1
|
Ramakrishnan S, Murphy AD. Peptidergic modulation of a multi-functional central pattern generator in the pulmonate snail. J Exp Biol 2022; 225:286115. [PMID: 36533565 DOI: 10.1242/jeb.244953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Egg laying in pulmonate snails is a well-orchestrated process that involves a period of reduced locomotion, followed by substrate cleaning with rhythmic rasping of the surface to make tiny grooves, into which eggs are deposited. Although the neurohormonal control of initiating egg laying has been well established, the signals that modulate the buccal central pattern generator to substrate cleaning during egg laying are not known. Neuropeptides of the invertebrate gonadotropin-releasing hormone/corazonin family (invGnRH/CRZ) have been shown to be involved in reproduction and allied behaviors in many vertebrates and invertebrates. Here, we show that the buccal motor pattern underlying substrate cleaning during egg laying is altered by a vertebrate GnRH agonist. Signals from the intestinal nerve innervating reproductive structures, previously shown to be both necessary and sufficient for egg-laying behaviors, are blocked by a vertebrate GnRH antagonist. Further, the vertebrate GnRH-triggered response elicits rhythmic, phase 2 and non-phase 2 activity in the buccal motor pattern, with a shutdown of phase 3, indicative of repetitive rasping without accompanied swallowing behavior. Using immunohistochemistry, intracellular electrophysiology and extracellular nerve stimulation, we show that a member of the invGnRH/CRZ family of neuropeptides could be the signal that contextually switches the multifunctional buccal CPG to a biphasic rasping rhythm that underlies substrate cleaning behavior during egg laying in the pulmonate snail Planorbella (Helisoma) trivolvis.
Collapse
Affiliation(s)
- Siddharth Ramakrishnan
- Department of Biology and Neuroscience Program, University of Puget Sound, Tacoma, WA 98416, USA
| | - A Don Murphy
- Department of Biology, University of Illinois, Chicago, IL 60607, USA
| |
Collapse
|
2
|
Fodor I, Schwarz T, Kiss B, Tapodi A, Schmidt J, Cousins ARO, Katsiadaki I, Scott AP, Pirger Z. Studies on a widely-recognized snail model species ( Lymnaea stagnalis) provide further evidence that vertebrate steroids do not have a hormonal role in the reproduction of mollusks. Front Endocrinol (Lausanne) 2022; 13:981564. [PMID: 36157463 PMCID: PMC9493083 DOI: 10.3389/fendo.2022.981564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022] Open
Abstract
Experiments were carried out to determine whether, as with other mollusks that have been studied, the snail, Lymnaea stagnalis, can absorb, esterify and store vertebrate steroids that are present in the water. We also carried out experiments to determine whether neural tissues of the snail could be immunohistochemically stained with an antibody to human aromatase (a key enzyme that catalyzes the conversion of testosterone [T] to 17β-estradiol [E2]); and, if so, to determine the significance of such staining. Previous studies on other mollusks have reported such staining and have proposed this as decisive evidence that mollusks have the same steroid synthesis pathway as vertebrates. We found that snails absorb, esterify and retain esterified T, E2, progesterone and ethinyl-estradiol (albeit with an absorption rate about four times slower, on a weight basis, than the mussel, Mytilus edulis). We also found that not only anti-human aromatase, but also anti-human nuclear progesterone receptor (nPR) and anti-human gonadotropin-releasing hormone antibodies immunohistochemically stained snail neural cells. However, further experiments, involving gel electrophoretic separation, followed by immunostaining, of proteins extracted from the neural tissue, found at least two positively-stained bands for each antibody, none of which had masses matching the human proteins to which the antibodies had been raised. The anti-aromatase antibody even stained the 140 kDA ladder protein used as a molecular weight marker on the gels. Mass spectrometric analysis of the bands did not find any peptide sequences that corresponded to the human proteins. Our findings confirm that the presence of vertebrate-like sex steroids in molluscan tissues is not necessarily evidence of endogenous origin. The results also show that immunohistochemical studies using antibodies against human proteins are grossly non-specific and likely to have little or no value in studying steroid synthesis or activity in mollusks. Our conclusions are consistent with the fact that genes for aromatase and nPR have not been found in the genome of the snail or of any other mollusk. Our overarching conclusion, from this and our previous studies, is that the endocrinology of mollusks is not the same as that of humans or any other vertebrates and that continuing to carry out physiological and ecotoxicological studies on mollusks on the basis of this false assumption, is an unconscionable waste of resources.
