESULTS The expression of neuromodulatory genes such as those of precursors of neuropeptides, neurohormones, and their receptors; as well as the enzymes involved in the biosynthesis and processing of neuropeptides and biogenic amines were fully characterized. Other important gene targets such as neurotransmitter receptors, nuclear receptors, clock genes, sensory receptors, and takeouts genes were identified and their gene expression analyzed. CONCLUSION We propose that the set of neuromodulatory-related genes highly expressed in the brain of starved R. prolixus nymphs deserves functional characterization to allow the subsequent development of tools targeting them for bug control. As the brain is a complex structure that presents functionally specialized areas, future studies should focus on characterizing gene expression profiles in target areas, e.g. mushroom bodies, to complement our current knowledge.
Collapse
Affiliation(s)
- Jessica Coraiola Nevoa
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou – FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Jose Manuel Latorre-Estivalis
- Laboratorio de Insectos Sociales, Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires - CONICET, Buenos Aires, Argentina
| | | | - Newmar Pinto Marliére
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou – FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | | | - Marcelo Gustavo Lorenzo
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou – FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Alessandra Aparecida Guarneri
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou – FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
6
|
Crosstalk between Nutrition, Insulin, Juvenile Hormone, and Ecdysteroid Signaling in the Classical Insect Model, Rhodnius prolixus. Int J Mol Sci 2022; 24:ijms24010007. [PMID: 36613451 PMCID: PMC9819625 DOI: 10.3390/ijms24010007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The rigorous balance of endocrine signals that control insect reproductive physiology is crucial for the success of egg production. Rhodnius prolixus, a blood-feeding insect and main vector of Chagas disease, has been used over the last century as a model to unravel aspects of insect metabolism and physiology. Our recent work has shown that nutrition, insulin signaling, and two main types of insect lipophilic hormones, juvenile hormone (JH) and ecdysteroids, are essential for successful reproduction in R. prolixus; however, the interplay behind these endocrine signals has not been established. We used a combination of hormone treatments, gene expression analyses, hormone measurements, and ex vivo experiments using the corpus allatum or the ovary, to investigate how the interaction of these endocrine signals might define the hormone environment for egg production. The results show that after a blood meal, circulating JH levels increase, a process mainly driven through insulin and allatoregulatory neuropeptides. In turn, JH feeds back to provide some control over its own biosynthesis by regulating the expression of critical biosynthetic enzymes in the corpus allatum. Interestingly, insulin also stimulates the synthesis and release of ecdysteroids from the ovary. This study highlights the complex network of endocrine signals that, together, coordinate a successful reproductive cycle.
Collapse
|
7
|
Sun J, Tan X, Li Q, Francis F, Chen J. Effects of Different Temperatures on the Development and Reproduction of Sitobion miscanthi From Six Different Regions in China. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.794495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The increase in temperature caused by global warming has greatly impacted plant growth and pest population dynamics worldwide, especially for wheat aphids. In this study, Sitobion miscanthi individuals from six geographic populations located in different wheat-producing areas in China were compared with regard to their growth, development, survival, and reproductive under different temperature conditions (17, 22 and 27°C). A population life-table analysis and a correlation analysis between geographic factors and S. miscanthi longevity or fecundity were also performed. Temperature significantly affected the nymphal development duration (NDD), the adult longevity (ALY) and the fecundity (AFY) of the aphids, however, latitude can only affect the NDD and ALY. There is an obvious interaction between temperature and latitude on the NDD, ALY, and AFY. The NDD in the three northern populations was significantly shorter than that in the southern populations. The ALY in northern populations was significantly longer than that in southern populations at different temperatures. Except for Yinchuan population was no significantly different under different degrees, the ALY of other populations was significantly shortened at 27°C. The AFY of northern populations was significantly lower than that of southern populations at 22°C, while significantly higher at 27°C. With the increase of temperature, the fecundity of northern population gradually decreased from 17 to 22°C, while the southern population suddenly decreased at 27°C. The curves of survival rate (sxj) in southern populations were significantly shorter than that of northern population. Especially the populations in Suzhou and Wuhan, in which the survival rate decreased rapidly at 27°C. Age-specific survival rate (lx) of southern populations began to decline rapidly on 15 days of age at 27°C, while those of northern populations were not significantly affected until on 20 days of age. The highest peaks of age-stage fecundity (fxj), age-specific fecundity (mx), and age-specific net maternity (lxmx) were occurred in northern populations. In addition, there was a positive correlation between latitude and longevity under the three degrees, however, only at 27°C, there was a positive correlation between latitude and fecundity. Our result proved that the higher reproductive rate of southern population requires aphids to live at the suitable ambient temperature, and aphid populations in the north have a wider ecological amplitude. The results will be helpful for predicting the potential aphid outbreaks in China’s main wheat areas under suitable conditions.
