1
|
Zhao L, Gong F, Lou K, Wang L, Wang J, Sun H, Wang D, Shi Y, Wang Z. Retrotransposon involves in photoperiodic spermatogenesis in Brandt's voles (Lasiopodomys brandtii) by co-transcription with flagellar genes. Int J Biol Macromol 2024; 281:136224. [PMID: 39362423 DOI: 10.1016/j.ijbiomac.2024.136224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Photoperiod is a pivotal factor in affecting spermatogenesis in seasonal-breeding animals. Transposable elements have regulatory functions during spermatogenesis. However, whether it also functions in photoperiodic spermatogenesis in seasonal breeding animals is unknown. To explore this, we first annotated 5,501,822 transposons in the whole genome of Brandt's voles (Lasiopodomys brandtii), and revealed that LINEs were the most abundant, comprising 16.61 % of the genome. Following closely, SINEs accounted for 10.13 %, LTRs for 7.54 %, and DNA transposons for 0.70 %. Subsequently, we exposed male Brandt's voles to long-photoperiod (LP, 16 h/day) and short-photoperiod (SP, 8 h/day) from their embryonic stages, and obtained testes transcriptome at 4 and 10 weeks after birth. Differential expression and Pearson analysis indicated strongly positive correlations between the expression of differentially expressed retrotransposons and the adjacent genes. KO, KEGG and GSEA results showed that sperm flagellar genes were most enriched nearby the retrotransposons such as Dnah1, Dnah2, Dnah17, Dnali1. RT-PCR results showed that SINE/Alu_1213291 co-transcripted with Dnali1 gene. Our findings first reveal the regulatory function of transposons in photoperiodic spermatogenesis, providing insights into the role of photoperiod in seasonal reproduction in wild animals.
Collapse
Affiliation(s)
- Lijuan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Fanglei Gong
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Kang Lou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Lewen Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agriculture Science, Changji 831100, China
| | - Jingou Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hong Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Centre for Sport Nutrition and Health, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Dawei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agriculture Science, Changji 831100, China.
| | - Yuhua Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
2
|
Broniowska Ż, Tomczyk I, Grzmil P, Bystrowska B, Skórkowska A, Maciejska A, Kazek G, Budziszewska B. Benzophenone-2 exerts reproductive toxicity in male rats. Reprod Toxicol 2023; 120:108450. [PMID: 37543253 DOI: 10.1016/j.reprotox.2023.108450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Benzophenone derivatives such as benzophenone-2 (BP-2) belong to the group of endocrine disrupting compounds (EDCs). Increased exposure to EDCs is considered to be an important factor behind the decline of human fertility. The main aim of the present study was to determine the effect of BP-2 on testicular function specified by sperm analysis, the level of sex hormones and their receptors. Since BP-2 has been shown to activate the immune system, another aim of the research was to verify the hypothesis that the immune system may be contributing to the testis toxicity of this compound and for this purpose changes in macrophage and lymphocyte populations in the testes were determined. BP-2 at a dose of 100 mg/kg was administered dermally, twice daily at a dose of 100 mg/kg for 4-weeks. It was shown that BP-2 reduced the number and motility of sperm and increased the number of sperm showing morphological changes. By determining the concentration of sex hormones, a significant decrease in testosterone levels and an increase in the blood levels of 17β-estradiol were demonstrated. Similar to the results obtained from the blood samples, testosterone levels in the testes were lowered, which could affect sperm parameters. The effect of BP-2 on lowering testosterone levels and the number of sperm cells may be due to immunoactivation in the testes, because it has been detected that this compound significantly decreased the number of the immunosuppressive resident testicular macrophages (TMs) (CD68-CD163+), but increased pro-inflammatory TMs with monocyte-like properties (CD68+CD163-).