Collapse
Affiliation(s)
- István Fodor
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Tihany, Hungary
- *Correspondence: István Fodor,
| | - Tamar Schwarz
- Centre for Environment, Fisheries and Aquaculture Research, Weymouth Laboratory, Weymouth, United Kingdom
| | - Bence Kiss
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Antal Tapodi
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - János Schmidt
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Alex R. O. Cousins
- Lowestoft Laboratory, Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, United Kingdom
| | - Ioanna Katsiadaki
- Centre for Environment, Fisheries and Aquaculture Research, Weymouth Laboratory, Weymouth, United Kingdom
| | - Alexander P. Scott
- Centre for Environment, Fisheries and Aquaculture Research, Weymouth Laboratory, Weymouth, United Kingdom
| | - Zsolt Pirger
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Tihany, Hungary
| |
Collapse
|
3
|
Fodor I, Svigruha R, Bozsó Z, Tóth GK, Osugi T, Yamamoto T, Satake H, Pirger Z. Functional characterization and related evolutionary implications of invertebrate gonadotropin-releasing hormone/corazonin in a well-established model species. Sci Rep 2021; 11:10028. [PMID: 33976353 PMCID: PMC8113230 DOI: 10.1038/s41598-021-89614-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/29/2021] [Indexed: 11/09/2022] Open
Abstract
In vertebrates, gonadotropin-releasing hormone (GnRH) peptide is the central mediator of reproduction. Homologous peptides have previously also been identified in molluscan species. However, emerging evidence suggests that these molecules might serve diverse regulatory functions and proposes to consider them as corazonin (CRZ). We previously isolated the full-length cDNA of the invGnRH/CRZ peptide (termed ly-GnRH/CRZ) in the well-established invertebrate model species, the great pond snail Lymnaea stagnalis; however, its predicted functions remain to be verified. In this study, we first confirmed the presence of the deduced active peptide from the central nervous system of L. stagnalis. Further, we performed in vivo and in vitro studies to explore the functions of ly-GnRH/CRZ. Injection of sexually mature specimens with synthetic active peptide had an inhibitory effect on locomotion and an acceleratory effect on egg-laying, but had no effect on feeding. The previously predicted modulatory effect of ly-GnRH/CRZ was supported by its identified co-localization with serotonin on the surface of the heart atria. Lastly, we demonstrated not only the presence of ly-GnRH/CRZ in the penial complex but also that ly-GnRH/CRZ-containing neurons project to the efferent penis nerve, suggesting ly-GnRH/CRZ may directly modulate the motor output of this peripheral tissue. Overall, our findings strongly support that ly-GnRH/CRZ is a multifunctional neuropeptide. These results contribute to the understanding of the GnRH superfamily and, more broadly, disciplines such as comparative endocrinology and neurobiology.
Collapse
Affiliation(s)
- István Fodor
- NAP Adaptive Neuroethology, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Klebelsberg Kuno u. 3., Tihany, 8237, Hungary
| | - Réka Svigruha
- NAP Adaptive Neuroethology, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Klebelsberg Kuno u. 3., Tihany, 8237, Hungary
| | - Zsolt Bozsó
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Gábor K Tóth
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Tomohiro Osugi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika, Souraku, Kyoto, 619-0284, Japan
| | - Tatsuya Yamamoto
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika, Souraku, Kyoto, 619-0284, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika, Souraku, Kyoto, 619-0284, Japan
| | - Zsolt Pirger
- NAP Adaptive Neuroethology, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Klebelsberg Kuno u. 3., Tihany, 8237, Hungary.