Collapse
|
8
|
Colizzi FS, Beer K, Cuti P, Deppisch P, Martínez Torres D, Yoshii T, Helfrich-Förster C. Antibodies Against the Clock Proteins Period and Cryptochrome Reveal the Neuronal Organization of the Circadian Clock in the Pea Aphid. Front Physiol 2021; 12:705048. [PMID: 34366893 PMCID: PMC8336691 DOI: 10.3389/fphys.2021.705048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
Circadian clocks prepare the organism to cyclic environmental changes in light, temperature, or food availability. Here, we characterized the master clock in the brain of a strongly photoperiodic insect, the aphid Acyrthosiphon pisum, immunohistochemically with antibodies against A. pisum Period (PER), Drosophila melanogaster Cryptochrome (CRY1), and crab Pigment-Dispersing Hormone (PDH). The latter antibody detects all so far known PDHs and PDFs (Pigment-Dispersing Factors), which play a dominant role in the circadian system of many arthropods. We found that, under long days, PER and CRY are expressed in a rhythmic manner in three regions of the brain: the dorsal and lateral protocerebrum and the lamina. No staining was detected with anti-PDH, suggesting that aphids lack PDF. All the CRY1-positive cells co-expressed PER and showed daily PER/CRY1 oscillations of high amplitude, while the PER oscillations of the CRY1-negative PER neurons were of considerable lower amplitude. The CRY1 oscillations were highly synchronous in all neurons, suggesting that aphid CRY1, similarly to Drosophila CRY1, is light sensitive and its oscillations are synchronized by light-dark cycles. Nevertheless, in contrast to Drosophila CRY1, aphid CRY1 was not degraded by light, but steadily increased during the day and decreased during the night. PER was always located in the nuclei of the clock neurons, while CRY was predominantly cytoplasmic and revealed the projections of the PER/CRY1-positive neurons. We traced the PER/CRY1-positive neurons through the aphid protocerebrum discovering striking similarities with the circadian clock of D. melanogaster: The CRY1 fibers innervate the dorsal and lateral protocerebrum and putatively connect the different PER-positive neurons with each other. They also run toward the pars intercerebralis, which controls hormone release via the neurohemal organ, the corpora cardiaca. In contrast to Drosophila, the CRY1-positive fibers additionally travel directly toward the corpora cardiaca and the close-by endocrine gland, corpora allata. This suggests a direct link between the circadian clock and the photoperiodic control of hormone release that can be studied in the future.
Collapse
Affiliation(s)
- Francesca Sara Colizzi
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Katharina Beer
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Paolo Cuti
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Valencia, Spain
| | - Peter Deppisch
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - David Martínez Torres
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Valencia, Spain
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Chowański S, Walkowiak-Nowicka K, Winkiel M, Marciniak P, Urbański A, Pacholska-Bogalska J. Insulin-Like Peptides and Cross-Talk With Other Factors in the Regulation of Insect Metabolism. Front Physiol 2021; 12:701203. [PMID: 34267679 PMCID: PMC8276055 DOI: 10.3389/fphys.2021.701203] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
The insulin-like peptide (ILP) and insulin-like growth factor (IGF) signalling pathways play a crucial role in the regulation of metabolism, growth and development, fecundity, stress resistance, and lifespan. ILPs are encoded by multigene families that are expressed in nervous and non-nervous organs, including the midgut, salivary glands, and fat body, in a tissue- and stage-specific manner. Thus, more multidirectional and more complex control of insect metabolism can occur. ILPs are not the only factors that regulate metabolism. ILPs interact in many cross-talk interactions of different factors, for example, hormones (peptide and nonpeptide), neurotransmitters and growth factors. These interactions are observed at different levels, and three interactions appear to be the most prominent/significant: (1) coinfluence of ILPs and other factors on the same target cells, (2) influence of ILPs on synthesis/secretion of other factors regulating metabolism, and (3) regulation of activity of cells producing/secreting ILPs by various factors. For example, brain insulin-producing cells co-express sulfakinins (SKs), which are cholecystokinin-like peptides, another key regulator of metabolism, and express receptors for tachykinin-related peptides, the next peptide hormones involved in the control of metabolism. It was also shown that ILPs in Drosophila melanogaster can directly and indirectly regulate AKH. This review presents an overview of the regulatory role of insulin-like peptides in insect metabolism and how these factors interact with other players involved in its regulation.