Collapse
Affiliation(s)
- Żaneta Broniowska
- Department of Biochemical Toxicology Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, PL, Poland.
| | - Igor Tomczyk
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Paweł Grzmil
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Beata Bystrowska
- Department of Biochemical Toxicology Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, PL, Poland
| | - Alicja Skórkowska
- Department of Biochemical Toxicology Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, PL, Poland
| | - Alicja Maciejska
- Department of Biochemical Toxicology Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, PL, Poland
| | - Grzegorz Kazek
- Department of Pharmacodynamics, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland
| | - Bogusława Budziszewska
- Department of Biochemical Toxicology Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, PL, Poland
| |
Collapse
|
3
|
Seebacher F. Interactive effects of anthropogenic environmental drivers on endocrine responses in wildlife. Mol Cell Endocrinol 2022; 556:111737. [PMID: 35931299 DOI: 10.1016/j.mce.2022.111737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Anthropogenic activity has created unique environmental drivers, which may interact to produce unexpected effects. My aim was to conduct a systematic review of the interactive effects of anthropogenic drivers on endocrine responses in non-human animals. The interaction between temperature and light can disrupt reproduction and growth by impacting gonadotropins, thyroid hormones, melatonin, and growth hormone. Temperature and endocrine disrupting compounds (EDCs) interact to modify reproduction with differential effects across generations. The combined effects of light and EDCs can be anxiogenic, so that light-at-night could increase anxiety in wildlife. Light and noise increase glucocorticoid release by themselves, and together can modify interactions between individuals and their environment. The literature detailing interactions between drivers is relatively sparse and there is a need to extend research to a broader range of taxa and interactions. I suggest that incorporating endocrine responses into Adverse Outcome Pathways would be beneficial to improve predictions of environmental effects.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
4
|
Moralia MA, Quignon C, Simonneaux M, Simonneaux V. Environmental disruption of reproductive rhythms. Front Neuroendocrinol 2022; 66:100990. [PMID: 35227765 DOI: 10.1016/j.yfrne.2022.100990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/06/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Abstract
Reproduction is a key biological function requiring a precise synchronization with annual and daily cues to cope with environmental fluctuations. Therefore, humans and animals have developed well-conserved photoneuroendocrine pathways to integrate and process daily and seasonal light signals within the hypothalamic-pituitary-gonadal axis. However, in the past century, industrialization and the modern 24/7 human lifestyle have imposed detrimental changes in natural habitats and rhythms of life. Indeed, exposure to an excessive amount of artificial light at inappropriate timing because of shift work and nocturnal urban lighting, as well as the ubiquitous environmental contamination by endocrine-disrupting chemicals, threaten the integrity of the daily and seasonal timing of biological functions. Here, we review recent epidemiological, field and experimental studies to discuss how light and chemical pollution of the environment can disrupt reproductive rhythms by interfering with the photoneuroendocrine timing system.
Collapse
Affiliation(s)
- Marie-Azélie Moralia
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Clarisse Quignon
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Marine Simonneaux
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Valérie Simonneaux
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
| |
Collapse
|
5
|
Lustofin S, Kaminska A, Brzoskwinia M, Pardyak L, Pawlicki P, Szpregiel I, Bilinska B, Hejmej A. Follicle-stimulating hormone regulates Notch signalling in the seminiferous epithelium of continuously and seasonally breeding rodents. Reprod Fertil Dev 2022; 34:560-575. [PMID: 35143740 DOI: 10.1071/rd21237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022] Open
Abstract
CONTEXT Juxtacrine (contact-dependent) communication between the cells of seminiferous epithelium mediated by Notch signalling is of importance for the proper course of spermatogenesis in mammals. AIMS The present study was designed to evaluate the role of follicle-stimulating hormone (FSH) in the regulation of Notch signalling in rodent seminiferous epithelium. METHODS We explored the effects (1) of pharmacological inhibition of the hypothalamus-pituitary-gonadal (HPG) axis and FSH replacement in pubertal rats, and (2) of photoinhibition of HPG axis followed by FSH substitution in seasonally breeding rodents, bank voles, on Notch pathway activity. Experiments on isolated rat Sertoli cells exposed to FSH were also performed. Gene and protein expressions of Notch pathway components were analysed using RT-qPCR, western blot and immunohistochemistry/immunofluorescence. KEY RESULTS Distribution patterns of Notch pathway proteins in bank vole and rat seminiferous epithelium were comparable; however, levels of activated Notch1 and Notch3, hairy/enhancer of split 1 (HES1) and hairy/enhancer of split-related with YRPW motif 1 (HEY1) in bank voles were dependent on the length of the photoperiod. In response to FSH similar changes in these proteins were found in both species, indicating that FSH is a negative regulator of Notch pathway activity in seminiferous epithelium. CONCLUSIONS Our results support a common mechanism of FSH action on Notch pathway during onset and recrudescence of spermatogenesis in rodents. IMPLICATIONS Interaction between FSH signalling and Notch pathway in Sertoli cells may be involved in spermatogenic activity changes of the testes occurring during puberty or photoperiod shift in continuously and seasonally breeding rodents, respectively.
