1
|
Masoudi A, Joseph RA, Keyhani NO. Viral- and fungal-mediated behavioral manipulation of hosts: summit disease. Appl Microbiol Biotechnol 2024; 108:492. [PMID: 39441364 PMCID: PMC11499535 DOI: 10.1007/s00253-024-13332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Summit disease, in which infected hosts seek heights (gravitropism), first noted in modern times by nineteenth-century naturalists, has been shown to be induced by disparate pathogens ranging from viruses to fungi. Infection results in dramatic changes in normal activity patterns, and such parasite manipulation of host behaviors suggests a strong selection for convergent outcomes albeit evolved via widely divergent mechanisms. The two best-studied examples involve a subset of viral and fungal pathogens of insects that induce "summiting" in infected hosts. Summiting presumably functions as a means for increasing the dispersal of the pathogen, thus significantly increasing fitness. Here, we review current advances in our understanding of viral- and fungal-induced summit disease and the host behavioral manipulation involved. Viral genes implicated in this process include a host hormone-targeting ecdysteroid UDP-glucosyltransferase (apparently essential for mediating summit disease induced by some viruses but not all) and a protein tyrosine phosphatase, with light dependance implicated. For summit disease-causing fungi, though much remains obscure, targeting of molting, circadian rhythms, sleep, and responses to light patterns appear involved. Targeting of host neuronal pathways by summit-inducing fungi also appears to involve the production of effector molecules and secondary metabolites that affect host muscular, immune, and/or neurological processes. It is hypothesized that host brain structures, particularly Mushroom Bodies (no relation to the fungus itself), important for olfactory association learning and control of locomotor activity, are critical targets for mediating summiting during infection. This phenomenon expands the diversity of microbial pathogen-interactions and host dynamics. KEY POINTS: • Summit disease or height seeking (gravitropism) results from viral and fungal pathogens manipulating insect host behaviors presumably to increase pathogen dispersal. • Insect baculoviruses and select fungal pathogens exhibit convergent evolution in host behavioral manipulation but use disparate molecular mechanisms. • Targets for affecting host behavior include manipulation of host hormones, feeding, locomotion, and immune, circadian, and neurological pathways.
Collapse
Affiliation(s)
- Abolfazl Masoudi
- Department of Biological Sciences, University of Illinois, Chicago, IL, USA
| | - Ross A Joseph
- Department of Biological Sciences, University of Illinois, Chicago, IL, USA
| | - Nemat O Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
2
|
Wang SS, Wang LL, Pu YX, Liu JY, Wang MX, Zhu J, Shen ZY, Shen XJ, Tang SM. Exorista sorbillans (Diptera: Tachinidae) parasitism shortens host larvae growth duration by regulating ecdysone and juvenile hormone titers in Bombyx mori (Lepidoptera: Bombycidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:7187155. [PMID: 37256698 DOI: 10.1093/jisesa/iead034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
The tachinid fly, Exorista sorbillans, is a notorious ovolarviparous endoparasitoid of the silkworm, Bombyx mori, causing severe damage to silkworm cocoon industry. Silkworm larvae show typically precocious wandering behavior after being parasitized by E. sorbillans; however, the underlying molecular mechanism remains unexplored. Herein, we investigated the changes in the levels of 20-hydroxyecdysone (20E) and juvenile hormone (JH) titer, and they both increased in the hemolymph of parasitized silkworms. Furthermore, we verified the expression patterns of related genes, which showed an upregulation of 20E signaling and biosynthesis genes but a significant downregulation of ecdysone oxidase (EO), a 20E inactivation enzyme, in parasitized silkworms. In addition, related genes of the JH signaling were activated in parasitized silkworms, while related genes of the JH degradation pathway were suppressed, resulting in an increase in JH titer. Notably, the precocious wandering behavior of parasitized silkworms was partly recoverable by silencing the transcriptions of BmCYP302A1 or BmCYP307A1 genes. Our findings suggest that the developmental duration of silkworm post parasitism could be shortened by regulation of 20E and JH titers, which may help silkworm to resist the E. sorbillans infestation. These findings provide a basis for deeper insight into the interplay between silkworms and E. sorbillans and may serve as a reference for the development of a novel approach to control silkworm myiasis.
Collapse
Affiliation(s)
- Shan-Shan Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Lei-Lei Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Yue-Xia Pu
- Guangxi General Station for Sericulture Technology Popularization, Nanning, Guangxi 530007, China
| | - Ji-Yin Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Mei-Xian Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| | - Juan Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| | - Zhong-Yuan Shen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| | - Xing-Jia Shen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| | - Shun-Ming Tang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| |
Collapse
|
3
|
Crosstalk between Nutrition, Insulin, Juvenile Hormone, and Ecdysteroid Signaling in the Classical Insect Model, Rhodnius prolixus. Int J Mol Sci 2022; 24:ijms24010007. [PMID: 36613451 PMCID: PMC9819625 DOI: 10.3390/ijms24010007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The rigorous balance of endocrine signals that control insect reproductive physiology is crucial for the success of egg production. Rhodnius prolixus, a blood-feeding insect and main vector of Chagas disease, has been used over the last century as a model to unravel aspects of insect metabolism and physiology. Our recent work has shown that nutrition, insulin signaling, and two main types of insect lipophilic hormones, juvenile hormone (JH) and ecdysteroids, are essential for successful reproduction in R. prolixus; however, the interplay behind these endocrine signals has not been established. We used a combination of hormone treatments, gene expression analyses, hormone measurements, and ex vivo experiments using the corpus allatum or the ovary, to investigate how the interaction of these endocrine signals might define the hormone environment for egg production. The results show that after a blood meal, circulating JH levels increase, a process mainly driven through insulin and allatoregulatory neuropeptides. In turn, JH feeds back to provide some control over its own biosynthesis by regulating the expression of critical biosynthetic enzymes in the corpus allatum. Interestingly, insulin also stimulates the synthesis and release of ecdysteroids from the ovary. This study highlights the complex network of endocrine signals that, together, coordinate a successful reproductive cycle.
Collapse
|
4
|
Zhou QH, Zhang Q, Yang RL, Yuan GR, Wang JJ, Dou W. RNAi-mediated knockdown of juvenile hormone acid O-methyltransferase disrupts larval development in the oriental fruit fly, Bactrocera dorsalis (Hendel). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105285. [PMID: 36464328 DOI: 10.1016/j.pestbp.2022.105285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
The oriental fruit fly, Bactrocera dorsalis (Hendel), is a notoriously agricultural pest that causes serious economic losses to fruits and vegetables. Widespread insecticide resistance in B. dorsalis is a major obstacle in successful control. Therefore, new pest control strategies, such as those targeting specific genes that can block pest development, are urgently needed. In the current study, the function of JHAMT in B. dorsalis was systematically investigated. A methyltransferase gene in B. dorsalis (BdJHAMT) that is homologous to JHAMT of Drosophila melanogaster was cloned firstly. The subsequently spatiotemporal expression analysis indicated that BdJHAMT mRNA was continuously present in the larval stage, declined sharply immediately before pupation, and then increased in the adult. Subcellular localization showed that BdJHAMT was localized in the adult corpora allata and larval intestinal wall cells. The JH III titer in B. dorsalis was closely related to the transcription level of BdJHAMT in different developmental stages. The dsBdJHAMT feeding-based RNAi resulted in a greatly decreased JH III titer that disrupted fly development. The slow growth caused by BdJHAMT silencing was partially rescued by application of the JH mimic, methoprene. These results demonstrated that BdJHAMT was crucial for JH biosynthesis and thus regulated larval development in B. dorsalis, indicating it may serve as a prospective target for the development of novel control strategies against this pest.