| |
Collapse
|
4
|
Fodor I, Zrinyi Z, Horváth R, Urbán P, Herczeg R, Büki G, Koene JM, Tsai PS, Pirger Z. Identification, presence, and possible multifunctional regulatory role of invertebrate gonadotropin-releasing hormone/corazonin molecule in the great pond snail (Lymnaea stagnalis). Gen Comp Endocrinol 2020; 299:113621. [PMID: 32966777 DOI: 10.1016/j.ygcen.2020.113621] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/15/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
In the last years, our interpretation of the origin and function of the gonadotropin-releasing hormone (GnRH) neuropeptide superfamily has changed substantially. A main driver for these conceptual changes came from increased investigations into functions and evolutionary lineage of previously identified molluscan GnRH molecules. Emerging evidence suggests not only reproductive, but also diverse biological effects of these molecules and proposes they should most likely be called corazonin (CRZ). Clearly, a more global understanding requires further exploration of species-specific functions and structure of invGnRH/CRZ peptides. Towards this goal, we have identified the full-length cDNA of invGnRH/CRZ peptide in an invertebrate model species, the great pond snail Lymnaea stagnalis, termed ly-GnRH/CRZ, and characterized the transcript and peptide distribution in the central nervous system (CNS) and peripheral organs. Our results are consistent with previous data that molluscan GnRHs are more related to CRZs and serve diverse functions. Hence, our findings support the notion that peptides originally termed molluscan GnRH are multifunctional modulators and that nomenclature change should be taken into consideration.
Collapse
Affiliation(s)
- István Fodor
- Adaptive Neuroethology Research Group, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, 8237 Tihany, Hungary
| | - Zita Zrinyi
- Adaptive Neuroethology Research Group, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, 8237 Tihany, Hungary
| | - Réka Horváth
- Adaptive Neuroethology Research Group, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, 8237 Tihany, Hungary
| | - Péter Urbán
- Microbial Biotechnology Research Group, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; Genomics and Bioinformatics Core Facilities, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
| | - Róbert Herczeg
- Genomics and Bioinformatics Core Facilities, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
| | - Gergely Büki
- Department of Medical Genetics, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Joris M Koene
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
| | - Pei-San Tsai
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, CO 80309-0354, United States
| | - Zsolt Pirger
- Adaptive Neuroethology Research Group, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, 8237 Tihany, Hungary.
| |
Collapse
|
5
|
Invertebrate Gonadotropin-Releasing Hormone Receptor Signaling and Its Relevant Biological Actions. Int J Mol Sci 2020; 21:ijms21228544. [PMID: 33198405 PMCID: PMC7697785 DOI: 10.3390/ijms21228544] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Gonadotropin-releasing hormones (GnRHs) play pivotal roles in reproduction via the hypothalamus-pituitary-gonad axis (HPG axis) in vertebrates. GnRHs and their receptors (GnRHRs) are also conserved in invertebrates lacking the HPG axis, indicating that invertebrate GnRHs do not serve as “gonadotropin-releasing factors” but, rather, function as neuropeptides that directly regulate target tissues. All vertebrate and urochordate GnRHs comprise 10 amino acids, whereas amphioxus, echinoderm, and protostome GnRH-like peptides are 11- or 12-residue peptides. Intracellular calcium mobilization is the major second messenger for GnRH signaling in cephalochordates, echinoderms, and protostomes, while urochordate GnRHRs also stimulate cAMP production pathways. Moreover, the ligand-specific modulation of signal transduction via heterodimerization between GnRHR paralogs indicates species-specific evolution in Ciona intestinalis. The characterization of authentic or putative invertebrate GnRHRs in various tissues and their in vitro and in vivo activities indicate that invertebrate GnRHs are responsible for the regulation of both reproductive and nonreproductive functions. In this review, we examine our current understanding of and perspectives on the primary sequences, tissue distribution of mRNA expression, signal transduction, and biological functions of invertebrate GnRHs and their receptors.