Collapse
Affiliation(s)
- Sylwia Lustofin
- Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Alicja Kaminska
- Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Malgorzata Brzoskwinia
- Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Laura Pardyak
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, 30-248 Krakow, Poland
| | - Piotr Pawlicki
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, 30-248 Krakow, Poland
| | - Izabela Szpregiel
- Department of Animal Physiology and Endocrinology, Faculty of Animal Science, University of Agriculture in Krakow, 30-059 Krakow, Poland
| | - Barbara Bilinska
- Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Anna Hejmej
- Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| |
Collapse
|
6
|
Smirnov GY. Sperm Motility in Bank (Clethrionomys glareolus) and Northern Red-backed Voles (Cl. rutilus) Exposed to Industrial Pollution. RUSS J ECOL+ 2022. [DOI: 10.1134/s1067413622010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Milon A, Pawlicki P, Rak A, Mlyczynska E, Płachno BJ, Tworzydlo W, Gorowska-Wojtowicz E, Bilinska B, Kotula-Balak M. Telocytes are localized to testis of the bank vole (Myodes glareolus) and are affected by lighting conditions and G-coupled membrane estrogen receptor (GPER) signaling. Gen Comp Endocrinol 2019; 271:39-48. [PMID: 30391242 DOI: 10.1016/j.ygcen.2018.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/18/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
We aim to explore the presence of a novel cell type, telocytes (TCs), in the bank vole testis interstitium following G-coupled membrane estrogen receptor (GPER) signaling withdrawal. In addition, the involvement of interstitial cells in lipid homeostasis was investigated. Bank voles (actively reproducing or regressed) were administered with GPER antagonist (G-15; 50 μg/kg bw) injections. To examine TC distribution, ultrastructure, function, and their connotation in the interstitial tissue lipid balance, electron microscopic observations were implemented. Immunohistochemistry and Western blot for the TC marker, CD34, and lipid balance molecules: leptin, adiponectin, and perilipin were performed. Photoperiod-regulated testis steroidogenic function was estimated via serum melatonin level and intratesticular cholesterol concentrations in immunoenzymatic assays. We demonstrate the presence of TCs in bank vole testis interstitium. Distinctive TC morphology: small cell bodies with very long, slender prolongations, constituting a three-dimensional network around the interstitial cells was seen. Ultrastructurally, scarce mitochondria, a few cisternae of the endoplasmic reticulum, and lipid droplets indicated possible TC implications in lipid homeostasis. Changes in CD34 expression in TCs were seen in relation to GPER disturbances. In GPER-blocked testis, single TCs were present in the LD interstitium when in SD ones they were occasionally absent. Moreover, in TCs of SD voles, a lack of lipid droplets was revealed, likely reflecting attenuated TC function during regression. However, melatonin levels decreased in GPER-blocked LD and SD. Concomitantly, leptin, adiponectin, and perilipin expressions together with cholesterol content varied after blockage. Based on our results we suggest TCs are an important component of the bank vole testis interstitium as they are implicated in ultramorphology maintenance, protein interactions, and lipid homeostasis.
