1
|
Crespo D, Fjelldal PG, Hansen TJ, Kjærner-Semb E, Skaftnesmo KO, Thorsen A, Norberg B, Edvardsen RB, Andersson E, Schulz RW, Wargelius A, Kleppe L. Loss of bmp15 function in the seasonal spawner Atlantic salmon results in ovulatory failure. FASEB J 2024; 38:e23837. [PMID: 39031536 DOI: 10.1096/fj.202400370r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/15/2024] [Accepted: 07/10/2024] [Indexed: 07/22/2024]
Abstract
Bone morphogenetic protein 15 (BMP15) is an oocyte-specific growth factor important for successful female reproduction in mammals. While mutations in BMP15/Bmp15 cause ovulatory deficiency and/or infertility in certain mammalian species, loss of bmp15 in zebrafish, a continuous spawner and the only bmp15 knockout model in fish to date, results in complete arrest of follicle development and later female-to-male sex reversal, preventing to examine effects on ovulation/fertilization. Here, we used Atlantic salmon, a seasonal spawner, and generated bmp15 mutants to investigate ovarian development and fertility. Histological and morphometric analyses revealed that in biallelic frameshift (bmp15 fs/fs) mutant ovaries, folliculogenesis started earlier, resulting in an advanced development compared to wild-type (WT) controls, accompanied by a weaker expression of the (early) oocyte-specific factor figla. This precocious ovarian development was followed in bmp15 fs/fs females by enhanced follicle atresia during vitellogenic stages. Although genes involved in steroid synthesis and signaling (star, cyp11b, cyp17a1 and esr1) were dramatically higher in late vitellogenic bmp15 fs/fs mutant ovaries, estradiol-17β plasma levels were lower than in WT counterparts, potentially reflecting compensatory changes at the level of ovarian gene expression. At spawning, bmp15 fs/fs females displayed lower gonado-somatic index values and reduced oocyte diameter, and the majority (71.4%), showed mature non-ovulating ovaries with a high degree of atresia. The remaining (28.6%) females spawned eggs but they either could not be fertilized or, upon fertilization, showed severe malformations and embryonic mortality. Our results show that Bmp15 is required for proper follicle recruitment and growth and later ovulatory success in Atlantic salmon, providing an alternative candidate target to induce sterility in farmed salmon. Moreover, since loss of bmp15 in salmon, in contrast to zebrafish, does not result in female-to-male sex change, this is the first mutant model in fish allowing further investigations on Bmp15-mediated functions in the ovulatory period.
Collapse
Affiliation(s)
- Diego Crespo
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Per Gunnar Fjelldal
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Matre Research Station, Matredal, Norway
| | - Tom J Hansen
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Matre Research Station, Matredal, Norway
| | - Erik Kjærner-Semb
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Kai Ove Skaftnesmo
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Anders Thorsen
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Birgitta Norberg
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Austevoll Research Station, Haukanes, Norway
| | - Rolf B Edvardsen
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Eva Andersson
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Rüdiger W Schulz
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Anna Wargelius
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Lene Kleppe
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| |
Collapse
|
2
|
Brown MS, Carvalheiro R, Taylor RS, Mekkawy W, Luke TDW, Rands L, Nieuwesteeg D, Evans BS, Wade NM, Lind CE, Hilder PE. Probabilistic reaction norm reveals family-related variation in the association between size, condition, and sexual maturation onset in Atlantic salmon (Salmo salar). JOURNAL OF FISH BIOLOGY 2024; 104:939-949. [PMID: 37996984 DOI: 10.1111/jfb.15626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
This study investigated the relationship between the size, condition, year class, family, and sexual maturity of Atlantic salmon (Salmo salar) using data collected in an aquaculture selective breeding programme. Males that were sexually mature at 2 years of age (maiden spawn) have, on average, greater fork length and condition factor (K) at 1 year of age than their immature counterparts. For every 10-mm increase in fork length or 0.1 increase in K at 1 year of age, the odds of sexual maturity at 2 years of age increased by 1.48 or 1.22 times, respectively. Females that were sexually mature at 3 years of age (maiden spawn) have, on average, greater fork length and K at 2 years of age than their immature counterparts. For every 10-mm increase in fork length or 0.1 increase in K at 2 years of age, the odds of sexual maturity at 3 years of age increased by 1.06 or 1.44 times, respectively. The family explained 34.93% of the variation in sexual maturity among 2-year-old males that was not attributable to the average effects of fork length and K at 1 year of age and year class. The proportion of variation in sexual maturity among 3-year-old females explained by the family could not be investigated. These findings suggest that the onset of sexual maturation in Atlantic salmon is conditional on performance (with respect to energy availability) surpassing a threshold, the magnitude of which can vary between families and is determined by a genetic component. This could support the application of genetic selection to promote or inhibit the onset of sexual maturation in farmed stocks.
Collapse
Affiliation(s)
| | | | | | - Wagdy Mekkawy
- CSIRO Agriculture and Food, Hobart, Tasmania, Australia
| | | | - Lewis Rands
- Salmon Enterprises of Tasmania Pty. Ltd., Wayatinah, Tasmania, Australia
| | - Damien Nieuwesteeg
- Salmon Enterprises of Tasmania Pty. Ltd., Wayatinah, Tasmania, Australia
| | - Brad S Evans
- CSIRO Agriculture and Food, Hobart, Tasmania, Australia
| | - Nicholas M Wade
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, UK
| | - Curtis E Lind
- CSIRO Agriculture and Food, Hobart, Tasmania, Australia
| | | |
Collapse
|
3
|
Andersson E, Schulz RW, Almeida F, Kleppe L, Skaftnesmo KO, Kjærner-Semb E, Crespo D, Fjelldal PG, Hansen TJ, Norberg B, Edvardsen RB, Wargelius A. Loss of Fshr Prevents Testicular Maturation in Atlantic Salmon (Salmo salar L.). Endocrinology 2024; 165:bqae013. [PMID: 38298132 PMCID: PMC10878062 DOI: 10.1210/endocr/bqae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/02/2024]
Abstract
Early puberty poses a significant challenge for male Atlantic salmon in aquaculture due to its negative impact on growth and welfare. The regulation of puberty in vertebrates involves 2 key reproductive hormones: follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and their gonadal receptors. In male mice lacking FSH receptor, testes size is reduced, but fertility is maintained, while medaka and zebrafish with a disrupted fshr gene exhibit near normal testis size and fertility. In these fishes both Fsh and Lh are present during puberty and Lh may rescue fertility, while in salmonid fish only Fsh is present in the circulation during puberty. Using CRISPR-Cas9, we produced crispants with a high prevalence of fshr mutations at the target site, which remained fertile, although more than half showed a testis development deviating from wild-type (wt) males. Crossing out these F0 crispants to each other produced a viable F1 generation showing frameshift (fshr-/-) or in-frame mutations (fshrif/if). Nearly all wt males matured while all fshr-/- males remained immature with small testes containing A spermatogonia as the furthest developed germ cell type and prepubertal plasma androgen levels. Also, the pituitary transcript levels of gnrhr2bba and lhb, but not for fshb, were reduced in the fshr-/- males compared with maturing males. More than half of the fshrif/if mutant males showed no or a delayed maturation. In conclusion, Atlantic salmon show the unique characteristic that loss of Fshr function alone results in male infertility, offering new opportunities to control precocious puberty or fertility in salmon.