Collapse
Affiliation(s)
- Szymon Chowański
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Karolina Walkowiak-Nowicka
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Magdalena Winkiel
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Pawel Marciniak
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Arkadiusz Urbański
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.,HiProMine S.A., Robakowo, Poland
| | - Joanna Pacholska-Bogalska
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
10
|
Leyria J, Orchard I, Lange AB. The involvement of insulin/ToR signaling pathway in reproductive performance of Rhodnius prolixus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 130:103526. [PMID: 33453353 DOI: 10.1016/j.ibmb.2021.103526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Insulins are peptide hormones widely studied for their important regulatory roles in metabolism, growth and development. In insects, insulin signaling along with the target of rapamycin (ToR) are involved in detecting and interpreting nutrient levels. Recently, by transcriptome analysis we reported an up-regulation of transcripts involved in insulin/ToR signaling in unfed Rhodnius prolixus; however, this signaling pathway is only activated in fed insects. Here, continuing with the blood-gorging triatomine R. prolixus as a model, we report the direct effect of insulin/ToR signaling on reproductive performance. By immunofluorescence we identified cells in the brain with positive signal to the R. prolixus ILP (Rhopr-ILP1) and show that the insulin receptor and protein effectors downstream of insulin/ToR signaling activation, are differentially expressed in ovarian follicles dependent on their developmental stage. Using qPCR we find that the expression of transcripts involved in insulin signaling in the central nervous system (CNS), fat body and ovaries increase as the state of starvation progresses, promoting a more highly sensitized state to respond rapidly to ILP/IGF levels. In addition, using dsRNA injection and in vivo and ex vivo assays to promote signaling activation we demonstrate a direct participation of insulin/ToR signaling in coordinating the synthesis of the main yolk protein precursor, vitellogenin, thereby influencing the numbers of eggs laid per female. We thereby show a mechanism by which nutritional signaling regulates reproductive performance in a vector of Chagas disease. As reproduction is responsible for propagation of insect populations, this work is important for the development of innovative biocontrol methods.
Collapse
Affiliation(s)
- Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| |
Collapse
|
11
|
BmFoxO Gene Regulation of the Cell Cycle Induced by 20-Hydroxyecdysone in BmN-SWU1 Cells. INSECTS 2020; 11:insects11100700. [PMID: 33066376 PMCID: PMC7602224 DOI: 10.3390/insects11100700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Simple Summary Ecdysteroid titer determines the state of the cell cycle in silkworm (Bombyx mori) metamorphosis. However, the mechanism of this process is unclear. In this study, we reported that 20-Hydroxyecdysone (20E) can promote BmFoxO (Bombyx mori Forkhead box protein O) gene expression and induce BmFoxO nuclear translocation in BmN-SWU1 cells. Overexpression of the BmFoxO gene affects cell cycle progression, which results in cell cycle arrest in the G0/G1 phase as well as inhibition of DNA replication. Further investigations showed that the effect of 20E was attenuated after BmFoxO gene knockdown. The findings of this study confirmed that BmFoxO is a key mediator in the cell cycle regulation pathway induced by 20E. This suggests a novel pathway for ecdysteroid-induced cell cycle regulation in the process of silkworm metamorphosis, and it is likely to be conserved between Lepidoptera insects. Abstract Ecdysteroid titer determines the state of the cell cycle in silkworm (Bombyxmori) metamorphosis. However, the mechanism of this process is unclear. In this study, we demonstrated that the BmFoxO gene participates in the regulation of the cell cycle induced by 20-Hydroxyecdysone (20E) in BmN-SWU1 cells. The 20E blocks the cell cycle in the G2/M phase through the ecdysone receptor (EcR) and inhibits DNA replication. The 20E can promote BmFoxO gene expression. Immunofluorescence and Western blot results indicated that 20E can induce BmFoxO nuclear translocation in BmN-SWU1 cells. Overexpression of the BmFoxO gene affects cell cycle progression, which results in cell cycle arrest in the G0/G1 phase as well as inhibition of DNA replication. Knockdown of the BmFoxO gene led to cell accumulation at the G2/M phase. The effect of 20E was attenuated after BmFoxO gene knockdown. These findings increase our understanding of the function of 20E in the regulation of the cell cycle in B. mori.