Collapse
Affiliation(s)
- Qi-Hao Zhou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Qiang Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Rui-Lin Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
5
|
Identification and Evolution Analysis of the Complete Methyl Farnesoate Biosynthesis and Related Pathway Genes in the Mud Crab, Scylla paramamosain. Int J Mol Sci 2022; 23:ijms23169451. [PMID: 36012717 PMCID: PMC9409210 DOI: 10.3390/ijms23169451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/13/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
The sesquiterpenoid hormone methyl farnesoate (MF) plays a vital role during crustacean development, which is mainly evidenced by its varied titers during different developmental stages. However, the biosynthesis pathways of MF remain obscure to some extent. In this study, we identified the complete MF biosynthesis and related pathway genes in Scylla paramamosain, including three involved in acetyl-CoA metabolism, eight in the mevalonate pathway, five in the sesquiterpenoids synthesis pathway, and five in the methionine cycle pathway. Bioinformatics, genomic structure, and phylogenetic analysis indicated that the JH biosynthesis genes might have experienced evolution after species differentiation. The mRNA tissue distribution analysis revealed that almost all genes involving in or relating to MF syntheses were highly expressed in the mandibular organ (MO), among which juvenile hormone acid methyltransferase was exclusively expressed in the MO, suggesting that most of these genes might mainly function in MF biosynthesis and that the methionine cycle pathway genes might play a crucial regulatory role during MF synthesis. In addition, the phylogenetic and tissue distribution analysis of the cytochrome P450 CYP15-like gene suggested that the epoxidized JHs might exist in crustaceans, but are mainly synthesized in hepatopancreas rather than the MO. Finally, we also found that betaine-homocysteine S-methyltransferase genes were lost in insects while methionine synthase was probably lost in most insects except Folsomia candida, indicating a regulatory discrepancy in the methionine cycle between crustaceans and insects. This study might increase our understanding of synthetic metabolism tailored for sesquiterpenoid hormones in S. paramamosain and other closely related species.
Collapse
|
6
|
Cabej NR. A mechanism of inheritance of acquired traits in animals. Dev Biol 2021; 475:106-117. [PMID: 33741349 DOI: 10.1016/j.ydbio.2021.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/11/2023]
Abstract
Observational and experimental evidence for the inheritance of acquired traits in animals is slowly, but steadily accumulating. The onset and transmission of acquired traits implies the acquisition and transmission from parents to progeny of new information, which is different from the genetic information contained in DNA. The new non-genetic information most commonly is passed on from parents to the offspring via gamete(s), but how it is precisely transmitted to the successive generations is still unknown. Based on adequate empirical evidence presented herein, a hypothesis is proposed of the inheritance of acquired traits in animals and the flow of the relevant parental information to the offspring.
Collapse
Affiliation(s)
- Nelson R Cabej
- University of Tirana Faculty of Medicine, Universiteti i Mjekesise Tirane, Department of Biology, 147 Manhattan Terrace, Dumont, 07628, USA.
| |
Collapse
|
7
|
Villagra C, Frías-Lasserre D. Epigenetic Molecular Mechanisms in Insects. NEOTROPICAL ENTOMOLOGY 2020; 49:615-642. [PMID: 32514997 DOI: 10.1007/s13744-020-00777-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Insects are the largest animal group on Earth both in biomass and diversity. Their outstanding success has inspired genetics and developmental research, allowing the discovery of dynamic process explaining extreme phenotypic plasticity and canalization. Epigenetic molecular mechanisms (EMMs) are vital for several housekeeping functions in multicellular organisms, regulating developmental, ontogenetic trajectories and environmental adaptations. In Insecta, EMMs are involved in the development of extreme phenotypic divergences such as polyphenisms and eusocial castes. Here, we review the history of this research field and how the main EMMs found in insects help to understand their biological processes and diversity. EMMs in insects confer them rapid response capacity allowing insect either to change with plastic divergence or to keep constant when facing different stressors or stimuli. EMMs function both at intra as well as transgenerational scales, playing important roles in insect ecology and evolution. We discuss on how EMMs pervasive influences in Insecta require not only the control of gene expression but also the dynamic interplay of EMMs with further regulatory levels, including genetic, physiological, behavioral, and environmental among others, as was earlier proposed by the Probabilistic Epigenesis model and Developmental System Theory.
Collapse
Affiliation(s)
- C Villagra
- Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, Santiago, Chile.
| | - D Frías-Lasserre
- Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, Santiago, Chile
| |
Collapse
|
8
|
Hou L, Wang X, Yang P, Li B, Lin Z, Kang L, Wang X. DNA methyltransferase 3 participates in behavioral phase change in the migratory locust. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 121:103374. [PMID: 32283278 DOI: 10.1016/j.ibmb.2020.103374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/06/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
DNA methylation plays important roles in the behavioral plasticity of animals. The migratory locust, Locusta migratoria, displays striking density-dependent phenotypic plasticity that can reversely transit between solitarious and gregarious phases. However, the role and the mechanism through which DNA methylation is involved in locust phase change remain unknown. Here, we investigated the expression levels of three DNA methyltransferase genes and their roles in the regulation of locust phase changes. All three Dnmt genes, namely, Dnmt1, Dnmt2 and Dnmt3 showed high expression levels in the brains of gregarious locusts. By contrast, only Dnmt3 transcript rapidly responded to population density changes, decreasing during the isolation of gregarious locusts and steadily increasing upon the crowding of solitarious locusts. Dnmt3 knockdown significantly reduced the phase-related locomotor activity, rather than the attraction index, in gregarious and crowded solitarious locusts. Transcriptome analysis showed that Dnmt3 knockdown upregulated the genes related to metabolism and transporting activity and downregulated those associated with oxidative stress response. The expression level of the phase-core transcriptional factor, hormone receptor HR3, was significantly suppressed in the brain after Dnmt3 knockdown. Moreover, there was significant overlap in the differentially expressed genes between Dnmt3 RNAi and HR3 RNAi data sets, suggesting HR3 may act as key transcriptional factor mediating Dnmt3-controlled gene expression profiles in locust brains. These findings suggest that Dnmt3 transcription is involved in locust behavioral transition, implying the possible roles of DNA methylation in phase-related phenotypic plasticity in locusts.
Collapse
Affiliation(s)
- Li Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuesong Wang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengcheng Yang
- Beijing Institutes of Life Science, Chinese Academy of Science, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Beibei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China; Beijing Institutes of Life Science, Chinese Academy of Science, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Paquet M, Parenteau C, Ford LE, Ratz T, Richardson J, Angelier F, Smiseth PT. Females adjust maternal hormone concentration in eggs according to male condition in a burying beetle. Horm Behav 2020; 121:104708. [PMID: 32004551 DOI: 10.1016/j.yhbeh.2020.104708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/10/2019] [Accepted: 01/25/2020] [Indexed: 11/21/2022]
Abstract
In birds and other vertebrates, there is good evidence that females adjust the allocation of hormones in their eggs in response to prenatal environmental conditions, such as food availability or male phenotype, with profound consequences for life history traits of offspring. In insects, there is also evidence that females deposit juvenile hormones (JH) and ecdysteroids (ESH) in their eggs, hormones that play a key role in regulating offspring growth and metamorphosis. However, it is unclear whether females adjust their hormonal deposition in eggs in response to prenatal environmental conditions. Here we address this gap by conducting an experiment on the burying beetle Nicrophorus vespilloides, in which we manipulated the presence of the male parent and the size of the carcass used for breeding at the time of laying. We also tested for effects of the condition (i.e., body mass) of the parents. We then recorded subsequent effects on JH and ESH concentrations in the eggs. We found no evidence for an effect of these prenatal environmental conditions (male presence and carcass size) on hormonal concentration in the eggs. However, we found that females reduced their deposition of JH when mated with heavier males. This finding is consistent with negative differential allocation of maternal hormones in response to variation in the body mass of the male parent. We encourage further work to investigate the role of maternally derived hormones in insect eggs.