Collapse
Affiliation(s)
- Eva Andersson
- Institute of Marine Research, NO-5817 Bergen, Norway
| | - Rüdiger W Schulz
- Institute of Marine Research, NO-5817 Bergen, Norway
- Science Faculty, Department Biology, Utrecht University, NL-3584 CH Utrecht, The Netherlands
| | | | - Lene Kleppe
- Institute of Marine Research, NO-5817 Bergen, Norway
| | | | | | - Diego Crespo
- Institute of Marine Research, NO-5817 Bergen, Norway
| | | | | | | | | | | |
Collapse
|
4
|
Jenkins LE, Medeiros LR, Cervantes DL, Nagler JJ, Pierce AL. Effects of post-spawning ration restriction on reproductive development and the growth hormone/insulin-like growth factor-1 axis in female rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111510. [PMID: 37652290 DOI: 10.1016/j.cbpa.2023.111510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
In iteroparous female salmonids, the growth and reproductive endocrine axes interact during the period after spawning. Energy depletion due to pre-spawn fasting, migration, and ovarian development must be restored, and the next reproductive cycle is initiated in consecutively maturing fish. In the natural environment, food availability is often limited during the post-spawn period. To investigate the growth and reproductive endocrinology of the post-spawn period, we sampled female rainbow trout over the 30 weeks following their first spawning. Fish were fasted for 2 months prior to spawning, then fed a standard or a restricted ration. Analysis was confined to reproductive fish. Plasma estradiol-17β decreased during the 8 weeks following spawning and then began increasing in both ration groups and was lower in feed-restricted versus standard ration fish from 8 weeks onward. Plasma insulin-like growth factor-1 increased over the same period and then remained constant in both ration groups and was lower in feed-restricted versus standard ration fish from week 8 to week 30. Plasma growth hormone decreased following spawning in standard ration fish and became elevated in feed-restricted versus standard ration fish at 20- and 30-weeks post-spawn. Growth rates, condition factor, and muscle lipid levels were higher in standard ration versus feed-restricted fish within 2-4 weeks after spawning. These results suggest that two phases occurred during the post-spawn period: recovery from spawning and restoration of energy reserves over weeks 0 to 8, followed by adjustment of the growth and reproductive endocrine axes to ration level over weeks 8 to 30.
Collapse
Affiliation(s)
- Laura E Jenkins
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, USA.
| | - Lea R Medeiros
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, USA.
| | - Diana L Cervantes
- Department of Biological Sciences, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, USA.
| | - James J Nagler
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, USA.
| | - Andrew L Pierce
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, USA; Columbia River Inter-Tribal Fish Commission, 700 NE Multnomah St, Suite 1200, Portland, OR 97232, USA.
| |
Collapse
|
5
|
Crespo D, Skaftnesmo KO, Kjærner-Semb E, Yilmaz O, Norberg B, Olausson S, Vogelsang P, Bogerd J, Kleppe L, Edvardsen RB, Andersson E, Wargelius A, Hansen TJ, Fjelldal PG, Schulz RW. Pituitary Gonadotropin Gene Expression During Induced Onset of Postsmolt Maturation in Male Atlantic Salmon: In Vivo and Tissue Culture Studies. Front Endocrinol (Lausanne) 2022; 13:826920. [PMID: 35370944 PMCID: PMC8964956 DOI: 10.3389/fendo.2022.826920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/17/2022] [Indexed: 12/25/2022] Open
Abstract
Precocious male maturation causes reduced welfare and increased production costs in Atlantic salmon (Salmo salar) aquaculture. The pituitary produces and releases follicle-stimulating hormone (Fsh), the gonadotropin triggering puberty in male salmonids. However, little is known about how Fsh production is regulated in Atlantic salmon. We examined, in vivo and ex vivo, transcriptional changes of gonadotropin-related genes accompanying the initial steps of testis maturation, in pituitaries of males exposed to photoperiod and temperature conditions promoting maturation (constant light and 16°C). Pituitary fshb, lhb and gnrhr2bba transcripts increased in vivo in maturing males (gonado-somatic index > 0.1%). RNA sequencing (RNAseq) analysis using pituitaries from genetically similar males carrying the same genetic predisposition to mature, but differing by responding or not responding to stimulatory environmental conditions, revealed 144 differentially expressed genes, ~2/3rds being up-regulated in responders, including fshb and other pituitary hormones, steroid-related and other puberty-associated transcripts. Functional enrichment analyses confirmed gene involvement in hormone/steroid production and gonad development. In ex vivo studies, whole pituitaries were exposed to a selection of hormones and growth factors. Gonadotropin-releasing hormone (Gnrh), 17β-estradiol (E2) and 11-ketotestosterone (11-KT) up-regulated gnrhr2bba and lhb, while fshb was up-regulated by Gnrh but down-regulated by 11-KT in pituitaries from immature males. Also pituitaries from maturing males responded to Gnrh and sex steroids by increased gnrhr2bba and lhb transcript levels, but fshb expression remained unchanged. Growth factors (inhibin A, activin A and insulin-like growth factor 1) did not change gnrhr2bba, lhb or fshb transcript levels in pituitaries either from immature or maturing males. Additional pituitary ex vivo studies on candidates identified by RNAseq showed that these transcripts were preferentially regulated by Gnrh and sex steroids, but not by growth factors, and that Gnrh/sex steroids were less effective when incubating pituitaries from maturing males. Our results suggest that a yet to be characterized mechanism up-regulating fshb expression in the salmon pituitary is activated in response to stimulatory environmental conditions prior to morphological signs of testis maturation, and that the transcriptional program associated with this mechanism becomes unresponsive or less responsive to most stimulators ex vivo once males had entered pubertal developmental in vivo.
Collapse
Affiliation(s)
- Diego Crespo
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
- *Correspondence: Diego Crespo,
| | - Kai Ove Skaftnesmo
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Erik Kjærner-Semb
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Ozlem Yilmaz
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Austevoll Research Station, Storebø, Norway
| | - Birgitta Norberg
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Austevoll Research Station, Storebø, Norway
| | - Sara Olausson
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Austevoll Research Station, Storebø, Norway
| | - Petra Vogelsang
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Jan Bogerd
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht, Netherlands
| | - Lene Kleppe
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Rolf B. Edvardsen
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Eva Andersson
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Anna Wargelius
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Tom J. Hansen
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Matre Research Station, Matredal, Norway
| | - Per Gunnar Fjelldal
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Matre Research Station, Matredal, Norway
| | - Rüdiger W. Schulz
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
6
|
New insights into reproductive physiology in Antarctic fish: a trial in Lepidonotothen nudifrons. Polar Biol 2021. [DOI: 10.1007/s00300-021-02879-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Skaftnesmo KO, Crespo D, Kleppe L, Andersson E, Edvardsen RB, Norberg B, Fjelldal PG, Hansen TJ, Schulz RW, Wargelius A. Loss of stra8 Increases Germ Cell Apoptosis but Is Still Compatible With Sperm Production in Atlantic Salmon ( Salmo salar). Front Cell Dev Biol 2021; 9:657192. [PMID: 33942021 PMCID: PMC8087537 DOI: 10.3389/fcell.2021.657192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/29/2021] [Indexed: 12/03/2022] Open
Abstract
Entering meiosis strictly depends on stimulated by retinoic acid 8 (Stra8) gene function in mammals. This gene is missing in a number of fish species, including medaka and zebrafish, but is present in the majority of fishes, including Atlantic salmon. Here, we have examined the effects of removing stra8 on male fertility in Atlantic salmon. As in mammals, stra8 expression was restricted to germ cells in the testis, transcript levels increased during the start of puberty, and decreased when blocking the production of retinoic acid. We targeted the salmon stra8 gene with two gRNAs one of these were highly effective and produced numerous mutations in stra8, which led to a loss of wild-type (WT) stra8 expression in F0 salmon testis. In maturing stra8 crispants, the spermatogenetic tubuli were partially disorganized and displayed a sevenfold increase in germ cell apoptosis, in particular among type B spermatogonia and spermatocytes. The production of spermatogenic cysts, on the other hand, increased in maturing stra8 crispants. Gene expression analysis revealed unchanged (lin28a, ret) or reduced levels (egr1, dusp4) of transcripts associated with undifferentiated spermatogonia. Decreased expression was recorded for some genes expressed in differentiating spermatogonia including dmrt1 and ccnd2 or in spermatocytes, such as ccna1. Different from Stra8-deficient mammals, a large number of germ cells completed spermatogenesis, sperm was produced and fertilization rates were similar in WT and crispant males. While loss of stra8 increased germ cell apoptosis during salmon spermatogenesis, crispants compensated this cell loss by an elevated production of spermatogenic cysts, and were able to produce functional sperm. It appears that also in a fish species with a stra8 gene in the genome, the critical relevance this gene has attained for mammalian spermatogenesis is not yet given, although detrimental effects of the loss of stra8 were clearly visible during maturation.