Collapse
|
6
|
Fodor I, Urbán P, Scott AP, Pirger Z. A critical evaluation of some of the recent so-called 'evidence' for the involvement of vertebrate-type sex steroids in the reproduction of mollusks. Mol Cell Endocrinol 2020; 516:110949. [PMID: 32687858 DOI: 10.1016/j.mce.2020.110949] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022]
Abstract
Many studies on the control of reproduction in mollusks have focused on hormones (and proteins associated with the production and signaling of those hormones) which were originally discovered in humans, in the belief that if they are also present in mollusks, they must have the same role. However, although human sex steroids can be found in mollusks, they are so readily absorbed that their presence is not necessarily evidence of endogenous synthesis. A homolog of the vertebrate nuclear estrogen receptor has been found in mollusks, but it does not bind to estrogens or indeed to any steroid at all. Antibodies against human aromatase show positive immunostaining in mollusks, yet the aromatase gene has not been found in the genome of any invertebrates (let alone mollusks). This review will deal with these and other examples of contradictory evidence for a role of human hormones in invertebrate reproduction.
Collapse
Affiliation(s)
- István Fodor
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, 8237, Tihany, Hungary.
| | - Péter Urbán
- Genomics and Bioinformatics Core Facilities, Szentágothai Research Centre, University of Pécs, 7624, Pécs, Hungary
| | - Alexander P Scott
- Centre for Environment, Fisheries and Aquaculture Research (Cefas), Barrack Road, Weymouth, DT4 8UB, UK
| | - Zsolt Pirger
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, 8237, Tihany, Hungary
| |
Collapse
|
7
|
Abstract
Gonadotropin-releasing hormone (GnRH) was first discovered in mammals on account of its effect in triggering pituitary release of gonadotropins and the importance of this discovery was recognized forty years ago in the award of the 1977 Nobel Prize for Physiology or Medicine. Investigation of the evolution of GnRH revealed that GnRH-type signaling systems occur throughout the chordates, including agnathans (e.g. lampreys) and urochordates (e.g. sea squirts). Furthermore, the discovery that adipokinetic hormone (AKH) is the ligand for a GnRH-type receptor in the arthropod Drosophila melanogaster provided evidence of the antiquity of GnRH-type signaling. However, the occurrence of other AKH-like peptides in arthropods, which include corazonin and AKH/corazonin-related peptide (ACP), has complicated efforts to reconstruct the evolutionary history of this family of related neuropeptides. Genome/transcriptome sequencing has revealed that both GnRH-type receptors and corazonin-type receptors occur in lophotrochozoan protostomes (annelids, mollusks) and in deuterostomian invertebrates (cephalochordates, hemichordates, echinoderms). Furthermore, peptides that act as ligands for GnRH-type and corazonin-type receptors have been identified in mollusks. However, what has been lacking is experimental evidence that distinct GnRH-type and corazonin-type peptide-receptor signaling pathways occur in deuterostomes. Importantly, we recently reported the identification of two neuropeptides that act as ligands for either a GnRH-type receptor or a corazonin-type receptor in an echinoderm species - the common European starfish Asterias rubens. Discovery of distinct GnRH-type and corazonin-type signaling pathways in this deuterostomian invertebrate has demonstrated for the first time that the evolutionarily origin of these paralogous systems can be traced to the common ancestor of protostomes and deuterostomes. Furthermore, lineage-specific losses of corazonin signaling (in vertebrates, urochordates and nematodes) and duplication of the GnRH signaling system in arthropods (giving rise to the AKH and ACP signaling systems) and quadruplication of the GnRH signaling system in vertebrates (followed by lineage-specific losses or duplications) accounts for the phylogenetic distribution of GnRH/corazonin-type peptide-receptor pathways in extant animals. Informed by these new insights, here we review the history of research on the evolution of GnRH/corazonin-type neuropeptide signaling. Furthermore, we propose a standardized nomenclature for GnRH/corazonin-type neuropeptides wherein peptides are either named "GnRH" or "corazonin", with the exception of the paralogous GnRH-type peptides that have arisen by gene duplication in the arthropod lineage and which are referred to as "AKH" (or red pigment concentrating hormone, "RCPH", in crustaceans) and "ACP".