Collapse
Affiliation(s)
- Matthieu Paquet
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK; Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, SE-75007 Uppsala, Sweden.
| | - Charline Parenteau
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique- La Rochelle Université, UMR 7372, F-79360 Villiers en Bois, France
| | - Lucy E Ford
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Tom Ratz
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Jon Richardson
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique- La Rochelle Université, UMR 7372, F-79360 Villiers en Bois, France
| | - Per T Smiseth
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
Gu SH, Chen CH. Reactive oxygen species-mediated bombyxin signaling in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 117:103279. [PMID: 31756435 DOI: 10.1016/j.ibmb.2019.103279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
In the present study, we demonstrated that bombyxin, an insect insulin-like peptide, modulated ecdysteroidogenesis in Bombyx mori prothoracic glands (PGs) through redox signaling. Our results showed that bombyxin treatment resulted in a transient increase in intracellular reactive oxygen species (ROS) concentration, as measured using 2',7'-dichlorofluorescin diacetate (DCFDA), an oxidation-sensitive fluorescent probe. The antioxidant N-acetylcysteine (NAC) abolished the bombyxin-induced increase in fluorescence in Bombyx PGs. Furthermore, bombyxin-induced ROS production was inhibited by mitochondrial oxidative phosphorylation inhibitors (rotenone and antimycin A), indicating mitochondria-mediated ROS production. The stimulation of ROS production in response to bombyxin appears to undergo development-specific changes. We further investigated the action mechanism of bombyxin-stimulated ROS signaling. Results showed that in the presence of either NAC, rotenone, or antimycin A, bombyxin-stimulated phosphorylation of insulin receptor, Akt, and 4E-binding protein (4E-BP) was blocked and bombyxin-stimulated ecdysteroidogenesis in PGs was greatly inhibited. From these results, we conclude that ROS signaling appears to be involved in bombyxin-stimulated ecdysteroidogenesis of PGs in B. mori by modulating the phosphorylation of insulin receptor, Akt, and 4E-BP. To our knowledge, this is the first demonstration of redox regulation in insulin signaling in an insect system.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung, 404, Taiwan, ROC.
| | - Chien-Hung Chen
- Chung Hwa University of Medical Technology, 89 Wen-Hwa 1st Road, Jen-Te Township, Tainan County, 717, Taiwan, ROC
| |
Collapse
|
11
|
Elgendy AM, Tufail M, Mohamed AA, Takeda M. A putative direct repeat element plays a dual role in the induction and repression of insect vitellogenin-1 gene expression. Comp Biochem Physiol B Biochem Mol Biol 2019; 234:1-8. [PMID: 31022468 DOI: 10.1016/j.cbpb.2019.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/06/2019] [Accepted: 04/15/2019] [Indexed: 11/15/2022]
Abstract
Juvenile hormones (JH) regulate wide-ranging physiological and developmental processes in insects. However, molecular mechanisms underlying JH signaling remain to be determined. Vitellogenin (Vg) is primarily an egg-yolk protein, but recently proposed to serve many functions in insects. In the female American cockroach (Periplaneta americana), vitellogenin (Vg) genes are activated by JH III and suppressed by 20-hydroxyecdysone (20E) via cis-regulatory elements in a dose-dependent manner. In the present study, the upstream promoter region (935 bp) of Vg1 was cloned to elucidate the action of these hormones. A luciferase reporter assay identified an 81 bp region in the promoter region of Vg1 (-120 to -39 bp) that we found to be critical for JH III activation and 20E suppression. This 81 bp region contains a direct repeat separated by a 2-nucleotide spacer-designated Vg1HRE- that is similar to the Drosophila ecdysone response element direct repeat 4. Moreover, nuclear proteins isolated from nymphs, males, females, and Sf9 cells successfully bound to Vg1HRE, while binding was outcompeted by a 100-fold excess of cold probe or dephosphorylated nuclear protein extracts. In addition, binding was outcompeted by other ecdysone and JH response elements with similar half-site sequences (direct repeats) but to varying extents. Ultimately, we postulate that JH III indirectly activates Vg expression by interfering with or inhibiting the phosphorylation of nuclear proteins bound to Vg1HRE. Involvement of JH III in both induction of Vg1 and control of nuclear proteins binding to Vg1HRE suggest the latter to play an important role in JH signaling.
Collapse
Affiliation(s)
- Azza M Elgendy
- Department of Entomology, Faculty of Science, Cairo University, PO Box 12613, Giza, Egypt.
| | - Muhammad Tufail
- Economic Entomology Research Unit, Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, Japan.
| | - Amr A Mohamed
- Department of Entomology, Faculty of Science, Cairo University, PO Box 12613, Giza, Egypt.
| | - Makio Takeda
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Hyogo, Japan.
| |
Collapse
|
12
|
Ojima N, Hara Y, Ito H, Yamamoto D. Genetic dissection of stress-induced reproductive arrest in Drosophila melanogaster females. PLoS Genet 2018; 14:e1007434. [PMID: 29889831 PMCID: PMC5995346 DOI: 10.1371/journal.pgen.1007434] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/18/2018] [Indexed: 11/19/2022] Open
Abstract
By genetic manipulations, we study the roles played by insulin-producing cells (IPCs) in the brain and their target, the corpora allata (CA), for reproductive dormancy in female Drosophila melanogaster, which is induced by exposing them to a combination of low temperature (11°C), short-day photoperiod (10L:14D) and starvation (water only) for 7 days immediately after eclosion (dormancy-inducing conditions). Artificial inactivation of IPCs promotes, whereas artificial activation impedes, the induction of reproductive dormancy. A transcriptional reporter assay reveals that the IPC activity is reduced when the female flies are exposed to dormancy-inducing conditions. The photoperiod sensitivity of reproductive dormancy is lost in pigment-dispersing factor (pdf), but not cry, mutants, suggesting that light input to IPCs is mediated by pdf-expressing neurons. Genetic manipulations to upregulate and downregulate insulin signaling in the CA, a pair of endocrine organs that synthesize the juvenile hormone (JH), decrease and increase the incidence of reproductive dormancy, respectively. These results demonstrate that the IPC-CA axis constitutes a key regulatory pathway for reproductive dormancy.
Collapse
Affiliation(s)
- Noriyuki Ojima
- Division of Neurogenetics, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Yusuke Hara
- Division of Neurogenetics, Tohoku University Graduate School of Life Sciences, Sendai, Japan
- Neuro-Network Evolution Project, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| | - Hiroki Ito
- Division of Neurogenetics, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Daisuke Yamamoto
- Division of Neurogenetics, Tohoku University Graduate School of Life Sciences, Sendai, Japan
- Neuro-Network Evolution Project, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
- * E-mail:
| |
Collapse
|
13
|
Patricio-Gómez JM, Valdez RA, Veloz A, Aguilar-Vega L, Zurabian R, Romano MC. The synthesis of steroids by Taenia crassiceps WFU cysticerci and tapeworms is related to the developmental stages of the parasites. Gen Comp Endocrinol 2018; 259:154-160. [PMID: 29174867 DOI: 10.1016/j.ygcen.2017.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 11/19/2022]
Abstract
Taeniids tapeworms are hermaphroditic helminths that gradually develop testis and ovaries in their reproductive units. The larval stage of the tapeworms named cysticercus is a vesicle that contains the scolex and proliferates asexually in the abdominal cavity of mice. Once in the host, they evaginate, attach to the gut and develop into an adult organism, the tapeworm. We have previously reported reported that T. crassiceps ORF and solium cysticerci transform steroid precursors to androgens and estrogens. Taenia crassiceps WFU cysticerci can also synthesize corticosteroids. The aim of the present work is to investigate the relationship between steroid synthesis ability and the developmental stage of the parasite T. crassiceps WFU. To this purpose, cysticerci were obtained from the abdominal cavity of female mice, manually separated in invaginated (IC) and evaginated parasites (EC) and preincubated for 24 h in DMEM plus antibiotics/antimycotics. Next step consisted in incubation for different periods in the fresh media added with tritiated androstenedione (3H-A4) or progesterone (3H-P4) and incubated for different periods. Taenia crassiceps WFU tapeworms were recovered from the intestine of golden hamsters that had been orally infected with cysticerci. The worms were pre-cultured in DMEM plus FBS and antibiotics, and then incubated without FBS for different time periods, in the presence of 3H-A4 or 3H-P4. At the end of the experiments the media from cysticerci and tapeworms were analyzed by thin layer chromatography. Results showed that testosterone synthesis was significantly higher in the evaginated cysticerci and increased with time in culture. The invaginated and evaginated cysticerci also synthesized small quantities of 17ß-estradiol (E2) and estrone. The evaginated cysticerci synthesized twice more 3H-deoxycorticosterone (3H-DOC) than the invaginated parasites, the production increased significantly with time in culture. Taenia crassiceps WFU tapeworms synthesized significant quantities of 3H-testosterone and small amounts of estrone after only 3 h of culture in the presence of 3H-A4. The tapeworms also transformed 3H-P4 to 3H-DOC and increased its synthesis after 24 h in culture. In summary, our data show the pathways that T. crassiceps WFU cysticerci use to synthesize sexual steroids in both larval developmental stages and reveals the steroidogenic capacity of the tapeworms.