Collapse
Affiliation(s)
- Kai O Skaftnesmo
- Institute of Marine Research, Research Group Reproduction and Developmental Biology, Bergen, Norway
| | - Diego Crespo
- Institute of Marine Research, Research Group Reproduction and Developmental Biology, Bergen, Norway
| | - Lene Kleppe
- Institute of Marine Research, Research Group Reproduction and Developmental Biology, Bergen, Norway
| | - Eva Andersson
- Institute of Marine Research, Research Group Reproduction and Developmental Biology, Bergen, Norway
| | - Rolf B Edvardsen
- Institute of Marine Research, Research Group Reproduction and Developmental Biology, Bergen, Norway
| | - Birgitta Norberg
- Institute of Marine Research, Research Group Reproduction and Developmental Biology, Austevoll Research Station, Storebø, Norway
| | - Per Gunnar Fjelldal
- Institute of Marine Research, Research Group Reproduction and Developmental Biology, Matre Research Station, Matredal, Norway
| | - Tom J Hansen
- Institute of Marine Research, Research Group Reproduction and Developmental Biology, Matre Research Station, Matredal, Norway
| | - Rüdiger W Schulz
- Institute of Marine Research, Research Group Reproduction and Developmental Biology, Bergen, Norway.,Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht, Netherlands
| | - Anna Wargelius
- Institute of Marine Research, Research Group Reproduction and Developmental Biology, Bergen, Norway
| |
Collapse
|
8
|
Lundova K, Matousek J, Stejskal V. The Effect of Non-Circadian Photoperiod on Growth and Puberty Onset of Brook Trout Salvelinus fontinalis Mitchill. Animals (Basel) 2021; 11:ani11030692. [PMID: 33807670 PMCID: PMC7999713 DOI: 10.3390/ani11030692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/17/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary There has been intensive research addressing the positive effects of different prolonged photoperiods on wide spectrum of aspects of salmonids aquaculture. The present study was an attempt to assess non-circadian photoperiod regimens on growth and puberty onset of brook trout. We found regimen under which fish was exposed to 48 h of natural ambient photoperiod alternating with 24 h of constant light to be remarkably effective on the delay of gonad development and onset of puberty, enabling fish farmers to fight with negative aspects related to brook trout puberty. Abstract The aim of the present study was to assess the effects of a prolonged photoperiod on growth rate and sexual maturation in brook trout Salvelinus fontinalis. The task of the experiment was to determine the most effective light regimen capable to minimizing the effects of puberty, including impairment of somatic growth and further general characteristics. In this regard, the studied fish were reared under three photoperiod regimens in which fish were exposed to 24 h continuous light alternating with 24 or 48 h under the ambient photoperiod or 48 h continuous light alternating with a 24 h ambient photoperiod. A control group was reared under the natural ambient photoperiod. Four-hundred and fifty fish with an average initial body weight of 101.3 ± 1.2 g were used for each experimental group (three replicates of each treatment plus control). A statistically lower growth rate showed control groups in both sexes. At the end of the study, control males had an average body weight of 226.6 ± 39.8 g and control females a body weight of 199.8 ± 12.2 g. At the same period, a significantly higher average body weight was found in groups reared 24 h under ambient photoperiod alternating with a 48 h continuous light regime (2CP:1AP) in both sexes (296.56 ± 62.5 g—males, and 239.9 ± 19.2 g—females, respectively). A significantly higher percentage of sexually mature fish was observed in the control group (80% of males and 29% of females, respectively). We found significantly fewer sexually mature females compared to males. The lowest survival was observed in group 2CP:1AP at 92%. It was concluded that regimen under which fish was exposed to 48 h of natural ambient photoperiod alternating with 24 h of constant light (1CP:2AP) lead to the successful delay of gonad development and onset of puberty and increased somatic growth in both sexes.
Collapse
|
9
|
Kim BH, Hur SP, Hyeon JY, Yamashina F, Takemura A, Lee YD. Annual patterns of ocular melatonin level in the female grass puffer, Takifugu alboplumbeus: possible involvement in seasonal reproductive response. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:787-801. [PMID: 32128660 DOI: 10.1007/s10695-019-00749-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to investigate the expression patterns of ocular melatonin in the annual reproductive cycle of the female grass puffer. Spawning season of the female grass puffer is from June to July in Jeju, South Korea. Time-resolved fluoroimmunoassay revealed that levels of ocular melatonin, which show an annual change, peaked in May (spawning season). Additionally, expression of reproductive-related genes also showed annual patterns: GnRH1 peaked in August, GnRH2 peaked in February, GnRH3, Kiss2, and LPXRFa peaked in November. These results suggest that ocular melatonin may be related to the annual reproductive cycle in the grass puffer. To better understand the photic regulation of AANAT1a mRNA in the retina, we observed the nocturnal pattern of ocular melatonin levels daily, which shows a nocturnal pattern in both short photoperiod (SD) and long photoperiod (LD) conditions. In the brain, AANAT2 mRNA also shows a nocturnal pattern in both SD and LD; however, the time of peak expression of AANAT2 mRNA was unchanged in both conditions. Following intraperitoneal injection of melatonin for 2 weeks, expression of GnRH2 and LPXRFa mRNA in the brain significantly increased, while that of Kiss2 mRNA was decreased, suggesting that melatonin has a reproduction-related effect. Furthermore, under SD and LD conditions for 14 weeks, the gonadosomatic index more increased and the maturity of the ovary progressed under LD compared with those under SD, suggesting that the SD photoperiodic signal inactivated ovarian development. These results indicate that the ocular melatonin may have a possible role in the reproductive endocrinology of the grass puffer.
Collapse
Affiliation(s)
- Byeong-Hoon Kim
- Marine Science Institute, Jeju National University, Jeju, 695-965, Republic of Korea
| | - Sung-Pyo Hur
- Jeju Research Institute, Korea Institute of Ocean Science & Technology, 2670, Iijudong-ro, Gujwa-eup, Jeju, 63349, Republic of Korea.
| | - Ji-Yeon Hyeon
- Jeju Research Institute, Korea Institute of Ocean Science & Technology, 2670, Iijudong-ro, Gujwa-eup, Jeju, 63349, Republic of Korea
| | - Fumika Yamashina
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Akihiro Takemura
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Young-Don Lee
- Marine Science Institute, Jeju National University, Jeju, 695-965, Republic of Korea
| |
Collapse
|
10
|
Xu H, Sun B, Liao Z, Pribytkova E, Zhang Q, Wei Y, Liang M. Possible involvement of PKC/MAPK pathway in the regulation of GnRH by dietary arachidonic acid in the brain of male tongue sole
Cynoglossus semilaevis. AQUACULTURE RESEARCH 2019; 50:3528-3538. [DOI: 10.1111/are.14307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/05/2019] [Indexed: 01/05/2025]
Affiliation(s)
- Houguo Xu
- Yellow Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Qingdao China
- Laboratory for Marine Fisheries Science and Food Production Processes Qingdao National Laboratory for Marine Science and Technology Qingdao China
| | - Bo Sun
- Yellow Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Qingdao China
| | - Zhangbin Liao
- Yellow Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Qingdao China
| | - Elena Pribytkova
- N. Laverov Federal Center for Integrated Arctic Research Russian Academy of Sciences Arkhangelsk Russia
| | - Qinggong Zhang
- Yellow Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Qingdao China
| | - Yuliang Wei
- Yellow Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Qingdao China
- Laboratory for Marine Fisheries Science and Food Production Processes Qingdao National Laboratory for Marine Science and Technology Qingdao China
| | - Mengqing Liang
- Yellow Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Qingdao China
- Laboratory for Marine Fisheries Science and Food Production Processes Qingdao National Laboratory for Marine Science and Technology Qingdao China
| |
Collapse
|
11
|
Elisio M, Awruch CA, Massa AM, Macchi GJ, Somoza GM. Effects of temperature on the reproductive physiology of female elasmobranchs: The case of the narrownose smooth-hound shark (Mustelus schmitti). Gen Comp Endocrinol 2019; 284:113242. [PMID: 31400435 DOI: 10.1016/j.ygcen.2019.113242] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 11/26/2022]
Abstract
The knowledge of how temperature influences elasmobranchs reproductive physiology allows a better understanding of their reproductive patterns. This study describes the relationship between temperature fluctuations and the plasmatic changes of the sex steroids related to reproduction: testosterone (T), estradiol (E2) and progesterone (P4), throughout the female reproductive cycle of the shark Mustelus schmitti. A total of 123 adult females were bi-monthly sampled in Buenos Aires, Argentina, coastal waters. Bottom temperatures were recorded at each sampling point and blood samples were taken from each female for plasma sex steroids measurement. Sex steroid plasma levels were analyzed in relation with maximum follicular diameter (MFD), uterosomatic index (USI, as indicator of pregnancy) and temperature using Generalized Additive Models. Plasmatic E2 and T increased during follicular growth until MFD reached 1.34 and 1.46 cm, respectively. Peak of T occurred at the follicular stage associated with parturition (MFD, 1.4-1.6 cm), just prior to final maturation and ovulation (MFD, 1.6-2.0 cm). Progesterone significantly increased at this last ovarian phase, while T and E2 decreased. The increase of USI with pregnancy was associated to a decrease in T and mainly E2 levels, while P4 remained unaffected. Prior to ovulation, T plasma levels decreased with temperature below to 13 °C and then increased progressively with a pronounced elevation above 17 °C, while E2 presented an opposite pattern. Progesterone plasma levels changed with temperature showing a similar pattern to that observed for T. Using M. schmitti shark as model species, this study shows a clear picture of how seawater temperature variations can affect the reproductive physiology in elasmobranch females. A hypothetical mechanism (based on T elevation driven by temperature increase and its connection by feedback with a P4 rise and parturition/ovulation induction) is proposed as evidence to support that the increase in temperature can trigger reproductive events in elasmobranchs. In addition to its ecological scope, this work contributes to reinforce the relatively scarce general knowledge of elasmobranchs reproductive physiology.