Collapse
Affiliation(s)
- Meet Zandawala
- Stockholm University, Department of Zoology, Stockholm, Sweden
| | - Shi Tian
- Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London E1 4NS, UK
| | - Maurice R Elphick
- Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
8
|
Zhang M, Wang Y, Li Y, Li W, Li R, Xie X, Wang S, Hu X, Zhang L, Bao Z. Identification and Characterization of Neuropeptides by Transcriptome and Proteome Analyses in a Bivalve Mollusc Patinopecten yessoensis. Front Genet 2018; 9:197. [PMID: 29922332 PMCID: PMC5996578 DOI: 10.3389/fgene.2018.00197] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 05/15/2018] [Indexed: 11/28/2022] Open
Abstract
Neuropeptides play essential roles in regulation of reproduction and growth in marine molluscs. But their function in marine bivalves – a group of animals of commercial importance – is largely unexplored due to the lack of systematic identification of these molecules. In this study, we sequenced and analyzed the transcriptome of nerve ganglia of Yesso scallop Patinopecten yessoensis, from which 63 neuropeptide genes were identified based on BLAST and de novo prediction approaches, and 31 were confirmed by proteomic analysis using the liquid chromatography-tandem mass spectrometry (LC-MS/MS). Fifty genes encode known neuropeptide precursors, of which 20 commonly exist in bilaterians and 30 are protostome specific. Three neuropeptides that have not yet been reported in bivalves were identified, including calcitonin/DH31, lymnokinin and pleurin. Characterization of glycoprotein hormones, insulin-like peptides, allatostatins, RFamides, and some reproduction, cardioactivity or feeding related neuropeptides reveals scallop neuropeptides have conserved molluscan neuropeptide domains, but some (e.g., GPB5, APGWamide and ELH) are characterized with bivalve-specific features. Thirteen potentially novel neuropeptides were identified, including 10 that may also exist in other protostomes, and 3 (GNamide, LRYamide, and Vamide) that may be scallop specific. In addition, we found neuropeptides potentially related to scallop shell growth and eye functioning. This study represents the first comprehensive identification of neuropeptides in scallop, and would contribute to a complete understanding on the roles of various neuropeptides in endocrine regulation in bivalve molluscs.
Collapse
Affiliation(s)
- Meiwei Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Yangfan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Yangping Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Wanru Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Ruojiao Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Xinran Xie
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
9
|
Characterization and spatiotemporal expression of gonadotropin-releasing hormone in the Pacific abalone, Haliotis discus hannai. Comp Biochem Physiol A Mol Integr Physiol 2017; 209:1-9. [PMID: 28408352 DOI: 10.1016/j.cbpa.2017.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/23/2017] [Accepted: 04/03/2017] [Indexed: 11/20/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is a key neuropeptide regulating reproduction in humans and other vertebrates. Recently, GnRH-like cDNAs and peptides were reported in marine mollusks, implying that GnRH-mediated reproduction is an ancient neuroendocrine system that arose prior to the divergence of protostomes and deuterostomes. Here, we evaluated the reproductive control system mediated by GnRH in the Pacific abalone Haliotis discus hannai. We cloned a prepro-GnRH cDNA (Hdh-GnRH) from the pleural-pedal ganglion (PPG) in H. discus hannai, and analyzed its spatiotemporal gene expression pattern. The open reading frame of Hdh-GnRH encodes a protein of 101 amino acids, consisting of a signal peptide, a GnRH dodecapeptide, a cleavage site, and a GnRH-associated peptide. This structure and sequence are highly similar to GnRH-like peptides reported for mollusks and other invertebrates. Quantitative polymerase chain reaction demonstrated that Hdh-GnRH mRNA was more strongly expressed in the ganglions (PPG and cerebral ganglion [CG]) than in other tissues (gonads, gills, intestine, hemocytes, muscle, and mantle) in both sexes. In females, the expression levels of Hdh-GnRH mRNA in the PPG and branchial ganglion (BG) were significantly higher at the ripe and partial spent stages than at the early and late active stages. In males, Hdh-GnRH mRNA levels in the BG showed a significant increase in the partial spent stage. Unexpectedly, Hdh-GnRH levels in the CG were not significantly different among the examined stages in both sexes. These results suggest that Hdh-GnRH mRNA expression profiles in the BG and possibly the PPG are tightly correlated with abalone reproductive activities.