Collapse
Affiliation(s)
- J M Patricio-Gómez
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV del I.P.N., México CdMx, Mexico
| | - R A Valdez
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV del I.P.N., México CdMx, Mexico
| | - A Veloz
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV del I.P.N., México CdMx, Mexico
| | - L Aguilar-Vega
- Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, México CdMx, Mexico
| | - R Zurabian
- Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, México CdMx, Mexico
| | - M C Romano
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV del I.P.N., México CdMx, Mexico.
| |
Collapse
|
14
|
Gu SH, Li G, Hsieh HY, Lin PL, Li S. Stimulation of JNK Phosphorylation by the PTTH in Prothoracic Glands of the Silkworm, Bombyx mori. Front Physiol 2018; 9:43. [PMID: 29459829 PMCID: PMC5807416 DOI: 10.3389/fphys.2018.00043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/12/2018] [Indexed: 01/06/2023] Open
Abstract
In this study, phosphorylation of c-Jun N-terminal kinase (JNK) by the prothoracicotropic hormone (PTTH) was investigated in prothoracic glands (PGs) of the silkworm, Bombyx mori. Results showed that JNK phosphorylation was stimulated by the PTTH in time- and dose-dependent manners. In vitro activation of JNK phosphorylation in PGs by the PTTH was also confirmed in an in vivo experiment, in which a PTTH injection greatly increased JNK phosphorylation in PGs of day-6 last instar larvae. JNK phosphorylation caused by PTTH stimulation was greatly inhibited by U73122, a potent and specific inhibitor of phospholipase C (PLC) and an increase in JNK phosphorylation was also detected when PGs were treated with agents (either A23187 or thapsigargin) that directly elevated the intracellular Ca2+ concentration, thereby indicating involvement of PLC and Ca2+. Pretreatment with an inhibitor (U0126) of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK) and an inhibitor (LY294002) of phosphoinositide 3-kinase (PI3K) failed to significantly inhibit PTTH-stimulated JNK phosphorylation, indicating that ERK and PI3K were not related to JNK. We further investigated the effect of modulation of the redox state on JNK phosphorylation. In the presence of either an antioxidant (N-acetylcysteine, NAC) or diphenylene iodonium (DPI), PTTH-stimulated JNK phosphorylation was blocked. The JNK kinase inhibitor, SP600125, markedly inhibited PTTH-stimulated JNK phosphorylation and ecdysteroid synthesis. The kinase assay of JNK in PGs confirmed its stimulation by PTTH and inhibition by SP600125. Moreover, PTTH treatment did not affect JNK or Jun mRNA expressions. Based on these findings, we concluded that PTTH stimulates JNK phosphorylation in Ca2+- and PLC-dependent manners and that the redox-regulated JNK signaling pathway is involved in PTTH-stimulated ecdysteroid synthesis in B. mori PGs.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan
| | - Gen Li
- Graduate School of Engineering, Chiba University, Chiba, Japan
| | - Hsiao-Yen Hsieh
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan
| | - Pei-Ling Lin
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan
| | - Sheng Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Sciences and School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
15
|
Nalepa CA. What Kills the Hindgut Flagellates of Lower Termites during the Host Molting Cycle? Microorganisms 2017; 5:E82. [PMID: 29258251 PMCID: PMC5748591 DOI: 10.3390/microorganisms5040082] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 11/17/2022] Open
Abstract
Subsocial wood feeding cockroaches in the genus Cryptocercus, the sister group of termites, retain their symbiotic gut flagellates during the host molting cycle, but in lower termites, closely related flagellates die prior to host ecdysis. Although the prevalent view is that termite flagellates die because of conditions of starvation and desiccation in the gut during the host molting cycle, the work of L.R. Cleveland in the 1930s through the 1960s provides a strong alternate hypothesis: it was the changed hormonal environment associated with the origin of eusociality and its concomitant shift in termite developmental ontogeny that instigates the death of the flagellates in termites. Although the research on termite gut microbial communities has exploded since the advent of modern molecular techniques, the role of the host hormonal environment on the life cycle of its gut flagellates has been neglected. Here Cleveland's studies are revisited to provide a basis for re-examination of the problem, and the results framed in the context of two alternate hypotheses: the flagellate symbionts are victims of the change in host social status, or the flagellates have become incorporated into the life cycle of the eusocial termite colony. Recent work on parasitic protists suggests clear paths for exploring these hypotheses and for resolving long standing issues regarding sexual-encystment cycles in flagellates of the Cryptocercus-termite lineage using molecular methodologies, bringing the problem into the modern era.
Collapse
Affiliation(s)
- Christine A Nalepa
- Department of Entomology, North Carolina State University, Raleigh, NC 27695-7613, USA.
| |
Collapse
|
16
|
Ricigliano VA, Fitz W, Copeland DC, Mott BM, Maes P, Floyd AS, Dockstader A, Anderson KE. The impact of pollen consumption on honey bee (Apis mellifera) digestive physiology and carbohydrate metabolism. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2017; 96:1-8. [PMID: 28833462 DOI: 10.1016/j.jinsphys.2016.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/06/2016] [Accepted: 10/13/2016] [Indexed: 05/25/2023]
Abstract
Carbohydrate-active enzymes play an important role in the honey bee (Apis mellifera) due to its dietary specialization on plant-based nutrition. Secretory glycoside hydrolases (GHs) produced in worker head glands aid in the processing of floral nectar into honey and are expressed in accordance with age-based division of labor. Pollen utilization by the honey bee has been investigated in considerable detail, but little is known about the metabolic fate of indigestible carbohydrates and glycosides in pollen biomass. Here, we demonstrate that pollen consumption stimulates the hydrolysis of sugars that are toxic to the bee (xylose, arabinose, mannose). GHs produced in the head accumulate in the midgut and persist in the hindgut that harbors a core microbial community composed of approximately 108 bacterial cells. Pollen consumption significantly impacted total and specific bacterial abundance in the digestive tract. Bacterial isolates representing major fermentative gut phylotypes exhibited primarily membrane-bound GH activities that may function in tandem with soluble host enzymes retained in the hindgut. Additionally, we found that plant-originating β-galactosidase activity in pollen may be sufficient, in some cases, for probable physiological activity in the gut. These findings emphasize the potential relative contributions of host, bacteria, and pollen enzyme activities to carbohydrate breakdown, which may be tied to gut microbiome dynamics and associated host nutrition.