Collapse
Affiliation(s)
- Mariano Elisio
- Instituto Nacional de Investigación y Desarrollo Pesquero, 7600 Mar del Plata, Argentina; Instituto de Investigaciones Marinas y Costeras (CONICET-UNMdP), 7600 Mar del Plata, Argentina.
| | - Cynthia A Awruch
- CESIMAR (Centro Para el Estudio de Sistemas Marinos) - CENPAT - CONICET, U9120ACD Puerto Madryn, Argentina; School of Natural Sciences, University of Tasmania, TAS 7001 Hobart, Australia.
| | - Ana M Massa
- Instituto Nacional de Investigación y Desarrollo Pesquero, 7600 Mar del Plata, Argentina.
| | - Gustavo J Macchi
- Instituto Nacional de Investigación y Desarrollo Pesquero, 7600 Mar del Plata, Argentina; Instituto de Investigaciones Marinas y Costeras (CONICET-UNMdP), 7600 Mar del Plata, Argentina.
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), B7130IWA Chascomús, Argentina.
| |
Collapse
|
12
|
Jenkins LE, Pierce AL, Graham ND, Medeiros LR, Hatch DR, Nagler JJ. Elevated plasma triglycerides and growth rate are early indicators of reproductive status in post-spawning female steelhead trout ( Oncorhynchus mykiss). CONSERVATION PHYSIOLOGY 2019; 7:coz038. [PMID: 31380109 PMCID: PMC6659465 DOI: 10.1093/conphys/coz038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/01/2019] [Accepted: 06/05/2019] [Indexed: 06/10/2023]
Abstract
Many iteroparous fishes spawn after skipping one or more yearly cycles, which impacts recruitment estimates used for fisheries management and conservation. The physiological mechanisms underlying the development of consecutive and skip spawning life histories in fishes are not well understood. In salmonids, lipid energy reserves and/or growth are thought to regulate the initiation of reproductive maturation during a critical period ~1 year prior to spawning. The fasting spawning migration of summer-run steelhead trout (Oncorhynchus mykiss) results in significant depletion of energy reserves during the proposed critical period for repeat spawning. To determine whether and when lipid energy reserves and growth influence repeat spawning, measures of lipid energy reserves, growth rate and reproductive development were tracked in female steelhead trout from first to second spawning as a consecutive or skip spawner in captivity. Plasma triglyceride (TG) levels and growth rate were elevated by 10 weeks after spawning in reproductive (i.e. consecutive spawning) versus non-reproductive (i.e. skip spawning) individuals. Muscle lipid (ML) levels, condition factor and plasma estradiol levels increased at later time points. The early differences in plasma TG levels and increases in growth rate are attributable to differential rates of feeding and assimilation between the groups following spawning. A year after spawning, plasma TG levels, MLs and growth rate decreased in consecutive spawners, attributable to transfer of lipid reserves into the ovary. During the year prior to second spawning, energy reserves and plasma estradiol levels were higher in reproductive skip spawners versus consecutive spawners, reflecting the energy deficit after first spawning. These results suggest that the decision to initiate ovarian recrudescence occurs by 10 weeks after first spawning and are consistent with the differences in energy reserves acquired following spawning being a consequence of that decision. This information will increase the success of conservation projects reconditioning post-spawning summer-run steelhead trout.
Collapse
Affiliation(s)
- Laura E Jenkins
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID, USA
| | - Andrew L Pierce
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID, USA
- Fishery Science Department, Columbia River Inter-Tribal Fish Commission, Portland, OR, USA
| | - Neil D Graham
- Fishery Science Department, Columbia River Inter-Tribal Fish Commission, Portland, OR, USA
| | - Lea R Medeiros
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID, USA
| | - Douglas R Hatch
- Fishery Science Department, Columbia River Inter-Tribal Fish Commission, Portland, OR, USA
| | - James J Nagler
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID, USA
| |
Collapse
|
13
|
Schulz RW, Taranger GL, Bogerd J, Nijenhuis W, Norberg B, Male R, Andersson E. Entry into puberty is reflected in changes in hormone production but not in testicular receptor expression in Atlantic salmon (Salmo salar). Reprod Biol Endocrinol 2019; 17:48. [PMID: 31226998 PMCID: PMC6588918 DOI: 10.1186/s12958-019-0493-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/14/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Puberty in male Atlantic salmon in aquaculture can start as early as after the first winter in seawater, stunts growth and entails welfare problems due to the maturation-associated loss of osmoregulation capacity in seawater. A better understanding of the regulation of puberty is the basis for developing improved cultivation approaches that avoid these problems. Our aim here was to identify morphological and molecular markers signaling the initiation of, and potential involvement in, testis maturation. METHODS In the first experiment, we monitored for the first time in large Atlantic salmon males several reproductive parameters during 17 months including the first reproductive cycle. Since testicular growth accelerated after the Winter solstice, we focused in the second experiment on the 5 months following the winter solstice, exposing fish from February 1 onwards to the natural photoperiod (NL) or to continuous additional light (LL). RESULTS In the first experiment, testis weight, plasma androgens and pituitary gonadotropin transcript levels increased with the appearance of type B spermatogonia in the testis, but testicular transcript levels for gonadotropin or androgen receptors did not change while being clearly detectable. In the second experiment, all males kept under NL had been recruited into puberty until June. However, recruitment into puberty was blocked in ~ 40% of the males exposed to LL. The first morphological sign of recruitment was an increased proliferation activity of single spermatogonia and Sertoli cells. Irrespective of the photoperiod, this early sign of testis maturation was accompanied by elevated pituitary gnrhr4 and fshb and testicular igf3 transcript levels as well as increased plasma androgen levels. The transition into puberty occurred again with stable testicular gonadotropin and androgen receptor transcript levels. CONCLUSIONS The sensitivity to reproductive hormones is already established before puberty starts and up-regulation of testicular hormone receptor expression is not required to facilitate entry into puberty. The increased availability of receptor ligands, on the other hand, may result from an up-regulation of pituitary Gnrh receptor expression, eventually activating testicular growth factor and sex steroid release and driving germ and Sertoli cell proliferation and differentiation.