Collapse
|
12
|
Transcriptomic analysis of regulatory pathways involved in female reproductive physiology of Rhodnius prolixus under different nutritional states. Sci Rep 2020; 10:11431. [PMID: 32651410 PMCID: PMC7351778 DOI: 10.1038/s41598-020-67932-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
The triatomine Rhodnius prolixus, a vector of the etiological agent of Chagas disease, has long been used as model to understand important aspects of insect physiology. Despite this history, the impact of the nutritional state on regulatory pathways associated with reproductive performance in triatomines has never been studied. The insulin-like peptide/target of rapamycin (ILP/ToR) signaling pathway is typically responsible for detecting and interpreting nutrient levels. Here, we analyzed transcriptomes from the central nervous system, fat bodies and ovaries of adult females in unfed and fed conditions, with a focus on the ILP/ToR signaling. The results show an up-regulation of transcripts involved in ILP/ToR signaling in unfed insects. However, we demonstrate that this signaling is only activated in tissues from fed insects. Moreover, we report that FoxO (forkhead box O) factor, which regulates longevity via ILP signaling, is responsible for the up-regulation of transcripts related with ILP/ToR signaling in unfed insects. As a consequence, we reveal that unfed females are in a sensitized state to respond to an increase of ILP levels by rapidly activating ILP/ToR signaling. This is the first analysis that correlates gene expression and protein activation of molecules involved with ILP/ToR signaling in R. prolixus females in different nutritional states.
Collapse
|
13
|
Barberà M, Cañas-Cañas R, Martínez-Torres D. Insulin-like peptides involved in photoperiodism in the aphid Acyrthosiphon pisum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 112:103185. [PMID: 31291597 DOI: 10.1016/j.ibmb.2019.103185] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/28/2019] [Accepted: 07/06/2019] [Indexed: 06/09/2023]
Abstract
Aphids were the first animals reported as photoperiodic as their life cycles are strongly determined by the photoperiod. During the favourable seasons (characterised by long days) aphid populations consist exclusively of viviparous parthenogenetic females (known as virginoparae). Shortening of the photoperiod in autumn is perceived by aphids as the signal that anticipates the harsh season, leading to a switch in the reproductive mode giving place to the sexual morphs (oviparae females and males) that mate and lay winter-resistant (diapause-like) eggs. The molecular and cellular basis governing the switch between the two reproductive modes are far from being understood. Classical experiments identified a group of neurosecretory cells in the pars intercerebralis of the aphid brain (the so called group I of neurosecretory cells) that were essential for the development of embryos as parthenogenetic females and were thus proposed to synthesise a parthenogenesis promoting substance that was termed "virginoparin". Since insulin-like peptides (ILPs) have been implicated in the control of diapause in other insects, we investigated their involvement in aphid photoperiodism. We compared the expression of two ILPs (ILP1 and ILP4) and an Insulin receptor coding genes in A. pisum aphids reared under long- and short-day conditions. The three genes showed higher expression in long-day reared aphids. In addition, we localised the site of expression of the two ILP genes in the aphid brain. Both genes were found to be expressed in the group I of neurosecretory cells. Altogether, our results suggest that ILP1 and ILP4 play an important role in the control of the aphid life-cycle by promoting the parthenogenetic development during long-day seasons while their repression by short days would activate the sexual development. Thus we propose these ILPs correspond to the so called "virginoparin" by early bibliography. A possible connection with the circadian system is also discussed.
Collapse
Affiliation(s)
- Miquel Barberà
- Institut de Biologia Integrativa de Sistemes, Parc Cientific Universitat de València, C/ Catedrático José Beltrán nº 2, 46980, Paterna, València, Spain
| | - Rubén Cañas-Cañas
- Institut de Biologia Integrativa de Sistemes, Parc Cientific Universitat de València, C/ Catedrático José Beltrán nº 2, 46980, Paterna, València, Spain
| | - David Martínez-Torres
- Institut de Biologia Integrativa de Sistemes, Parc Cientific Universitat de València, C/ Catedrático José Beltrán nº 2, 46980, Paterna, València, Spain.