Collapse
|
10
|
Nagasawa K, Muroi K, Thitiphuree T, Minegishi Y, Itoh N, Osada M. Cloning of invertebrate gonadotropin-releasing hormone receptor ( GnRHR )-like gene in Yesso scallop, Patinopecten yessoensis. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.aggene.2016.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Tian S, Egertová M, Elphick MR. Functional Characterization of Paralogous Gonadotropin-Releasing Hormone-Type and Corazonin-Type Neuropeptides in an Echinoderm. Front Endocrinol (Lausanne) 2017; 8:259. [PMID: 29033898 PMCID: PMC5626854 DOI: 10.3389/fendo.2017.00259] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022] Open
Abstract
Homologs of the vertebrate neuropeptide gonadotropin-releasing hormone (GnRH) have been identified in invertebrates, including the insect neuropeptide corazonin (CRZ). Recently, we reported the discovery of GnRH-type and CRZ-type signaling systems in an echinoderm, the starfish Asterias rubens, demonstrating that the evolutionary origin of paralogous GnRH-type and CRZ-type neuropeptides can be traced back to the common ancestor of protostomes and deuterostomes. Here, we have investigated the physiological roles of the GnRH-type (ArGnRH) and the CRZ-type (ArCRZ) neuropeptides in A. rubens, using mRNA in situ hybridization, immunohistochemistry and in vitro pharmacology. ArGnRH precursor (ArGnRHP)-expressing cells and ArGnRH-immunoreactive cells and/or processes are present in the radial nerve cords, circumoral nerve ring, digestive system (e.g., cardiac stomach and pyloric stomach), body wall-associated muscle (apical muscle), and appendages (tube feet, terminal tentacle). The general distribution of ArCRZ precursor (ArCRZP)-expressing cells is similar to that of ArGnRHP, but with specific local differences. For example, cells expressing ArGnRHP are present in both the ectoneural and hyponeural regions of the radial nerve cords and circumoral nerve ring, whereas cells expressing ArCRZP were only observed in the ectoneural region. In vitro pharmacological experiments revealed that both ArGnRH and ArCRZ cause contraction of cardiac stomach, apical muscle, and tube foot preparations. However, ArGnRH was more potent/effective than ArCRZ as a contractant of the cardiac stomach, whereas ArCRZ was more potent/effective than ArGnRH as a contractant of the apical muscle. These findings demonstrate that both ArGnRH and ArCRZ are myoexcitatory neuropeptides in starfish, but differences in their expression patterns and pharmacological activities are indicative of distinct physiological roles. This is the first study to investigate the physiological roles of both GnRH-type and CRZ-type neuropeptides in a deuterostome, providing new insights into the evolution and comparative physiology of these paralogous neuropeptide signaling systems in the Bilateria.