Collapse
Affiliation(s)
- Rüdiger W Schulz
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, P.O.Box 1870 Nordnes, 5817, Bergen, Norway
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Geir Lasse Taranger
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, P.O.Box 1870 Nordnes, 5817, Bergen, Norway
| | - Jan Bogerd
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Wouter Nijenhuis
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Birgitta Norberg
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, P.O.Box 1870 Nordnes, 5817, Bergen, Norway
| | - Rune Male
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Eva Andersson
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, P.O.Box 1870 Nordnes, 5817, Bergen, Norway.
| |
Collapse
|
14
|
Fraser TW, Fjelldal PG, Schulz RW, Norberg B, Hansen TJ. Termination of puberty in out-of-season male Atlantic salmon smolts. Comp Biochem Physiol A Mol Integr Physiol 2019; 232:60-66. [DOI: 10.1016/j.cbpa.2019.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/02/2019] [Accepted: 03/12/2019] [Indexed: 01/03/2023]
|
15
|
Hou ZS, Wen HS, Li JF, He F, Li Y, Tao YX. Expression of estrogen receptors in female rainbow trout (Oncorhynchus mykiss) during first ovarian development and under dense rearing condition. Gen Comp Endocrinol 2018; 259:1-11. [PMID: 29017850 DOI: 10.1016/j.ygcen.2017.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/07/2017] [Accepted: 10/06/2017] [Indexed: 10/18/2022]
Abstract
To study the expression of four estrogen receptor genes (erα1, erα2, erβ1, erβ2) of female rainbow trout (Oncorhynchus mykiss) during first ovarian development, trouts were sampled from different ovarian stages. Serum E2 (estradiol) was measured by ELISA and estrogen receptors mRNA expression were examined by qRT-PCR. Our results showed a close association between increased erα1 and vitellogenin mRNA expression during ovarian maturation and increased erα2 mRNA expression in mature ovarian stages. Correlation analysis revealed that a negative relationship between serum E2 and ovarian erβ1 (or hepatic erβ2), but ovarian erβ2 mRNA expression was relatively unchanged during first ovarian development. Trout were also reared in different densities as stocking density 1, 2 and 3 (SD1, 4.6-31.1 kg/m3; SD2, 6.6-40.6 kg/m3; SD3, 8.6-49.3 kg/m3) to elucidate effects of high density on estrogen receptor expression. Histology observation showed ovarian development of trout in higher densities were retard with a relatively early stage and fewer vitellogenin accumulation. Trout in high densities showed significantly decreased serum E2, erα mRNA expression and increasing trends of erβ mRNA expression. A noticeable increase of ovarian erβ2 mRNA expression was seen in trout when density is approaching to 50 kg/m3. In conclusion, we may hypothesize that increased erβ mRNA expression triggered by high density result in decreased erα mRNA expression and vitellogenesis. As a result, ovarian development in higher densities was retard.
Collapse
Affiliation(s)
- Zhi-Shuai Hou
- Fisheries College, Ocean University of China, Qingdao 266003, China; Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Hai-Shen Wen
- Fisheries College, Ocean University of China, Qingdao 266003, China.
| | - Ji-Fang Li
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Feng He
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Yun Li
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| |
Collapse
|
16
|
Wylie MJ, Setiawan AN, Irvine GW, Symonds JE, Elizur A, Lokman PM. Effects of neuropeptides and sex steroids on the pituitary-gonadal axis of pre-pubertal F1 wreckfish (hāpuku) Polyprion oxygeneios in vivo: Evidence of inhibitory effects of androgens. Gen Comp Endocrinol 2018; 257:113-121. [PMID: 28822774 DOI: 10.1016/j.ygcen.2017.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 08/08/2017] [Accepted: 08/15/2017] [Indexed: 11/26/2022]
Abstract
The ability to advance puberty in broodstock that have a long generation interval and mature at large size is a highly valuable tool in contemporary aquaculture enterprise. Juvenile male and female wreckfish 'hāpuku' (Polyprion oxygeneios), a candidate for commercialization in aquaculture, were subjected to treatment for 8weeks with two implants, one containing steroid (blank; estradiol-17β, E2; 11-ketotestosterone, KT; 17 α-methyltestosterone, MT), the other peptide (blank; gonadotropin-releasing hormone analog, GnRHa; kisspeptin, Kiss2-12). The expression of target genes (glycoprotein homone α-subunit, gpa; follicle stimulating-hormone β-subunit, fshb; luteinizing hormone β-subunit, lhb; GnRH receptor, gnrhr) in the pituitary was assayed by quantitative PCR. KT and MT decreased mRNA levels of all target genes in both male and female hāpuku, suggestive of a strong inhibitory tone by these steroid hormones. E2, GnRHa and Kiss2-12 were largely ineffective, regardless of whether they were administered alone or in combination with steroid implants. Clear differences in release and/or clearance rates between E2 and KT from implants were evident, in part explaining our observations. Advancement of puberty was not achieved, and we pose that different hormone doses and/or administration during more advanced stages of gonadogenesis need to be considered to move this field forward.
Collapse
Affiliation(s)
- Matthew J Wylie
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Alvin N Setiawan
- National Institute of Water and Atmospheric Research, Northland Marine Research Centre, PO Box 147, Ruakaka 0151, New Zealand
| | - Glen W Irvine
- National Institute of Water and Atmospheric Research, Northland Marine Research Centre, PO Box 147, Ruakaka 0151, New Zealand
| | - Jane E Symonds
- National Institute of Water and Atmospheric Research, Northland Marine Research Centre, PO Box 147, Ruakaka 0151, New Zealand
| | - Abigail Elizur
- Faculty of Science, Health, Education and Engineering, GeneCology Research Centre, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - P Mark Lokman
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
17
|
Kjærner-Semb E, Ayllon F, Kleppe L, Sørhus E, Skaftnesmo K, Furmanek T, Segafredo FT, Thorsen A, Fjelldal PG, Hansen T, Taranger GL, Andersson E, Schulz RW, Wargelius A, Edvardsen RB. Vgll3 and the Hippo pathway are regulated in Sertoli cells upon entry and during puberty in Atlantic salmon testis. Sci Rep 2018; 8:1912. [PMID: 29382956 PMCID: PMC5789820 DOI: 10.1038/s41598-018-20308-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/16/2018] [Indexed: 01/07/2023] Open
Abstract
Vgll3 is linked to age at maturity in Atlantic salmon (Salmo salar). However, the molecular mechanisms involving Vgll3 in controlling timing of puberty as well as relevant tissue and cell types are currently unknown. Vgll3 and the associated Hippo pathway has been linked to reduced proliferation activity in different tissues. Analysis of gene expression reveals for the first time that vgll3 and several members of the Hippo pathway were down-regulated in salmon testis during onset of puberty and remained repressed in maturing testis. In the gonads, we found expression in Sertoli and granulosa cells in males and females, respectively. We hypothesize that vgll3 negatively regulates Sertoli cell proliferation in testis and therefore acts as an inhibitor of pubertal testis growth. Gonadal expression of vgll3 is located to somatic cells that are in direct contact with germ cells in both sexes, however our results indicate sex-biased regulation of vgll3 during puberty.