| |
Collapse
|
14
|
Vafopoulou X, Hindley-Smith M, Steel CGH. Neuropeptide- and serotonin- cells in the brain of Rhodnius prolixus (Hemiptera) associated with the circadian clock. Gen Comp Endocrinol 2019; 278:25-41. [PMID: 30048647 DOI: 10.1016/j.ygcen.2018.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 11/24/2022]
Abstract
The neuronal pathways of the circadian clock in the brain of R. prolixus have been described in detail previously, but there is no information concerning the cells or their pathways which relay either inputs to the clock (e.g. for light entrainment), or outputs from it to driven rhythms. Here, we employ antisera to three neuropeptides (type A allatostatin-7, crustacean cardioactive peptide and FMRFamide), and serotonin in confocal laser scanning immunohistochemistry to analyze the distribution of cell bodies and their projections in relation to the principle circadian clock cells (lateral cells, LNs) for all four neuron types. LNs are revealed following labelling with anti- pigment dispersing factor in double labelled preparations. Regions of potential communication between ramifications of the LNs and each of the four other neuron types is described (identified by close superposition of their neurites in various brain regions), as is their detailed projections within the brain. Neuromodulation is sometimes suggested by close, but not intimate, proximity of varicosities of neurites. We infer that some neuron types comprise input pathways to the LNs, some are outputs to neuroendocrine or behavioral rhythms, and others participate in both input and output pathways, sometimes by the same neuron type but in different locations. For example, one retinula cell in each ommatidium is immunoreactive for allatostatin A; its axon projects to the medulla making superpositions with LNs, as do serotonin cells in the optic lobe, indicating roles of both neuron types in light input (entrainment) to the clock. But in other brain areas, these same types appear to mediate outputs from the clock. The accessory medulla has been widely reported as the principle center of integration in other insects; but we found sparse evidence of this in R. prolixus as it contains few neurites other than those from the clock cells. Rather, the importance of neural pathways involving the medulla and the superior protocerebrum is emphasized. We conclude that there is a vast and complex web of interactions in the brain with the LNs, which potentially receive multiple pathways of inputs and outputs that could drive rhythmicity in a multitude of downstream cells, rendering a host of output pathways rhythmic, notably hormone release from neurosecretory cells and behaviors.
Collapse
|
15
|
Ons S. Neuropeptides in the regulation of Rhodnius prolixus physiology. JOURNAL OF INSECT PHYSIOLOGY 2017; 97:77-92. [PMID: 27210592 DOI: 10.1016/j.jinsphys.2016.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 04/19/2016] [Accepted: 05/18/2016] [Indexed: 06/05/2023]
Abstract
In the kissing bug Rhodnius prolixus, events such as diuresis, antidiuresis, development and reproduction are triggered by blood feeding. Hence, these events can be accurately timed, facilitating physiological experiments. This, combined with its relatively big size, makes R. prolixus an excellent model in insect neuroendocrinological studies. The importance of R. prolixus as a Chagas' disease vector as much as an insect model has motivated the sequencing of its genome in recent years, facilitating genetic and molecular studies. Most crucial physiological processes are regulated by the neuroendocrine system, composed of neuropeptides and their receptors. The identification and characterization of neuropeptides and their receptors could be the first step to find targets for new insecticides. The sequences of 41 neuropeptide precursor genes and the receptors for most of them were identified in the R. prolixus genome. Functional information about many of these molecules was obtained, whereas many neuroendocrine systems are still unstudied in this model species. This review addresses the knowledge available to date regarding the structure, distribution, expression and physiological effects of neuropeptides in R. prolixus, and points to future directions in this research field.