Collapse
Affiliation(s)
- Shi Tian
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Michaela Egertová
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Maurice R. Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
- *Correspondence: Maurice R. Elphick,
| |
Collapse
|
12
|
Yan YJ, Wang TM, Liu W, Wu CW, Zhu AY, Chi CF, Lü ZM, Yang JW. Identification and Expression Profile of the Gonadotropin-Releasing Hormone Receptor in Common Chinese Cuttlefish, Sepiella japonica. ACTA ACUST UNITED AC 2016; 325:453-66. [PMID: 27455909 DOI: 10.1002/jez.2030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 12/14/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) plays a vital role in the regulation of reproduction through interaction with a specific receptor (the GnRH receptor). In this study, the GnRH receptor gene from the cuttlefish Sepiella japonica (SjGnRHR) was identified and characterized. The cloned full-length SjGnRHR cDNA was 1,468 bp long and contained a 1,029 bp open reading frame encoding 342 amino acid residues, 8 bp of 5' untranslated regions (UTR), and 431 bp of 3' UTR. The putative protein was predicted to have a molecular weight of 38.75 kDa and an isoelectric point of 9.47. In addition, this protein was identified as belonging to the rhodopsin-type (class A) G protein-coupled receptor family. The predicted amino acid sequence contained two N-linked glycosylation sites and 18 phosphorylation sites. Multiple sequence alignment, phylogenetic tree analysis, and three-dimensional structure modeling were conducted to clarify SjGnRHR bioinformatics characteristics. In vitro SjGnRHR expression was carried out using HEK293 cells and the pEGFP-N1 plasmid, to verify the transmembrane properties of this protein. The interaction between the S. japonica GnRH receptor and its ligand was clarified using internalization analysis. SjGnRHR transcriptional quantification confirmed the wide distribution of SjGnRHR in various S. japonica mature tissues. In addition, the transcriptional profile of SjGnRHR in the female brain and ovary during gonadal development was analyzed. Results indicate that GnRHR may be involved in diverse S. japonica physiological functions, especially in the control of reproduction.
Collapse
Affiliation(s)
- Yun-Jun Yan
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang, People's Republic of China
| | - Tian-Ming Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang, People's Republic of China
| | - Wan Liu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang, People's Republic of China
| | - Chang-Wen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang, People's Republic of China
| | - Ai-Yi Zhu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang, People's Republic of China
| | - Chang-Feng Chi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang, People's Republic of China
| | - Zhen-Ming Lü
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang, People's Republic of China
| | - Jing-Wen Yang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang, People's Republic of China. ,
| |
Collapse
|
13
|
Localization and functional characterization of a novel adipokinetic hormone in the mollusk, Aplysia californica. PLoS One 2014; 9:e106014. [PMID: 25162698 PMCID: PMC4146582 DOI: 10.1371/journal.pone.0106014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/28/2014] [Indexed: 11/19/2022] Open
Abstract
Increasing evidence suggests that gonadotropin-releasing hormone (GnRH), corazonin, adipokinetic hormone (AKH), and red pigment-concentrating hormone all share common ancestry to form a GnRH superfamily. Despite the wide presence of these peptides in protostomes, their biological effects remain poorly characterized in many taxa. This study had three goals. First, we cloned the full-length sequence of a novel AKH, termed Aplysia-AKH, and examined its distribution in an opisthobranch mollusk, Aplysia californica. Second, we investigated in vivo biological effects of Aplysia-AKH. Lastly, we compared the effects of Aplysia-AKH to a related A. californica peptide, Aplysia-GnRH. Results suggest that Aplysia-AKH mRNA and peptide are localized exclusively in central tissues, with abdominal, cerebral, and pleural ganglia being the primary sites of Aplysia-AKH production. However, Aplysia-AKH-positive fibers were found in all central ganglia, suggesting diverse neuromodulatory roles. Injections of A. californica with Aplysia-AKH significantly inhibited feeding, reduced body mass, increased excretion of feces, and reduced gonadal mass and oocyte diameter. The in vivo effects of Aplysia-AKH differed substantially from Aplysia-GnRH. Overall, the distribution and biological effects of Aplysia-AKH suggest it has diverged functionally from Aplysia-GnRH over the course of evolution. Further, that both Aplysia-AKH and Aplysia-GnRH failed to activate reproduction suggest the critical role of GnRH as a reproductive activator may be a phenomenon unique to vertebrates.
Collapse
|