Collapse
Affiliation(s)
- Erik Kjærner-Semb
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway. .,Department of Biology, University of Bergen, Bergen, Norway.
| | - Fernando Ayllon
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Lene Kleppe
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Elin Sørhus
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Kai Skaftnesmo
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Tomasz Furmanek
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Frida T Segafredo
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Anders Thorsen
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Per Gunnar Fjelldal
- Institute of Marine research, Matre Aquaculture Research Station, 5984, Matredal, Norway
| | - Tom Hansen
- Institute of Marine research, Matre Aquaculture Research Station, 5984, Matredal, Norway
| | - Geir Lasse Taranger
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Eva Andersson
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Rüdiger W Schulz
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway.,Department Biology, Utrecht University, Science Faculty, Padualaan 8, NL-3584 CH, Utrecht, The Netherlands
| | - Anna Wargelius
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Rolf B Edvardsen
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| |
Collapse
|
18
|
Kleppe L, Andersson E, Skaftnesmo KO, Edvardsen RB, Fjelldal PG, Norberg B, Bogerd J, Schulz RW, Wargelius A. Sex steroid production associated with puberty is absent in germ cell-free salmon. Sci Rep 2017; 7:12584. [PMID: 28974703 PMCID: PMC5626747 DOI: 10.1038/s41598-017-12936-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/20/2017] [Indexed: 11/09/2022] Open
Abstract
In all vertebrates studied so far, germ cells are not required for pubertal maturation of the gonadal steroidogenic system, subsequent development of secondary sex characteristics and reproductive behavior. To explore if the absence of germ cells affects puberty or growth in Atlantic salmon, germ cell-free (GCF), dnd knockout and wild type (WT) postsmolts were stimulated to enter puberty. No GCF fish entered puberty, whereas 66.7% (males) and 30% (females) WT fish completed or entered puberty, respectively. Expression of genes related to steroidogenesis (star, cyp17a1, cyp11β, cyp19a1a), gonadal somatic cells (insl3, amh, igf3), oocytes (bmp15), gonadotropin receptors (fshr, lhcgr), and pituitary gonadotropic cells (fshb, lhb, gnrhr4) showed an immature status and failure to up-regulate gonadal sex steroid production in male and female GCF fish was also reflected in low or undetectable plasma sex steroids (11-ketotestosterone, estradiol-17β and testosterone). A gender difference (high in females, low in males) was found in the expression of star and cyp17a1 in GCF fish. No clear difference in growth was detected between GCF and immature WT fish, while growth was compromised in maturing WT males. We demonstrate for the first time in a vertebrate that germ cells are required for pubertal activation of the somatic steroidogenic cells.
Collapse
Affiliation(s)
- Lene Kleppe
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway.
| | - Eva Andersson
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Kai Ove Skaftnesmo
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Rolf B Edvardsen
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Per Gunnar Fjelldal
- Institute of Marine Research, Matre Aquaculture Research Station, 5984, Matredal, Norway
| | - Birgitta Norberg
- Institute of Marine Research, Austevoll Research Station, 5392, Storebø, Norway
| | - Jan Bogerd
- Utrecht University, Faculty of Science, Department of Biology, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Rüdiger W Schulz
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway.,Utrecht University, Faculty of Science, Department of Biology, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Anna Wargelius
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| |
Collapse
|
19
|
Norberg B, Kleppe L, Andersson E, Thorsen A, Rosenlund G, Hamre K. Effects of dietary arachidonic acid on the reproductive physiology of female Atlantic cod (Gadus morhua L.). Gen Comp Endocrinol 2017; 250:21-35. [PMID: 28576420 DOI: 10.1016/j.ygcen.2017.05.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/08/2017] [Accepted: 05/28/2017] [Indexed: 01/07/2023]
Abstract
The present study was designed to investigate potential effects of arachidonic acid (ARA) on the reproductive physiology of female Atlantic cod (Gadus morhua L.). Two-year old Atlantic cod of both sexes were equally distributed into eight sea cages after completion of their first spawning in May 2005. Four experimental groups were established and fed diets with different levels of ARA corresponding to 0.5, 1, 2 and 4% of total fatty acid. Ovarian growth and development was documented every month. Fatty acid composition was analysed in ovaries, liver and plasma at the beginning of the experiment, one month prior to spawning, and in spent fish, one month after spawning was completed. Plasma concentrations of estradiol-17β, testosterone and vitellogenin, and ovarian gene transcript levels of steroidogenic acute regulatory protein (star), P450aromatase (cyp19a1a) and 20β-hydroxy steroid dehydrogenase (20bhsd/cbr1) were monitored every month in fish fed the experimental diets and related to oocyte stage. Potential fecundity was calculated based on ovarian samples taken one month before onset of spawning. Ovarian and plasma ARA levels were highly correlated to dietary ARA levels. There was a net accumulation of ARA compared to other essential fatty acids in ovarian tissue that was reflected in a decrease in EPA:ARA ratio. Plasma concentrations of vitellogenin, estradiol-17β and testosterone and key gene transcript levels were affected by dietary ARA and stage of maturation. The results show that ARA has a significant influence on the reproductive physiology of female Atlantic cod.
Collapse
Affiliation(s)
- Birgitta Norberg
- Institute of Marine Research, Austevoll Research Station, N-5392 Storebø, Norway.
| | - Lene Kleppe
- Institute of Marine Research, P.O. Box 1870 Nordnes, N-5817 Bergen, Norway
| | - Eva Andersson
- Institute of Marine Research, P.O. Box 1870 Nordnes, N-5817 Bergen, Norway
| | - Anders Thorsen
- Institute of Marine Research, P.O. Box 1870 Nordnes, N-5817 Bergen, Norway
| | | | - Kristin Hamre
- National Institute of Nutrition and Seafood Research (NIFES), P.O. Box 2029 Nordnes, N-5817 Bergen, Norway
| |
Collapse
|
20
|
Acharjee A, Chaube R, Joy KP. Effects of altered photoperiod and temperature on expression levels of gonadotrophin subunit mRNAs in the female stinging catfish Heteropneustes fossilis. JOURNAL OF FISH BIOLOGY 2017; 90:2289-2311. [PMID: 28393358 DOI: 10.1111/jfb.13305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 03/02/2017] [Indexed: 06/07/2023]
Abstract
Differential effects of photoperiod and temperature on the temporal modulation of gonadotrophin subunit genes (glycoprotein α, gpα), follicle-stimulating hormone β (fshβ) and luteinizing hormone β (lhβ) expression were investigated in the stinging catfish Heteropneustes fossilis. Female H. fossilis were exposed to varying photoperiod and temperature conditions for 14 and 28 days in the early preparatory phase of the annual reproductive cycle. Gonadotrophin subunit gene expression, gonado-somatic index (IG ), ovarian histology and plasma steroid hormone levels were evaluated. The exposure of H. fossilis to long photoperiod (LP) of 16 h light or high temperature (HT) at 28 ± 2° C (mean ± s.e.), alone or in combination, resulted in significant increases in gpα, fshβ and lhβ messenger (m)RNA levels, IG , plasma oestradiol-17β (E2 ), testosterone (T) and progesterone (P4 ) levels. The ovaries were filled with advanced yolky oocytes. On the other hand, the short photoperiod (SP) of 8 h light exposure decreased the transcript levels with higher inhibition in the normal temperature (NT) group at 18 ± 2° C (mean ± s.e.) than the HT group at 28 ± 2° C. Furthermore, the inhibition reached the highest level in total darkness (TD) of 24 h light deprivation under NT conditions at 18 ± 2° C. Consequently, the SP and TD treatments inhibited the IG , plasma E2 and T levels and ovarian development. The exposure to high temperature at 28 ± 2° C also modified the short photoperiod effect by elevating plasma E2 level. The plasma T level changed only mildly while the plasma P4 level showed the greatest fluctuations; the level reached the nadir in the SP + HT group but increased in the SP + NT group on day 28. A two-way ANOVA of the data showed differential effects of photoperiod and temperature; photoperiod produced a highly significant effect on fshβ expression while temperature had a highly significant effect both on lhβ and gpα levels. Thus, the differential expression of the gpα by the environmental variables ensures temporal synchronization of ovarian development and spawning.