Collapse
Affiliation(s)
- Sheila Ons
- Laboratory of Insects Neurobiology, National Center for Genomic Studies, Faculty of Exact Sciences, National University of La Plata, Bvd 120 1459, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Vafopoulou X, Steel CGH. Mitochondria and the insect steroid hormone receptor (EcR): A complex relationship. Gen Comp Endocrinol 2016; 237:68-77. [PMID: 27497706 DOI: 10.1016/j.ygcen.2016.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/28/2016] [Accepted: 08/02/2016] [Indexed: 11/23/2022]
Abstract
The actions of the insect steroid molting hormones, ecdysteroids, on the genome of target cells has been well studied, but little is known of their extranuclear actions. We previously showed in Rhodnius prolixus that much of the ecdysteroid receptor (EcR) resides in the cytoplasm of various cell types and undergoes shuttling between nucleus and cytoplasm with circadian periodicity, possibly using microtubules as tracks for translocation to the nucleus. Here we report that cytoplasmic EcR appears to be also involved in extranuclear actions of ecdysteroids by association with the mitochondria. Western blots of subcellular fractions of brain lysates revealed that EcR is localized in the mitochondrial fraction, indicating an intimate association of EcR with mitochondria. Confocal laser microscopy and immunohistochemistry using anti-EcR revealed abundant co-localization of EcR with mitochondria in brain neurons and their axons, especially intense in the subplasmalemmal region, raising the possibility of EcR involvement in mitochondrial functions in subplasmalemmal microdomains. When mitochondria are dispersed by disruption of microtubules with colchicine, EcR remains associated with mitochondria showing strong receptor association with mitochondria. Treatment in vitro with ecdysteroids of brains of developmentally arrested R. prolixus (containing neither ecdysteroids nor EcR) induces EcR and abundant co-localization with mitochondria in neurons, concurrently with a sharp increase of the mitochondrial protein COX 1, suggesting involvement of EcR in mitochondrial function. These findings align EcR with various vertebrate steroid receptors, where actions of steroid receptors on mitochondria are widely known and suggest that steroid receptors across distant phyla share similar functional attributes.
Collapse
Affiliation(s)
| | - Colin G H Steel
- Biology Department, York University, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Cardinal-Aucoin M, Steel CGH. Circadian control of prothoracicotropic hormone release in an adult insect and the induction of its rhythmicity by light cues. Comp Biochem Physiol A Mol Integr Physiol 2016; 201:46-52. [PMID: 27371111 DOI: 10.1016/j.cbpa.2016.06.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 11/19/2022]
Abstract
The insect neuropeptide prothoracicotropic hormone (PTTH) is a critical regulator of larval development. We recently demonstrated that PTTH is also present in adult Rhodnius prolixus and is released by adult brains in vitro with a clear daily rhythm during egg development. Here, we employ a well-established in vitro bioassay, to show that the daily rhythm of PTTH release by brains in vitro is under circadian control since it persists in aperiodic conditions with a free running period of around 24h that is temperature compensated. Prolonged exposure (3weeks) of insects to continuous constant light (LL) completely eliminated PTTH release. Subsequent transfer of such insects from LL to constant darkness (DD) rapidly induced rhythmic PTTH release, indicating that the circadian rhythm of PTTH release is induced by photic cues. Western analysis identified PTTH in the adult hemolymph, suggesting that PTTH acts as a functional neurohormone in the adult insect. Dot blot analysis revealed that PTTH levels in the hemolymph also cycled with a daily rhythm that persisted in DD and was synchronous with the rhythm of PTTH release by brains in vitro. We conclude that the previously documented photosensitive clock in the brain regulates rhythmic PTTH release and thus generates the rhythm seen in the hemolymph. These results emphasize the importance of rhythmic PTTH release in the adult insect and support a role for PTTH in adult physiology and possibly within the adult circadian system.
Collapse
Affiliation(s)
| | - Colin G H Steel
- Department of Biology, York University, 4700 Keele St., Toronto, ON M3J 1P3, Canada
| |
Collapse
|
18
|
Abstract
In eukaryotic cells, Rab guanosine triphosphate-ases serve as key regulators of membrane-trafficking events, such as exocytosis and endocytosis. Rab3, Rab6, and Rab27 control the regulatory secretory pathway of neuropeptides and neurotransmitters. The cDNAs of Rab3, Rab6, and Rab27 from B. mori were inserted into a plasmid, transformed into Escherichia coli, and then subsequently purified. We then produced antibodies against Rab3, Rab6, and Rab27 of Bombyx mori in rabbits and rats for use in western immunoblotting and immunohistochemistry. Western immunoblotting of brain tissue revealed a single band at approximately 26 kDa. Immunohistochemistry results revealed that Rab3, Rab6, and Rab27 expression was restricted to neurons in the pars intercerebralis and dorsolateral protocerebrum of the brain. Rab3 and Rab6 co-localized with bombyxin, an insect neuropeptide. However, there was no Rab that co-localized with prothoracicotropic hormone. The corpus allatum secretes neuropeptides synthesized in the brain into the hemolymph. Results showed that Rab3 and Rab6 co-localized with bombyxin in the corpus allatum. These findings suggest that Rab3 and Rab6 are involved in neurosecretion in B. mori. This study is the first to report a possible relationship between Rab and neurosecretion in the insect corpus allatum.