Collapse
Affiliation(s)
- Agnieszka Milon
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - Piotr Pawlicki
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - Ewa Mlyczynska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - Ewelina Gorowska-Wojtowicz
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - Barbara Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - Malgorzata Kotula-Balak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland.
| |
Collapse
|
8
|
Smirnov GY, Davydova YA. Effect of Industrial Pollution of the Environment on the Frequency of Abnormal Spermatozoa in the Bank Vole, Myodes glareolus. RUSS J ECOL+ 2018. [DOI: 10.1134/s1067413618050132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Huang S, Cao S, Zhou T, Kong L, Liang G. 4-tert-octylphenol injures motility and viability of human sperm by affecting cAMP-PKA/PKC-tyrosine phosphorylation signals. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 62:234-243. [PMID: 30098580 DOI: 10.1016/j.etap.2018.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
4-tert-octylphenol (4t-OP) is a well-known xenoestrogen. Our objective was to explore the effects and molecular mechanisms of 4t-OP on human sperm. Sperm samples were exposed to 0, 0.1, or 0.3 mM 4t-OP for two hours. Results showed that both sperm viability and motility were significantly injured by 0.3 mM 4t-OP. We applied comparative proteomics to explore the molecular targets affected by 4t-OP. 81 differentially expressed (DE) proteins were identified. Bioinformatic analysis showed that these proteins were highly associated with motility and apoptosis, and were mostly enriched in cAMP-PKA/PKC-phosphorylation-associated pathway. We further verified that 0.1 mM and 0.3 mM 4t-OP significantly decreased cAMP activity of sperm. Expression of RACK1 and PRDX6 were detected by western blot (WB) to verify their tendencies in gels; antiapoptotic factor BCL2 was also detected by WB. The data indicated that 4-tert-octylphenol injures the motility and viability of human sperm probably by affecting cAMP-PKA/PKC-tyrosine phosphorylation signals.
Collapse
Affiliation(s)
- Shaoping Huang
- Department of Histology and Embryology, Medical School, Southeast University, Nanjing 210009, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Senyang Cao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China; Center of Reproductive Medicine, Yancheng Maternity and Child Health Care Hospital, Yancheng 224002, Jiangsu, China
| | - Tao Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China; Central Laboratory, Wuxi Maternity and Child Health Care Hospital affiliated to Nanjing Medical University 214002, Jiangsu, China
| | - Lu Kong
- School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Geyu Liang
- School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
10
|
Pardyak L, Kaminska A, Brzoskwinia M, Hejmej A, Kotula-Balak M, Jankowski J, Ciereszko A, Bilinska B. Differences in aromatase expression and steroid hormone concentrations in the reproductive tissues of male domestic turkeys (Meleagris gallopavo) with white and yellow semen. Br Poult Sci 2018; 59:591-603. [PMID: 29848062 DOI: 10.1080/00071668.2018.1483576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
1. To show hormonal differences between male turkeys with yellow semen syndrome (YSS) and white, normal semen (WNS), the expression of aromatase, oestrogen receptor α (ERα), and oestrogen receptor β (ERβ) as well as testosterone and oestradiol concentrations in YSS and WNS testes, epididymis, and ductus deferens were examined. 2. To measure gene expression levels of aromatase and oestrogen receptors (ERs), three complementary techniques (real-time PCR, Western blot, and immunohistochemistry) were used, whereas steroid hormone levels were determined radio-immunologically. 3. Upregulation of aromatase and ERα mRNAs in YSS testes (P < 0.05; P < 0.01), epididymis (P < 0.001; P < 0.001), and ductus deferens (P < 0.05; P < 0.01) compared to those of WNS tissues was detected. Significant increases in the levels of aromatase and ERα proteins were detected in YSS testes (P < 0.001; P < 0.05), epididymis (P < 0.001; P < 0.001), and ductus deferens (P < 0.001; P < 0.05). The expression of ERβ mRNA and protein level was upregulated in the testes (P < 0.05; P < 0.01) and epididymis (P < 0.001; P < 0.01) but not in ductus deferens where it was downregulated (P < 0.01; P < 0.01). Increased intensity of immunoreactive proteins in YSS versus WNS reproductive tissues corroborated gene expression results. 4. Testosterone concentration diminished in YSS epididymis (P < 0.05) and ductus deferens (P < 0.05), but not in the testes, remaining at high level (P < 0.05) compared to WNS values. Concomitantly, increased oestradiol concentration was found in YSS testes (P < 0.05) and epididymis (P < 0.05) but decreased in the ductus deferens (P < 0.05). 5. From the published literature, this study is the first to demonstrate the ability for androgen aromatisation in the turkey reproductive tissues and to show the cellular targets for locally produced oestrogens. The data suggested that the androgen/oestrogen ratio is a mechanistic basis for amplification of differences between turkeys with white and yellow semen and that these results can have a relevance in applied sciences to widen the knowledge on domestic bird reproduction.