Collapse
Affiliation(s)
- A Acharjee
- Department of Zoology, Banaras Hindu University, Varanasi, 211005, Uttar Pradesh, India
| | - R Chaube
- Department of Zoology, Banaras Hindu University, Varanasi, 211005, Uttar Pradesh, India
| | - K P Joy
- Department of Zoology, Banaras Hindu University, Varanasi, 211005, Uttar Pradesh, India
| |
Collapse
|
21
|
Hou ZS, Wen HS, Li JF, He F, Li Y, Tao YX. Hypothalamus-pituitary-gonad axis of rainbow trout (Oncorhynchus mykiss) during early ovarian development and under dense rearing condition. Gen Comp Endocrinol 2016; 236:131-138. [PMID: 27401261 DOI: 10.1016/j.ygcen.2016.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 12/23/2022]
Abstract
The objective of this study was to determine the hypothalamus-pituitary-gonad (HPG) axis of female rainbow trout (Oncorhynchus mykiss) during early ovarian development and under high rearing density. Trouts were sampled from 240 (ovarian stage II) to 540 (ovarian stage IV) days following hatching (DFH) as control group (Ctrl, 4.6-31.1kg/m(3)) to determine HPG axis during early ovarian development. Trouts from the same batch of fertilized eggs were reared in two higher densities during 240-540 DFH as stocking density 1 and 2 (SD1, 6.6-40.6kg/m(3); SD2, 8.6-49.3kg/m(3)) to elucidate effects of high density on reproductive parameters. Dopamine, E2 (estradiol), 17α,20β-P (17α,20β-dihydroxy4-pregnen-3-one) and P4 (progesterone) were evaluated by radioimmunoassay or ELISA. mRNA expression of hypothalamic gnrh-1, -2 (gonadotropin-releasing hormone-1, -2), pituitary gonadotropins (fsh/lh, follicle-stimulating hormone/luteinizing hormone) and their cognate receptors (fshr/lhr) in ovaries were examined by qRT-PCR. Our findings demonstrated mRNA expression of hypothalamic sgnrh-1, pituitary fsh and ovarian fshr increased in early ovarian development (360 DFH). Serum 17α,20β-P and pituitary lh mRNA expression first increased when trouts were in ovarian stage III (420 DFH). Ovaries were at different stages when reared in different densities. Long-term high density treatment (over 31.7kg/m(3)) resulted in decreased hypothalamic sgnrh-1, pituitary fsh, ovarian fshr, serum E2, and increased hypothalamus gnrh-2 and serum dopamine during vitellogenin synthesis, suggesting HPG of rainbow trout might be retarded under dense rearing condition.
Collapse
Affiliation(s)
- Zhi-Shuai Hou
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Hai-Shen Wen
- Fisheries College, Ocean University of China, Qingdao 266003, China.
| | - Ji-Fang Li
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Feng He
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Yun Li
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| |
Collapse
|
22
|
Jia Y, Sun A, Meng Z, Liu B, Lei J. Molecular characterization and quantification of the follicle-stimulating hormone receptor in turbot (Scophthalmus maximus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:179-191. [PMID: 26358315 DOI: 10.1007/s10695-015-0128-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
Molecular cloning, characterization, and functional analysis of follicle-stimulating hormone receptor (FSHR) in female turbot (Scophthalmus maximus) were evaluated. Results showed that the full-length FSHR cDNA was 3824 bp long and contained a 2202 bp open reading frame that encoded a mature protein of 733 amino acids (aa) and a signal peptide of 18 aa. Multiple sequence analyses showed that turbot FSHR has high homology with the corresponding genes of other teleosts and significant homology with that of Hippoglossus hippoglossus. Turbot FSHR has the typical structural architecture of glycoprotein hormone receptors consisting of a large N-terminal extracellular domain, seven transmembrane domains and short C-terminal intracellular domain. FSHR mRNA was found to be abundant in the ovaries, but deficient in eyes, intestine, brain, muscle, gills, spleen, stomach, heart and kidney. Furthermore, FSHR mRNA was found to increase gradually from pre-vitellogenesis to migratory nucleus stages, with the highest values observed during the late vitellogenesis stage of the reproductive cycle. However, FSHR mRNA was found to decrease dramatically during the atresia stage. Meanwhile, functional analysis with HEK293T cells continual expressing FSHR demonstrated that FSHR was specifically stimulated by ovine FSH, but not ovine LH. These results indicate that turbot FSHR is mainly involved in the stimulation of vitellogenesis, regulation of oocyte maturation as well as promotion of ovarian development via specific ligand binding. These findings open doors to further investigation of physiological functions of FSHR, which will be valuable for fish reproduction and broodstock management.
Collapse
Affiliation(s)
- Yudong Jia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China.
- Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, People's Republic of China.
| | - Ai Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China
- Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, People's Republic of China
| | - Zhen Meng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China
- Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, People's Republic of China
| | - Baoliang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China
- Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, People's Republic of China
| | - Jilin Lei
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China.
- Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
23
|
Palstra AP, Blok MC, Kals J, Blom E, Tuinhof-Koelma N, Dirks RP, Forlenza M, Blonk RJW. In- and outdoor reproduction of first generation common sole Solea solea under a natural photothermal regime: Temporal progression of sexual maturation assessed by monitoring plasma steroids and gonadotropin mRNA expression. Gen Comp Endocrinol 2015; 221:183-92. [PMID: 25583580 DOI: 10.1016/j.ygcen.2014.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 12/01/2014] [Accepted: 12/12/2014] [Indexed: 11/22/2022]
Abstract
Reproduction of many temperate fishes is seasonal and maturation and spawning of gametes are under photothermal control. Reproductive success of first generation (G1) common sole Solea solea in captivity has been low. In this study, the sexual maturation status has been assessed during the prespawning months in G1 sole that were housed (a) outdoor under the natural photoperiod and temperature, or (b) indoor under artificial photothermal induction. Maturation was assessed in male and female G1 broodstock in November as controls, after which the remaining population was divided over two outdoor flow-through tanks placed in a pond and two indoor recirculating aquaculture system (RAS) tanks. Subsequently, maturation status (gonadosomatic index GSI and plasma levels of testosterone T and 17β-estradiol E2) was assessed in one tank for each condition in January, February and during spawning in early April, while fish in the other tank were not disturbed in achieving reproductive success. Quantitative real-time PCR was performed to determine species-specific gonadotropin mRNA expression in females. Successful G1 spawning and egg fertilisation occurred in all experimental tanks. Gonadal development was similar under both conditions. Higher E2 and T levels were found in indoor housed females. Gonadotropin expression revealed similar profiles between outdoor and indoor housed females. G1 sole could be reproduced in the outdoor tanks under the natural photoperiod and in the indoor tanks under artificial simulation of this regime that includes a potentially crucial chilling period of 2-3 months at 5-7 °C.
Collapse
Affiliation(s)
- A P Palstra
- Institute for Marine Resources and Ecosystem Studies (IMARES), Wageningen Aquaculture, Wageningen University and Research Centre, Korringaweg 5, 4401 NT Yerseke, The Netherlands(1).
| | - M C Blok
- Institute for Marine Resources and Ecosystem Studies (IMARES), Wageningen Aquaculture, Wageningen University and Research Centre, Korringaweg 5, 4401 NT Yerseke, The Netherlands(1)
| | - J Kals
- Institute for Marine Resources and Ecosystem Studies (IMARES), Wageningen Aquaculture, Wageningen University and Research Centre, Korringaweg 5, 4401 NT Yerseke, The Netherlands(1)
| | - E Blom
- Institute for Marine Resources and Ecosystem Studies (IMARES), Wageningen Aquaculture, Wageningen University and Research Centre, Korringaweg 5, 4401 NT Yerseke, The Netherlands(1)
| | | | - R P Dirks
- NewCatch BV, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - M Forlenza
- Cell Biology and Immunology Group, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - R J W Blonk
- Institute for Marine Resources and Ecosystem Studies (IMARES), Wageningen Aquaculture, Wageningen University and Research Centre, Korringaweg 5, 4401 NT Yerseke, The Netherlands(1)
| |
Collapse
|
24
|
Taranger GL, Muncaster S, Norberg B, Thorsen A, Andersson E. Environmental impacts on the gonadotropic system in female Atlantic salmon (Salmo salar) during vitellogenesis: Photothermal effects on pituitary gonadotropins, ovarian gonadotropin receptor expression, plasma sex steroids and oocyte growth. Gen Comp Endocrinol 2015; 221:86-93. [PMID: 25712829 DOI: 10.1016/j.ygcen.2015.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/27/2014] [Accepted: 02/12/2015] [Indexed: 02/01/2023]
Abstract
The gonadotropic system and ovarian growth and development were studied during vitellogenesis in female Atlantic salmon subjected to either simulated natural photoperiod and ambient water temperature (NL-amb), or an accelerating photoperiod (short day of LD8:16 from May 10) combined with either warmed (ca 2°C above ambient; 8L-warm) or cooled water (ca 2°C below ambient; 8L-cold) from May to September. Monthly samples were collected from 10 females/group for determination of transcript levels of pituitary gonadotropin subunits (fshb and lhb) and ovarian gonadotropin receptors (fshr and lhr), plasma sex steroids (testosterone: T and estradiol-17β: E2), gonadosomatic index (GSI) and oocyte size. Short day in combination with either warmed or cooled water induced an earlier increase in pituitary fshb and lhb levels compared with NL-amb controls, and advanced ovarian growth and the seasonal profiles of T, E2. By contrast only minor effects were seen of the photothermal treatments on ovarian fshr and lhr. The 8L-cold had earlier increase in fshb, lhb and E2, but similar oocyte and gonadal growth as 8L-warm, suggesting that the 8L-cold group tried to compensate for the lower water temperature during the period of rapid gonadal growth by increasing fshb and E2 production. Both the 8L-warm and 8L-cold groups showed incomplete ovulation in a proportion of the females, possibly due to the photoperiod advancement resulting in earlier readiness of spawning occurring at a higher ambient temperature, or due to some reproductive dysfunction caused by photothermal interference with normal neuroendocrine regulation of oocyte development and maturation.