Collapse
|
19
|
Defferrari MS, Orchard I, Lange AB. Identification of the first insulin-like peptide in the disease vector Rhodnius prolixus: Involvement in metabolic homeostasis of lipids and carbohydrates. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 70:148-159. [PMID: 26742603 DOI: 10.1016/j.ibmb.2015.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/17/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
Insulin-like peptides (ILPs) are functional analogs of insulin and have been identified in many insect species. The insulin cell signaling pathway is a conserved regulator of metabolism, and in insects, as well as in other animals, can modulate physiological functions associated with the metabolism of lipids and carbohydrates. In the present study, we have identified the first ILP from the Rhodnius prolixus genome (termed Rhopr-ILP) and investigated its involvement in energy metabolism of unfed and recently fed fifth instars. We have cloned the cDNA sequence and analyzed the expression profile of the transcript, which is predominantly present in neurosecretory cells in the brain, similar to other insect ILPs. Using RNAi, we have reduced the expression of this peptide transcript by 90% and subsequently measured the carbohydrate and lipid levels in the hemolymph, fat body and leg muscles. Reduced levels of Rhopr-ILP transcript induced increased carbohydrate and lipid levels in the hemolymph and increased lipid content in the fat body, in unfed insects and recently fed insects. Also their fat bodies displayed enlarged lipid droplets within the cells. On the other hand, the carbohydrate content in the fat body and in the leg muscles of unfed insects were decreased when compared to control insects. Our results indicate that Rhopr-ILP is a modulator of lipid and carbohydrate metabolism, probably through signaling the presence of available energy and nutrients in the hemolymph.
Collapse
Affiliation(s)
- Marina S Defferrari
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
20
|
Nässel DR, Vanden Broeck J. Insulin/IGF signaling in Drosophila and other insects: factors that regulate production, release and post-release action of the insulin-like peptides. Cell Mol Life Sci 2016; 73:271-90. [PMID: 26472340 PMCID: PMC11108470 DOI: 10.1007/s00018-015-2063-3] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/02/2023]
Abstract
Insulin, insulin-like growth factors (IGFs) and insulin-like peptides (ILPs) are important regulators of metabolism, growth, reproduction and lifespan, and mechanisms of insulin/IGF signaling (IIS) have been well conserved over evolution. In insects, between one and 38 ILPs have been identified in each species. Relatively few insect species have been investigated in depth with respect to ILP functions, and therefore we focus mainly on the well-studied fruitfly Drosophila melanogaster. In Drosophila eight ILPs (DILP1-8), but only two receptors (dInR and Lgr3) are known. DILP2, 3 and 5 are produced by a set of neurosecretory cells (IPCs) in the brain and their biosynthesis and release are controlled by a number of mechanisms differing between larvae and adults. Adult IPCs display cell-autonomous sensing of circulating glucose, coupled to evolutionarily conserved mechanisms for DILP release. The glucose-mediated DILP secretion is modulated by neurotransmitters and neuropeptides, as well as by factors released from the intestine and adipocytes. Larval IPCs, however, are indirectly regulated by glucose-sensing endocrine cells producing adipokinetic hormone, or by circulating factors from the intestine and fat body. Furthermore, IIS is situated within a complex physiological regulatory network that also encompasses the lipophilic hormones, 20-hydroxyecdysone and juvenile hormone. After release from IPCs, the ILP action can be modulated by circulating proteins that act either as protective carriers (binding proteins), or competitive inhibitors. Some of these proteins appear to have additional functions that are independent of ILPs. Taken together, the signaling with multiple ILPs is under complex control, ensuring tightly regulated IIS in the organism.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, Department of Animal Physiology and Neurobiology, Zoological Institute, K.U. Leuven, Louvain, Belgium
| |
Collapse
|
21
|
Zhang D, Jiang S, Meng H. Role of the Insulin-Like Growth Factor Type 1 Receptor in the Pathogenesis of Diabetic Encephalopathy. Int J Endocrinol 2015; 2015:626019. [PMID: 26089889 PMCID: PMC4451562 DOI: 10.1155/2015/626019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 09/09/2014] [Indexed: 12/31/2022] Open
Abstract