Collapse
Affiliation(s)
| | - William Fitz
- USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, USA
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ, USA
| | | | - Brendon M Mott
- USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, USA
| | - Patrick Maes
- USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, USA
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ, USA
| | - Amy S Floyd
- USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, USA
| | | | - Kirk E Anderson
- USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, USA
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
17
|
Sugahara R, Tanaka S, Shiotsuki T. RNAi-mediated knockdown of SPOOK reduces ecdysteroid titers and causes precocious metamorphosis in the desert locust Schistocerca gregaria. Dev Biol 2017; 429:71-80. [DOI: 10.1016/j.ydbio.2017.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/20/2017] [Accepted: 07/16/2017] [Indexed: 10/19/2022]
|
18
|
Females manipulate behavior of caring males via prenatal maternal effects. Proc Natl Acad Sci U S A 2017; 114:6800-6805. [PMID: 28607046 DOI: 10.1073/pnas.1619759114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In species with biparental care, there is sexual conflict as each parent is under selection to minimize its personal effort by shifting as much as possible of the workload over to the other parent. Most theoretical and empirical work on the resolution of this conflict has focused on strategies used by both parents, such as negotiation. However, because females produce the eggs, this might afford females with an ability to manipulate male behavior via maternal effects that alter offspring phenotypes. To test this hypothesis, we manipulated the prenatal conditions (i.e., presence or absence of the male), performed a cross-fostering experiment, and monitored the subsequent effects of prenatal conditions on offspring and parental performance in the burying beetle Nicrophorus vespilloides We found that offspring were smaller at hatching when females laid eggs in presence of a male, suggesting that females invest less in eggs when expecting male assistance. Furthermore, broods laid in the presence of a male gained more weight during parental care, and they did so at the expense of male weight gain. Contrary to our expectations, males cared less for broods laid in the presence of a male. Our results provide experimental evidence that females can alter male behavior during breeding by adjusting maternal effects according to prenatal conditions. However, rather than increasing the male's parental effort, females appeared to suppress the male's food consumption, thereby leaving more food for their brood.
Collapse
|
19
|
Jedlička P, Ernst UR, Votavová A, Hanus R, Valterová I. Gene Expression Dynamics in Major Endocrine Regulatory Pathways along the Transition from Solitary to Social Life in a Bumblebee, Bombus terrestris. Front Physiol 2016; 7:574. [PMID: 27932998 PMCID: PMC5121236 DOI: 10.3389/fphys.2016.00574] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 11/10/2016] [Indexed: 01/28/2023] Open
Abstract
Understanding the social evolution leading to insect eusociality requires, among other, a detailed insight into endocrine regulatory mechanisms that have been co-opted from solitary ancestors to play new roles in the complex life histories of eusocial species. Bumblebees represent well-suited models of a relatively primitive social organization standing on the mid-way to highly advanced eusociality and their queens undergo both, a solitary and a social phase, separated by winter diapause. In the present paper, we characterize the gene expression levels of major endocrine regulatory pathways across tissues, sexes, and life-stages of the buff-tailed bumblebee, Bombus terrestris, with special emphasis on critical stages of the queen's transition from solitary to social life. We focused on fundamental genes of three pathways: (1) Forkhead box protein O and insulin/insulin-like signaling, (2) Juvenile hormone (JH) signaling, and (3) Adipokinetic hormone signaling. Virgin queens were distinguished by higher expression of forkhead box protein O and downregulated insulin-like peptides and JH signaling, indicated by low expression of methyl farnesoate epoxidase (MFE) and transcription factor Krüppel homolog 1 (Kr-h1). Diapausing queens showed the expected downregulation of JH signaling in terms of low MFE and vitellogenin (Vg) expressions, but an unexpectedly high expression of Kr-h1. By contrast, reproducing queens revealed an upregulation of MFE and Vg together with insulin signaling. Surprisingly, the insulin growth factor 1 (IGF-1) turned out to be a queen-specific hormone. Workers exhibited an expression pattern of MFE and Vg similar to that of reproducing queens. Males were characterized by high Kr-h1 expression and low Vg level. The tissue comparison unveiled an unexpected resemblance between the fat body and hypopharyngeal glands across all investigated genes, sexes, and life stages.
Collapse
Affiliation(s)
- Pavel Jedlička
- Department of Chemistry of Social Insects, The Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Prague, Czechia
| | - Ulrich R Ernst
- Department of Chemistry of Social Insects, The Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Prague, Czechia
| | | | - Robert Hanus
- Department of Chemistry of Social Insects, The Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Prague, Czechia
| | - Irena Valterová
- Research Group of Infochemicals, The Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Prague, Czechia
| |
Collapse
|
20
|
Yang B, Huang W, Zhang J, Xu Q, Zhu S, Zhang Q, Beerntsen BT, Song H, Ling E. Analysis of gene expression in the midgut of Bombyx mori during the larval molting stage. BMC Genomics 2016; 17:866. [PMID: 27809786 PMCID: PMC5096333 DOI: 10.1186/s12864-016-3162-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/12/2016] [Indexed: 11/15/2022] Open
Abstract
Background Insects can be models for understanding human intestinal infection and pathology. Molting, a special period during which the old insect cuticle is shed and a new one is produced, is crucial for insect development. Holometabolous insects may experience several larva-to-larva moltings to become larger, a pupal molt and adult eclosion to become adults. During the larval molts, they stop feeding and become quiescent. Although the molting larvae become quiescent, it is not known if changes in microbiome, physiology, development and immunity of midguts occur. Results Transcriptome analysis indicated that functions such as metabolism, digestion, and transport may become reduced due to the downregulated expression of many associated genes. During the molting stage, midguts harbor less microflora and DNA synthesis decreases. Both ecdysone and juvenile hormone in the larval midgut likely degrade after entering the larva-to-larva molting stage. However, at 12 h after ecdysis, the feeding larvae of 5th instars that were injected with 20-hydroxyecdysone entered a molting-like stage, during which changes in midgut morphology, DNA synthesis, gene expression, and microflora exhibited the same patterns as observed in the actual molting state. Conclusion This study is important for understanding insect midgut physiology, development and immunity during a special development stage when no food is ingested. Although the molting larva becomes immobile and quiescent, we demonstrate that numerous changes occur in midgut morphology, physiology, metabolism and microbiome during this period. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3162-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bing Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wuren Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jie Zhang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qiuyun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shoulin Zhu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qiaoli Zhang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Brenda T Beerntsen
- Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Hongsheng Song
- College of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Erjun Ling
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
21
|
Sláma K, Lukáš J. Hypermetabolic Conversion of Plant Oil into Water: Endothermic Biochemical Process Stimulated by Juvenile Hormone in the European Firebug, Pyrrhocoris apterus L. INTERNATIONAL JOURNAL OF INSECT SCIENCE 2016; 8:81-93. [PMID: 27790049 PMCID: PMC5072462 DOI: 10.4137/ijis.s40566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/07/2016] [Accepted: 09/11/2016] [Indexed: 06/06/2023]
Abstract
The physiological and biochemical mechanisms that enable insects to feed on dry food to secure enough water for larval growth were investigated. The study was carried out with a plethora of physiological methods, ranging from the simple volumetric determination of O2 consumption and water intake to more advanced methods such as scanning microrespirography and thermovision imaging of insect's body temperature. The experiments were done on the European firebug, Pyrrhocoris apterus, which feeds exclusively on dry linden seeds. In order to survive, it needs to drink water or suck a sap from plants occasionally. It was found that the young larval instars compensate the occasional water deficiency by the increased production of metabolic water. The juvenile hormone (JH)-dependent production of metabolic water, which was previously found in other species consuming dry food, was achieved in P. apterus by total metabolic combustion of the dietary lipid (neutral seed oil). The water-producing, hypermetabolic larvae were heated from inside by endothermic energy released from the uncoupling of oxidation from oxidative phosphorylation. The "warm", hypermetabolic larvae burning the dietary oil into CO2 and water showed the increased rates of respiratory metabolism. Microrespirographic recording of these larvae revealed the ratio of the respiratory quotient (RQ, CO2/O2) of 0.7, which indicated the breakdown of a pure triglyceride. The warm hypermetabolic larvae could be easily spotted and distinguished from the "cold" larvae on the screen of a thermovision camera. The last instar larvae lacking the JH were always only cold. They metabolized a carbohydrate substrate exclusively (RQ = 1.0), while the dietary lipid was stored in the fat body. In comparison with the hypermetabolic larvae of some other species fed on dry food, which exhibited the highest rates of O2 consumption ever recorded in a living organism (10-20 mL O2/g per hour), the metabolic difference between the warm and cold larvae of P. apterus was only some 30% (not a reported 10-fold difference), which was presumably due to their ability to drink. We conclude that a very important, though still largely neglected, epigenetic biochemical role of insect JH depends on switchover between the utilization of dietary lipid (+JH; production of metabolic water) and carbohydrate (-JH; lipid storage in the fat body). The hypermetabolic water supply in insects fed on dry food, which is associated with enormous rates of O2 consumption, liberates endothermic energy that heats the body and potentially influences the insect thermoregulation. A possibility that the JH-dependent lipolytic hormone stimulates the total metabolic breakdown of nutritional lipids may be absolutely different from the currently known adipokinetic peptides that have been emphasized.