Collapse
Affiliation(s)
| | - Simon Muncaster
- Institute of Marine Research, PO Box 1870 Nordnes, N-5817 Bergen, Norway
| | - Birgitta Norberg
- Institute of Marine Research, PO Box 1870 Nordnes, N-5817 Bergen, Norway
| | - Anders Thorsen
- Institute of Marine Research, PO Box 1870 Nordnes, N-5817 Bergen, Norway
| | - Eva Andersson
- Institute of Marine Research, PO Box 1870 Nordnes, N-5817 Bergen, Norway.
| |
Collapse
|
25
|
Transcript variability and physiological correlates in the fathead minnow ovary: Implications for sample size, and experimental power. Comp Biochem Physiol B Biochem Mol Biol 2015; 187:22-30. [DOI: 10.1016/j.cbpb.2015.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 11/23/2022]
|
26
|
Jia Y, Meng Z, Niu H, Hu P, Lei J. Molecular cloning, characterization, and expression analysis of luteinizing hormone receptor gene in turbot (Scophthalmus maximus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1639-1650. [PMID: 24965493 DOI: 10.1007/s10695-014-9954-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 06/16/2014] [Indexed: 06/03/2023]
Abstract
The luteinizing hormone receptor (LHR) plays a crucial role in female reproduction. In the present study, full-length sequence coding for the LHR was obtained from female turbot (Scophthalmus maximus) by homology cloning and a strategy based on rapid amplification of cDNA end-polymerase chain reaction. The full-length LHR cDNA was 3,184 bp long and contained a 2,058-bp open reading frame which encoded a protein of 685 amino acids. Multiple sequence alignments of the turbot LHR manifested high homologies with the corresponding sequences of available teleosts and representative vertebrates, and significant homology with that of Hippoglossus hippoglossus. In addition, the turbot LHR showed typical characteristics of glycoprotein receptors, including a long N-terminal extracellular domain, seven transmembrane domains, and a short C-terminal intracellular domain. LHR mRNA was abundant in the ovary, but was deficient in extra-ovarian tissues. Furthermore, LHR mRNA gradually developed from previtellogenesis to migratory nucleus stage, with the highest values observed in migratory nucleus stage during reproductive cycle. However, LHR mRNA sharply decreased in atresia stage. These results suggested that LHR is a typical G protein-coupled receptor that is involved in the promotion of turbot ovarian development and may be related to the final maturation and ovulation of oocyte. These findings contribute to the understanding of the potential roles of LHR in controlling the fish reproductive cycle.
Collapse
Affiliation(s)
- Yudong Jia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, People's Republic of China
| | | | | | | | | |
Collapse
|
27
|
Ramallo MR, Morandini L, Alonso F, Birba A, Tubert C, Fiszbein A, Pandolfi M. The endocrine regulation of cichlids social and reproductive behavior through the eyes of the chanchita, Cichlasoma dimerus (Percomorpha; Cichlidae). ACTA ACUST UNITED AC 2014; 108:194-202. [PMID: 25159924 DOI: 10.1016/j.jphysparis.2014.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/06/2014] [Accepted: 08/13/2014] [Indexed: 01/12/2023]
Abstract
Sociobiology, the study of social behavior, calls for a laboratory model with specific requirements. Among the most obvious is the execution of social interactions that need to be readily observable, quantifiable and analyzable. If, in turn, one focuses on the neuroendocrinological basis of social behavior, restrictions grow even tighter. A good laboratory model should then allow easy access to its neurological and endocrine components and processes. During the last years, we have been studying the physiological foundation of social behavior on what we believe fits all the aforementioned requirements: the so called "chanchita", Cichlasoma dimerus. This Neotropical cichlid fish exhibits biparental care of the eggs and larvae and presents a hierarchical social system, established and sustained through agonistic interactions. The aim of the current article is to review new evidence on chanchita's social and reproductive behavior.
Collapse
Affiliation(s)
- Martín Roberto Ramallo
- Laboratorio de Neuroendocrinología y Comportamiento, IBBEA-Conicet, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), CABA, Argentina; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), CABA, Argentina
| | - Leonel Morandini
- Laboratorio de Neuroendocrinología y Comportamiento, IBBEA-Conicet, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), CABA, Argentina; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), CABA, Argentina
| | - Felipe Alonso
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), CABA, Argentina
| | - Agustina Birba
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), CABA, Argentina
| | - Cecilia Tubert
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), CABA, Argentina
| | - Ana Fiszbein
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), CABA, Argentina
| | - Matías Pandolfi
- Laboratorio de Neuroendocrinología y Comportamiento, IBBEA-Conicet, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), CABA, Argentina; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), CABA, Argentina.
| |
Collapse
|
28
|
Nyuji M, Kodama R, Kato K, Yamamoto S, Yamaguchi A, Matsuyama M. Gonadal Development and Gonadotropin Gene Expression During Puberty in Cultured Chub Mackerel (Scomber japonicus). Zoolog Sci 2014; 31:398-406. [DOI: 10.2108/zs130254] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Melo MC, Andersson E, Fjelldal PG, Bogerd J, França LR, Taranger GL, Schulz RW. Salinity and photoperiod modulate pubertal development in Atlantic salmon (Salmo salar). J Endocrinol 2014; 220:319-32. [PMID: 24363452 DOI: 10.1530/joe-13-0240] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Atlantic salmon shows substantial life cycle plasticity, which also applies to the timing of puberty. While it is characterized by the activation of the brain-pituitary-gonad axis, many morphophysiological aspects of puberty and the influence of environmental conditions, such as water salinity, are not well understood in fish. Here, 12-month-old Atlantic salmon coming from an out-of-season smoltification regime in December were exposed to freshwater (FW) or seawater (SW) at 16 °C to stimulate puberty under a 24-h constant light (LL) or 12 h light:12 h darkness (LD) photoperiod. These four treatment groups (FWLL, SWLL, FWLD, and SWLD) were studied from January to March. Next to 11-ketotestosterone (11-KT) plasma levels, the expression of pituitary genes (gnrhr4, fshb, and lhb) and spermatogenesis was quantified. When spermatogonial proliferation started, fshb mRNA levels increased steeply and began to decrease when spermatogonial mitosis approached completion and most germ cells had reached meiotic or post-meiotic stages. Conversely, lhb mRNA levels increased progressively during spermatogenesis. Most males in all treatment groups matured, but exposure to SW resulted in the strongest stimulation of the onset of spermatogenesis and elevation of pituitary gnrhr4 and fshb mRNA levels. Later on, the LD photoperiod accelerated, irrespective of the salinity, the completion of spermatogenesis, associated with higher lhb mRNA and 11-KT plasma levels than in the LL groups. We find that both salinity and photoperiod modulated different aspects of spermatogenesis, and resulted in a differential activation of pituitary and testis functions; SW stimulating the onset and the shorter photoperiod the completion of spermatogenesis.
Collapse
Affiliation(s)
- Michelle C Melo
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil Reproductive Biology Group, Division Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Kruyt Building, Room W-606, Padualaan 8, NL-3584 CH Utrecht, The Netherlands Institute of Marine Research, PO Box 1870, Nordnes, 5817 Bergen, Norway Institute of Marine Research, Matre Research Station, 5984 Matredal, Norway
| | | | | | | | | | | | | |
Collapse
|