Defective cognitive function is common in patients with diabetes, suggesting that insulin normally exerts anabolic actions in neuron, namely, diabetic encephalopathy. However, because insulin can cross-activate the insulin-like growth factor type 1 receptor (IGF-1R), which also functions in most of tissues, such as muscle and bone, it has been difficult to establish the direct (IGF-1-independent) actions of insulin in the pathogenesis of diabetic encephalopathy. To overcome this problem, we examined insulin signaling and action in primary PC-12 cells engineered for conditional disruption of the IGF-1 receptor (ΔIGF-1R). The results showed that the lower glucose metabolism and high expression of IGF-1R occurred in the brain of the DE rat model. The results also showed the defect of IGF-1R could significantly improve the ability of glucose consumption and enhance sensitivity to insulin-induced IR and Akt phosphorylation in PC12 cells. And meanwhile, IGF-1R allele gene knockout (IGF-1R(neo)) mice treated with HFD/STZ had better cognitive abilities than those of wild mice. Those results indicate that insulin exerts direct anabolic actions in neuron-like cells by activation of its cognate receptor and prove that IGF-1R plays an important role in the pathogenesis of diabetic encephalopathy.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Radiology, Affiliated Hospital of BeiHua University, JiLin 132011, China
| | - Shuang Jiang
- College of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Heng Meng
- Department of Radiology, Affiliated Hospital of BeiHua University, JiLin 132011, China
- *Heng Meng:
| |
Collapse
|
22
|
Vafopoulou X, Steel CGH. Synergistic induction of the clock protein PERIOD by insulin-like peptide and prothoracicotropic hormone in Rhodnius prolixus (Hemiptera): implications for convergence of hormone signaling pathways. Front Physiol 2014; 5:41. [PMID: 24600396 PMCID: PMC3928625 DOI: 10.3389/fphys.2014.00041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 01/22/2014] [Indexed: 12/01/2022] Open
Abstract
We showed previously that release of the cerebral neurohormones, bombyxin (an insulin-like peptide, ILP) and prothoracicotropic hormone (PTTH) from the brain have strong circadian rhythms, driven by master clock cells in the brain. These neurohormone rhythms synchronize the photosensitive brain clock with the photosensitive peripheral clock in the cells of the prothoracic glands (PGs), in which both regulate steroidogenesis. Here, using immunohistochemistry and confocal laser scanning microscopy, we show these neurohormones likely act on clock cells in the brain and PGs by regulating expression of PERIOD (PER) protein. PER is severely reduced in the nuclei of all clock cells in continuous light, but on transfer of tissues to darkness in vitro, it is rapidly induced. A 4h pulse of either PTTH or ILPs to brain and PGs in vitro both rapidly and highly significantly induce PER in the nuclei of clock cells. Administration of both neurohormones together induces more PER than does either alone and even more than does transfer to darkness, at least in PG cells. These are clearly non-steroidogenic actions of these peptides. In the peripheral oscillators salivary gland (SG) and fat body cells, neither bombyxin nor PTTH nor darkness induced PER, but a combination of both bombyxin and PTTH induced PER. Thus, PTTH and ILPs exert synergistic actions on induction of PER in both clock cells and peripheral oscillators, implying their signaling pathways converge, but in different ways in different cell types. We infer clock cells are able to integrate light cycle information with internal signals from hormones.
Collapse
|
23
|
Erion R, Sehgal A. Regulation of insect behavior via the insulin-signaling pathway. Front Physiol 2013; 4:353. [PMID: 24348428 PMCID: PMC3847551 DOI: 10.3389/fphys.2013.00353] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/16/2013] [Indexed: 01/27/2023] Open
Abstract
The insulin/insulin-like growth factor signaling (IIS) pathway is well-established as a critical regulator of growth and metabolic homeostasis across the animal kingdom. Insulin-like peptides (ILPs), the functional analogs of mammalian insulin, were initially discovered in the silkmoth Bombyx mori and subsequently identified in many other insect species. Initial research focused on the role of insulin signaling in metabolism, cell proliferation, development, reproduction and aging. More recently however, increasing attention has been given to the role of insulin in the regulation of neuronal function and behavior. Here we review the role of insulin signaling in two specific insect behaviors: feeding and locomotion.
Collapse
Affiliation(s)
- Renske Erion
- Cell and Molecular Biology, University of Pennsylvania Philadelphia, PA, USA
| | - Amita Sehgal
- Cell and Molecular Biology, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
24
|
Cardinal-Aucoin M, Rapp N, Steel CG. Circadian regulation of hemolymph and ovarian ecdysteroids during egg development in the insect Rhodnius prolixus (Hemiptera). Comp Biochem Physiol A Mol Integr Physiol 2013; 166:503-9. [DOI: 10.1016/j.cbpa.2013.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 11/24/2022]
|