Collapse
Affiliation(s)
- Karel Sláma
- Laboratory of Insect Physiology, Intereco, Evropská, Praha, Czech Republic
| | - Jan Lukáš
- Crop Research Institute, Drnovská, Praha, Czech Republic
| |
Collapse
|
22
|
Gu SH, Hsieh YC, Lin PL. Stimulation of orphan nuclear receptor HR38 gene expression by PTTH in prothoracic glands of the silkworm, Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2016; 90:8-16. [PMID: 27090809 DOI: 10.1016/j.jinsphys.2016.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 06/05/2023]
Abstract
A complex signaling network appears to be involved in prothoracicotropic hormone (PTTH)-stimulated ecdysteroidogenesis in insect prothoracic glands (PGs). Less is known about the genomic action of PTTH signaling. In the present study, we investigated the effect of PTTH on the expression of Bombyx mori HR38, an immediate early gene (IEG) identified in insect systems. Our results showed that treatment of B. mori PGs with PTTH in vitro resulted in a rapid increase in HR38 expression. Injection of PTTH into day-5 last instar larvae also greatly increased HR38 expression, verifying the in vitro effect. Cycloheximide did not affect induction of HR38 expression, suggesting that protein synthesis is not required for PTTH's effect. A mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitor (U0126), and a phosphoinositide 3-kinase (PI3K) inhibitor (LY294002), partially inhibited PTTH-stimulated HR38 expression, implying the involvement of both the ERK and PI3K signaling pathways. When PGs were treated with agents that directly elevate the intracellular Ca(2+) concentration (either A23187 or thapsigargin), an increase in HR38 expression was also detected, indicating that Ca(2+) is involved in PTTH-stimulated HR38 gene expression. A Western blot analysis showed that PTTH treatment increased the HR38 protein level, and protein levels showed a dramatic increase during the later stages of the last larval instar. Expression of HR38 transcription in response to PTTH appeared to undergo development-specific changes. Treatment with ecdysone in vitro did not affect HR38 expression. However, 20-hydroxyecdysone treatment decreased HR38 expression. Taken together, these results demonstrate that HR38 is a PTTH-stimulated IEG that is, at least in part, induced through Ca(2+)/ERK and PI3K signaling. The present study proposes a potential cross talk mechanism between PTTH and ecdysone signaling to regulate insect development and lays a foundation for a better understanding of the mechanisms of PTTH's actions.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC.
| | - Yun-Chih Hsieh
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| | - Pei-Ling Lin
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| |
Collapse
|
23
|
De Loof A, Schoofs L, Huybrechts R. The endocrine system controlling sexual reproduction in animals: Part of the evolutionary ancient but well conserved immune system? Gen Comp Endocrinol 2016; 226:56-71. [PMID: 26707056 DOI: 10.1016/j.ygcen.2015.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 12/14/2022]
Abstract
Drastic changes in hormone titers, in particular of steroid hormones, are intuitively interpreted as necessary and beneficial for optimal functioning of animals. Peaks in progesterone- and estradiol titers that accompany the estrus cycle in female vertebrates as well as in ecdysteroids at each molt and during metamorphosis of holometabolous insects are prominent examples. A recent analysis of insect metamorphosis yielded the view that, in general, a sharp rise in sex steroid hormone titer signals that somewhere in the body some tissue(s) is undergoing programmed cell death/apoptosis. Increased steroid production is part of this process. Typical examples are ovarian follicle cells in female vertebrates and invertebrates and the prothoracic gland cells, the main production site of ecdysteroids in larval insects. A duality emerges: programmed cell death-apoptosis is deleterious at the cellular level, but it may yield beneficial effects at the organismal level. Reconciling both opposites requires reevaluating the probable evolutionary origin and role of peptidic brain hormones that direct steroid hormone synthesis. Do e.g. Luteinizing Hormone in vertebrates and Prothoracicotropic Hormone (PTTH: acting through the Torso receptor) in insects still retain an ancient role as toxins in the early immune system? Does the functional link of some neuropeptides with Ca(2+)-induced apoptosis make sense in endocrine archeology? The endocrine system as a remnant of the ancient immune system is undoubtedly counterintuitive. Yet, we will argue that such paradigm enables the logical framing of many aspects, the endocrine one inclusive of both male and female reproductive physiology.
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Belgium.
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Belgium
| | - Roger Huybrechts
- Insect Physiology and Molecular Ethology Group, Department of Biology, KU Leuven-University of Leuven, Belgium
| |
Collapse
|
24
|
Paquet M, Smiseth PT. Maternal effects as a mechanism for manipulating male care and resolving sexual conflict over care. Behav Ecol 2015. [DOI: 10.1093/beheco/arv230] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
25
|
Zhao M, Jiang K, Song W, Ma C, Wang J, Meng Y, Wei H, Chen K, Qiao Z, Zhang F, Ma L. Two transcripts of HMG-CoA reductase related with developmental regulation fromScylla paramamosain: Evidences from cDNA cloning and expression analysis. IUBMB Life 2015; 67:954-65. [DOI: 10.1002/iub.1452] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/21/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Ming Zhao
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Shanghai China
- College of Fisheries and Life Science; Shanghai Ocean University; Shanghai China
| | - Keji Jiang
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Shanghai China
| | - Wei Song
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Shanghai China
| | - Chunyan Ma
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Shanghai China
| | - Jing Wang
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Shanghai China
- College of Fisheries and Life Science; Shanghai Ocean University; Shanghai China
| | - Yongyong Meng
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Shanghai China
- College of Fisheries and Life Science; Shanghai Ocean University; Shanghai China
| | - Hongqing Wei
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Shanghai China
- College of Fisheries and Life Science; Shanghai Ocean University; Shanghai China
| | - Kai Chen
- College of Fisheries and Life Science; Shanghai Ocean University; Shanghai China
| | - Zhenguo Qiao
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Shanghai China
| | - Fengying Zhang
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Shanghai China
| | - Lingbo Ma
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Shanghai China
| |
Collapse
|
26
|
De Loof A, Vandersmissen T, Marchal E, Schoofs L. Initiation of metamorphosis and control of ecdysteroid biosynthesis in insects: The interplay of absence of Juvenile hormone, PTTH, and Ca(2+)-homeostasis. Peptides 2015; 68:120-9. [PMID: 25102449 DOI: 10.1016/j.peptides.2014.07.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/25/2014] [Accepted: 07/25/2014] [Indexed: 11/24/2022]
Abstract
The paradigm saying that release of the brain neuropeptide big prothoracicotropic hormone (PTTH) initiates metamorphosis by activating the Torso-receptor/ERK pathway in larval prothoracic glands (PGs) is widely accepted nowadays. Upon ligand-receptor interaction Ca(2+) enters the PG cells and acts as a secondary messenger. Ecdysteroidogenesis results, later followed by apoptosis. Yet, some data do not fit in this model. In some species decapitated animals can still molt, even repeatedly, and metamorphose. PTTH does not universally occur in all insect species. PGs may also have other functions; PGs as counterpart of the vertebrate thymus? There are also small PTTHs. Finally, PTTH remains abundantly present in adults and plays a role in control of ecdysteroidogenesis (=sex steroid production) in gonads. This is currently documented only in males. This urges a rethinking of the PTTH-PG paradigm. The key question is: Why does PTTH-induced Ca(2+) entry only result in ecdysteroidogenesis and apoptosis in specific cells/tissues, namely the PGs and gonads? Indeed, numerous other neuropeptides also use Ca(2+) as secondary messenger. The recent rediscovery that in both invertebrates and vertebrates at least some isoforms of Ca(2+)-ATPase need the presence of an endogenous farnesol/juvenile hormone(JH)-like sesquiterpenoid for keeping cytosolic [Ca(2+)]i below the limit of apoptosis-induction, triggered the idea that it is not primarily PTTH, but rather the drop to zero of the JH titer that acts as the primordial initiator of metamorphosis by increasing [Ca(2+)]i. PTTH likely potentiates this effect but only in cells expressing Torso. PTTH: an evolutionarily ancient gonadotropin?