Collapse
Affiliation(s)
- L Pardyak
- a Department of Endocrinology , Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow , Krakow , Poland
| | - A Kaminska
- a Department of Endocrinology , Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow , Krakow , Poland
| | - M Brzoskwinia
- a Department of Endocrinology , Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow , Krakow , Poland
| | - A Hejmej
- a Department of Endocrinology , Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow , Krakow , Poland
| | - M Kotula-Balak
- a Department of Endocrinology , Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow , Krakow , Poland
| | - J Jankowski
- b Department of Poultry Science, Faculty of Animal Bioengineering , University of Warmia and Mazury in Olsztyn , Olsztyn , Poland
| | - A Ciereszko
- c Department of Gamete and Embryo Biology , Institute of Animal Reproduction and Food Research, Polish Academy of Sciences , Olsztyn , Poland
| | - B Bilinska
- a Department of Endocrinology , Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow , Krakow , Poland
| |
Collapse
|
11
|
Zarzycka M, Gorowska-Wojtowicz E, Tworzydlo W, Klak A, Kozub K, Hejmej A, Bilinska B, Kotula-Balak M. Are aryl hydrocarbon receptor and G-protein-coupled receptor 30 involved in the regulation of seasonal testis activity in photosensitive rodent-the bank vole (Myodes glareolus)? Theriogenology 2016; 86:674-686.e1. [PMID: 27004452 DOI: 10.1016/j.theriogenology.2016.02.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/14/2015] [Accepted: 02/22/2016] [Indexed: 02/03/2023]
Abstract
Within the reproductive system both aryl hydrocarbon receptor (AHR) and G-protein-coupled receptor 30 (GPR30) contribute to estrogen signaling and controlling of reproductive physiology. The specific question is whether and how AHR and GPR30 are involved in regulation of testis function in seasonally breeding rodents. Bank vole testes were obtained from animals reared under 18 hours light:6 hours dark (LD) and 6 hours light:18 hours dark (SD) conditions. Aryl hydrocarbon receptor and GPR30 expression were analyzed by quantitative reverse transcriptase-polymerase chain reaction, Western blot, and immunohistochemistry and/or immunofluorescent staining. In addition, the activity of enzymes involved in the intracellular signal transduction; extracellular signal-regulated kinase (ERK), protein kinase (PKA), matrix metalloproteinase 9 (MMP 9) and the concentrations of cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), and calcium (Ca(2+)) were examined by immunohistochemical, immunoenzymatic, and colorimetric assays, respectively. Aryl hydrocarbon receptor and GPR30 were expressed in testes of actively reproducing voles and regressed ones although their expression at the messenger RNA and AHR also at protein level appeared to be photoperiod-dependent. A specific cellular localization and expression of AHR and GPR30 correlated with the expression of ERK, PKA, and MMP 9. Moreover, we found robust differences in the levels of cAMP, cGMP, and Ca(2+) in testicular homogenates between LD and SD voles. In the testes of LD voles, the levels of second messengers were always higher compared to SD. In vole testis, AHR and GPR30 can induce signaling pathways that involve ERK, PKA, MMP 9 and cAMP, cGMP, Ca(2+). In addition, in AHR, signaling the engagement of both photoperiod and estrogens, whereas in GPR30, signaling only estrogens is reported. It is likely that in vole, because of a differential activity of signaling molecules, signal transduction via AHR rather than through GPR30 plays a role in regulation of seasonal changes of testis physiology.
Collapse
Affiliation(s)
- Marta Zarzycka
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | | | - Waclaw Tworzydlo
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Klak
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Klaudia Kozub
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Anna Hejmej
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Barbara Bilinska
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | | |
Collapse
|
12
|
Octylphenol induces changes in glycosylation pattern, calcium level and ultrastructure of bank vole spermatozoa in vitro. Toxicol In Vitro 2015; 29:529-37. [DOI: 10.1016/j.tiv.2014.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/26/2014] [Accepted: 12/18/2014] [Indexed: 11/17/2022]
|