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Belgium.
| | - Tim Vandersmissen
- Department of Teacher Education, Leuven University College, Leuven, Belgium.
| | - Elisabeth Marchal
- Molecular Developmental Physiology and Signal Transduction Group, Department of Biology, KU Leuven-University of Leuven, Belgium.
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Belgium.
| |
Collapse
|
27
|
Nollmann FI, Heinrich AK, Brachmann AO, Morisseau C, Mukherjee K, Casanova-Torres ÁM, Strobl F, Kleinhans D, Kinski S, Schultz K, Beeton ML, Kaiser M, Chu YY, Phan Ke L, Thanwisai A, Bozhüyük KAJ, Chantratita N, Götz F, Waterfield NR, Vilcinskas A, Stelzer EHK, Goodrich-Blair H, Hammock BD, Bode HB. A Photorhabdus natural product inhibits insect juvenile hormone epoxide hydrolase. Chembiochem 2015; 16:766-71. [PMID: 25711603 PMCID: PMC4486325 DOI: 10.1002/cbic.201402650] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Indexed: 11/10/2022]
Abstract
Simple urea compounds ("phurealipids") have been identified from the entomopathogenic bacterium Photorhabdus luminescens, and their biosynthesis was elucidated. Very similar analogues of these compounds have been previously developed as inhibitors of juvenile hormone epoxide hydrolase (JHEH), a key enzyme in insect development and growth. Phurealipids also inhibit JHEH, and therefore phurealipids might contribute to bacterial virulence.
Collapse
Affiliation(s)
- Friederike I Nollmann
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438 Frankfurt am Main (Germany)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gu SH, Hsieh YC. Regulation of histone H3 phosphorylation at serine 10 in PTTH-stimulated prothoracic glands of the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 57:27-33. [PMID: 25524297 DOI: 10.1016/j.ibmb.2014.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 06/04/2023]
Abstract
A complex signaling network appears to be involved in prothoracicotropic hormone (PTTH)-stimulated ecdysteroidogenesis in insect prothoracic glands (PGs). In the present study, we investigated the localization of phosphorylated extracellular signal-regulated kinase (ERK) in PTTH-stimulated PGs in Bombyx mori. The nuclear effect of PTTH was further studied by examining phosphorylation of histone H3 at serine 10. Results showed that in PTTH-stimulated PGs, higher phosphorylated ERK was detected in nuclear fraction compared to that in cytosolic fraction. PTTH treatment in vitro appears to rapidly enhance the transcriptional activation-associated histone H3 phosphorylation at serine 10. PTTH stimulated histone H3 phosphorylation in a time-dependent manner. Injection of PTTH into day-6 last instar larvae greatly increased histone H3 phosphorylation, verifying the in vitro effect. The stimulation of histone H3 phosphorylation by PTTH appears to be developmentally regulated. PTTH-stimulated histone H3 phosphorylation was greatly reduced in Ca(2+)-free saline or by pretreatment with a potent and specific inhibitor of phospholipase C (PLC), U73122. When PGs were treated with agents that directly elevate the intracellular Ca(2+) concentration (either A23187 or thapsigargin), a greatly increase in histone H3 phosphorylation at serine 10 was observed, indicating Ca(2+)-dependency of histone H3 phosphorylation stimulated by PTTH. In addition, PTTH-stimulated histone H3 phosphorylation was partially reduced by U0126, a specific mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) inhibitor, indicating the involvement of ERK. However, pretreatment with LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, did not inhibit PTTH-stimulated histone H3 phosphorylation, implying that PI3K signaling is not related to PTTH-stimulated histone H3 phosphorylation. Taken together, these results suggest that PTTH-stimulated histone H3 phosphorylation at serine 10 is mediated by Ca(2+)/ERK signaling in B. mori PGs.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC.
| | - Yun-Chin Hsieh
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| |
Collapse
|
29
|
Integrative Genomic Approaches to Studying Epigenetic Mechanisms of Phenotypic Plasticity in the Aphid. SHORT VIEWS ON INSECT GENOMICS AND PROTEOMICS 2015. [DOI: 10.1007/978-3-319-24235-4_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Gu SH, Chen CH, Hsieh YC, Lin PL, Young SC. Modulatory effects of bombyxin on ecdysteroidogenesis in Bombyx mori prothoracic glands. JOURNAL OF INSECT PHYSIOLOGY 2015; 72:61-69. [PMID: 25497117 DOI: 10.1016/j.jinsphys.2014.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 11/12/2014] [Accepted: 11/21/2014] [Indexed: 06/04/2023]
Abstract
In the present study, we investigated the modulatory effects of ecdysteroidogenesis of prothoracic glands (PGs) by bombyxin, an endogenous insulin-like peptide in the silkworm, Bombyx mori. The results showed that bombyxin stimulated ecdysteroidogenesis during a long-term incubation period and in a dose-dependent manner. Moreover, the injection of bombyxin into day 4-last instar larvae increased ecdysteroidogenesis 24h after the injection, indicating its possible in vivo function. Phosphorylation of the insulin receptor and Akt, and the target of rapamycin (TOR) signaling were stimulated by bombyxin, and stimulation of Akt phosphorylation and TOR signaling appeared to be dependent on phosphatidylinositol 3-kinase (PI3K). Bombyxin inhibited the phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK), and the inhibition appeared to be PI3K-independent. Bombyxin-stimulated ecdysteroidogenesis was blocked by either an inhibitor of PI3K (LY294002) or a chemical activator of AMPK (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside, AICAR), indicating involvement of the PI3K/Akt and AMPK signaling pathway. Bombyxin did not stimulate extracellular signal-regulated kinase (ERK) signaling of PGs. Bombyxin, but not prothoracicotropic hormone (PTTH) stimulated cell viability of PGs. In addition, bombyxin treatment also affected mRNA expression levels of insulin receptor, Akt, AMPKα, -β, and -γ in time-dependent manners. These results suggest that bombyxin modulates ecdysteroidogenesis in B. mori PGs during development.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science,1 Kuan-Chien Road, Taichung 404-19, Taiwan, ROC.
| | - Chien-Hung Chen
- Chung Hwa University of Medical Technology, 89 Wen-Hwa 1st Road, Jen-Te Township, Tainan County 717, Taiwan, ROC
| | - Yun-Chin Hsieh
- Department of Biology, National Museum of Natural Science,1 Kuan-Chien Road, Taichung 404-19, Taiwan, ROC
| | - Pei-Ling Lin
- Department of Biology, National Museum of Natural Science,1 Kuan-Chien Road, Taichung 404-19, Taiwan, ROC
| | - Shun-Chieh Young
- Department of Biology, National Museum of Natural Science,1 Kuan-Chien Road, Taichung 404-19, Taiwan, ROC
| |
Collapse
|
31
|
The trap of sex in social insects: From the female to the male perspective. Neurosci Biobehav Rev 2014; 46 Pt 4:519-33. [DOI: 10.1016/j.neubiorev.2014.09.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 09/14/2014] [Accepted: 09/22/2014] [Indexed: 01/27/2023]
|
32
|
Carle T, Yamawaki Y, Watanabe H, Yokohari F. Antennal development in the praying mantis (Tenodera aridifolia) highlights multitudinous processes in hemimetabolous insect species. PLoS One 2014; 9:e98324. [PMID: 24896610 PMCID: PMC4045715 DOI: 10.1371/journal.pone.0098324] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/30/2014] [Indexed: 12/01/2022] Open
Abstract
Insects possess antennae equipped with a large number of segments (flagellomeres) on which sensory organs (sensilla) are located. Hemimetabolous insects grow by molting until they reach adulthood. In these species, the sensory structures develop and mature during each stage of development; new flagellomeres are generated at each molt elongating the antennae, and new sensilla appear. The praying mantis (Tenodera aridifolia) is a hemimetabolous insect with 7 different instars before it reaches adulthood. Because their antennae are provided with an atypical sensillar distribution, we previously suggested that their antennae develop with a different mechanism to other hemimetaboulous insect species. In the present study, we measured the number, length and width of flagellomeres along the antennae in nymph and adult mantis Tenodera aridifolia. For this study, we developed a new and innovative methodology to reconstruct the antennal development based on the length of flagellomeres. We observed and confirmed that the antennae of mantises develop with the addition of new segments at two distinct sites. In addition, we constructed a complete database of the features of the flagellum for each stage of development. From our data, we found that sexual dimorphism appears from the 6 instar (larger number and wider flagellomeres in males) in accordance with the appearance of their genital apparatus. The antennal sexual dimorphism completes at adulthood with longer flagellomeres and the emergence of a huge number of grooved peg sensilla in males during the last molting, which suggests once again their function as sex-pheromone receptive sensilla.
Collapse
Affiliation(s)
- Thomas Carle
- Division of Biology, Department of Earth System Science, Faculty of Science, Fukuoka University, Fukuoka, Japan
- * E-mail:
| | - Yoshifumi Yamawaki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Hidehiro Watanabe
- Division of Biology, Department of Earth System Science, Faculty of Science, Fukuoka University, Fukuoka, Japan
| | - Fumio Yokohari
- Division of Biology, Department of Earth System Science, Faculty of Science, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
33
|
De Loof A, De Haes W, Janssen T, Schoofs L. The essence of insect metamorphosis and aging: electrical rewiring of cells driven by the principles of juvenile hormone-dependent Ca(2+)-homeostasis. Gen Comp Endocrinol 2014; 199:70-85. [PMID: 24480635 DOI: 10.1016/j.ygcen.2014.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/16/2014] [Accepted: 01/19/2014] [Indexed: 01/22/2023]
Abstract
In holometabolous insects the fall to zero of the titer of Juvenile Hormone ends its still poorly understood "status quo" mode of action in larvae. Concurrently it initiates metamorphosis of which the programmed cell death of all internal tissues that actively secrete proteins, such as the fat body, midgut, salivary glands, prothoracic glands, etc. is the most drastic aspect. These tissues have a very well developed rough endoplasmic reticulum, a known storage site of intracellular Ca(2+). A persistent high [Ca(2+)]i is toxic, lethal and causal to apoptosis. Metamorphosis becomes a logical phenomenon if analyzed from: (1) the causal link between calcium toxicity and apoptosis; (2) the largely overlooked fact that at least some isoforms of Ca(2+)-ATPases have a binding site for farnesol-like endogenous sesquiterpenoids (FRS). The Ca(2+)-ATPase blocker thapsigargin, like JH a sesquiterpenoid derivative, illustrates how absence of JH might work. The Ca(2+)-homeostasis system is concurrently extremely well conserved in evolution and highly variable, enabling tissue-, developmental-, and species specificity. As long as JH succeeds in keeping [Ca(2+)]i low by keeping the Ca(2+)-ATPases pumping, it acts as "the status quo" hormone. When it disappears, its various inhibitory effects are lifted. The electrical wiring system of cells, in particular in the regenerating tissues, is subject to change during metamorphosis. The possibility is discussed that in vertebrates an endogenous farnesol-like sesquiterpenoid, probably farnesol itself, acts as a functional, but hitherto completely overlooked Juvenile anti-aging "Inbrome", a novel concept in signaling.
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven - University of Leuven, Belgium.
| | - Wouter De Haes
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven - University of Leuven, Belgium
| | - Tom Janssen
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven - University of Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven - University of Leuven, Belgium
| |
Collapse
|
34
|
Evans PD, Bayliss A, Reale V. GPCR-mediated rapid, non-genomic actions of steroids: comparisons between DmDopEcR and GPER1 (GPR30). Gen Comp Endocrinol 2014; 195:157-63. [PMID: 24188886 DOI: 10.1016/j.ygcen.2013.10.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
Steroid hormones classically mediate their actions by binding to intracellular receptor proteins that migrate to the nucleus and act as transcription factors to change gene expression. However, evidence is now accumulating for rapid, non-genomic effects of steroids. There is considerable controversy over the mechanisms underlying such effects. In a number of cases evidence has been presented for the direct activation of G-protein coupled receptors (GPCRs) by steroids, either at the plasma membrane, or at intracellular locations. Here, we will focus on the non-genomic actions of ecdysteroids on a Drosophila GPCR, DopEcR (CG18314), which can be activated by both ecdysone and the catecholamine, dopamine. We will also point out parallels between this system and the activation of the vertebrate GPCR, GPER1 (GPR30), which is thought to be activated by 17β-estradiol. We propose that the cellular localization and signalling properties of both DopEcR and GPER1 may be cell specific and depend upon their interactions with both accessory molecules and signalling pathways.
Collapse
Affiliation(s)
- Peter D Evans
- The Inositide Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | - Asha Bayliss
- The Inositide Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | - Vincenzina Reale
- The Inositide Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
35
|
De Loof A, Marchal E, Rivera-Perez C, Noriega FG, Schoofs L. Farnesol-like endogenous sesquiterpenoids in vertebrates: the probable but overlooked functional "inbrome" anti-aging counterpart of juvenile hormone of insects? Front Endocrinol (Lausanne) 2014; 5:222. [PMID: 25610425 PMCID: PMC4285131 DOI: 10.3389/fendo.2014.00222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/03/2014] [Indexed: 01/23/2023] Open
Abstract
Literature on the question whether the juvenile stage of vertebrates is hormonally regulated is scarce. It seems to be intuitively assumed that this stage of development is automated, and does not require any specific hormone(s). Such reasoning mimics the state of affairs in insects until it was shown that surgical removal of a tiny pair of glands in the head, the corpora allata, ended larval life and initiated metamorphosis. Decades later, the responsible hormone was found and named "juvenile hormone" (JH) because when present, it makes a larva molt into another larval stage. JH is a simple ester of farnesol, a sesquiterpenoid present in all eukaryotes. Whereas vertebrates do not have an anatomical counterpart of the corpora allata, their tissues do contain farnesol-like sesquiterpenoids (FLS). Some display typical JH activity when tested in appropriate insect bioassays. Some FLS are intermediates in the biosynthetic pathway of cholesterol, a compound that insects and nematodes (=Ecdysozoa) cannot synthesize by themselves. They ingest it as a vitamin. Until a recent (2014) reexamination of the basic principle underlying insect metamorphosis, it had been completely overlooked that the Ca(2+)-pump (SERCA) blocker thapsigargin is a sesquiterpenoid that mimics the absence of JH in inducing apoptosis. In our opinion, being in the juvenile state is primarily controlled by endogenous FLS that participate in controlling the activity of Ca(2+)-ATPases in the sarco(endo)plasmic reticulum (SERCAs), not only in insects but in all eukaryotes. Understanding the control mechanisms of being in the juvenile state may boost research not only in developmental biology in general, but also in diseases that develop after the juvenile stage, e.g., Alzheimer's disease. It may also help to better understand some of the causes of obesity, a syndrome that holometabolous last larval insects severely suffer from, and for which they found a very drastic but efficient solution, namely metamorphosis.
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
- *Correspondence: Arnold De Loof, Functional Genomics and Proteomics Group, Department of Biology, KU Leuven–University of Leuven, Naamsestraat 59, Leuven 3000, Belgium e-mail:
| | - Elisabeth Marchal
- Molecular Developmental Physiology and Signal Transduction Group, Department of Biology, KU Leuven, Leuven, Belgium
| | | | - Fernando G. Noriega
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|