1
|
Sulaiman U, Vaughan R, Siegel P, Liu D, Gilbert ER, Cline MA. Oleuropein has hypophagic effects in broiler chicks. Front Physiol 2024; 15:1409211. [PMID: 38933363 PMCID: PMC11199682 DOI: 10.3389/fphys.2024.1409211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Oleuropein, a phenolic compound derived from olives, has known glucoregulatory effects in mammalian models but effects in birds are unknown. We investigated effects of dietary supplementation and exogenous administration of oleuropein on broiler chick feed intake and glucose homeostasis during the first 7 days post-hatch. One hundred and forty-eight day-of-hatch broiler chicks were randomly allocated to one of four dietary treatments with varying oleuropein concentrations (0, 250, 500, or 1,000 mg/kg). Body weight and breast muscle and liver weights were recorded on day 7. In the next experiment, chicks received intraperitoneal (IP) injections of oleuropein at doses of 0 (vehicle), 50, 100, or 200 mg/kg on day 4 post-hatch, with feed intake and blood glucose levels measured thereafter. Lastly, chicks fed a control diet were fasted and administered intracerebroventricular (ICV) injections of oleuropein at doses of 0, 50, 100, or 200 μg, after which feed intake was recorded. Results indicated that IP and ICV injections led to decreased feed intake, primarily at 60 min post-injection, with effects diminishing by 90 min in the IP study. Blood glucose levels decreased 1-h post-IP injection at higher oleuropein doses. These findings suggest that oleuropein acts as a mild appetite suppressant and influences energy metabolism in broiler chickens.
Collapse
Affiliation(s)
- Usman Sulaiman
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Reagan Vaughan
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Paul Siegel
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Elizabeth Ruth Gilbert
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Mark Andrew Cline
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
2
|
Wang X, Liu Z, Zhao J, Jiao H, Lin H. Dusk feeding in laying hens is shifted by light program via involvement of clock genes. J Anim Physiol Anim Nutr (Berl) 2021; 105:1103-1112. [PMID: 33774881 DOI: 10.1111/jpn.13528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 11/30/2022]
Abstract
Dusk feeding is practised probably to satisfy the energy requirement during night. However, little is known on the changes with clock gene expressions during this feeding behaviour. In our present study, the linkage of clock gene expressions and feeding behaviour in dusk feeding was investigated in laying hens under two lighting programs: the conventional lighting program (Control) with a light period from 05:00 AM to 21:00 PM and a dark period from 21:00 PM to 05:00 AM; or the shifted lighting program group (SLP) with a light period from 02:00 AM to 18:00 PM and a dark period from 18:00 PM to 02:00 AM. The gene expression-related appetite and circadian rhythm were investigated in hypothalamus and proventriculus at 1, 3 and 5 h before scotophase. The results demonstrated that dusk feeding was synchronously shifted with altered lighting program, dusk feeding was observed from 5 h before scotophase in both groups. The expressions of anorexigenic gene proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) were downregulated (p < 0.05) during dusk feeding and changed in pace with lighting program. The expressions of clock gene period 2 (Per2) and cryptochrome 1 (Cry1) in hypothalamus were downregulated (p < 0.05) during dusk feeding and shifted by lighting program. In the proventriculus, ghrelin expression was decreased (p < 0.05) during dusk feeding by lighting program. In conclusion, the expressions of clock genes Per2 and Cry1 are linked with the downregulated expressions of anorexigenic genes, POMC and CART, and in turn the augmented feed intake at dusk.
Collapse
Affiliation(s)
- Xiaojuan Wang
- Department of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Shandong, China
| | - Zengmin Liu
- Department of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Shandong, China
| | - Jingpeng Zhao
- Department of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Shandong, China
| | - Hongchao Jiao
- Department of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Shandong, China
| | - Hai Lin
- Department of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Shandong, China
| |
Collapse
|
3
|
Evaluation of the Relationship between Adipose Metabolism Patterns and Secretion of Appetite-Related Endocrines on Chicken. Animals (Basel) 2020; 10:ani10081282. [PMID: 32727133 PMCID: PMC7460314 DOI: 10.3390/ani10081282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The weight of an animal conforms to a certain growth pattern. Among others, feed, environment, and body composition, in addition to genetics, affect the animal’s feed consumption and body weight. Under normal circumstances, the body weight of an animal is mainly affected by feed intake, and body composition may significantly influence feed intake. Therefore, this report sets out the effects of fat accumulation on lipid metabolism and appetite, and finally introduces the effects of feeding patterns on animal feed intake. Abstract In addition to the influence of genes, the quality of poultry products is mainly controlled by the rearing environment or feed composition during rearing, and has to meet human use and economical needs. As the only source of energy for poultry, feed considerably affects the metabolic pattern of poultry and further affects the regulation of appetite-related endocrine secretion in poultry. Under normal circumstances, the accumulation of lipid in adipose reduces feed intake in poultry and increases the rate of adipose metabolism. When the adipose content in cells decreases, endocrines that promote food intake are secreted and increase nutrient concentrations in serum and cells. By regulating the balance between appetite and adipose metabolism, the poultry’s growth and posture can maintain a balanced state. In addition, increasing fiber composition in feed can effectively increase poultry welfare, body weight, lean composition and antioxidant levels in poultry. According to this, the concept that proper fiber content should be added to feed should be considered for better economic benefits, poultry welfare and meat productivity.
Collapse
|
4
|
Piórkowska K, Żukowski K, Połtowicz K, Nowak J, Ropka-Molik K, Derebecka N, Wesoły J, Wojtysiak D. Identification of candidate genes and regulatory factors related to growth rate through hypothalamus transcriptome analyses in broiler chickens. BMC Genomics 2020; 21:509. [PMID: 32703165 PMCID: PMC7376931 DOI: 10.1186/s12864-020-06884-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Background Intensive selection for growth rate (GR) in broiler chickens carries negative after-effects, such as aberrations in skeletal development and the immune system, heart failure, and deterioration of meat quality. In Poland, fast-growing chicken populations are highly non-uniform in term of growth rate, which is highly unprofitable for poultry producers. Therefore, the identification of genetic markers for boiler GR that could support the selection process is needed. The hypothalamus is strongly associated with growth regulation by inducing important pituitary hormones. Therefore, the present study used this tissue to pinpoint genes involved in chicken growth control. Results The experiment included male broilers of Ross 308 strain in two developmental stages, after 3rd and 6th week of age, which were maintained in the same housing and feeding conditions. The obtained results show for the overexpression of genes related to orexigenic molecules, such as neuropeptide Y (NPY), aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), galanin (GAL), and pro-melanin concentrating hormone (PMCH) in low GR cockerels. Conclusion The results reveal strong associations between satiety centre and the growth process. The present study delivers new insights into hypothalamic regulation in broiler chickens and narrows the area for the searching of genetic markers for GR. Graphical abstract ![]()
Collapse
Affiliation(s)
- Katarzyna Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Kacper Żukowski
- Department of Cattle Breeding, National Research Institute of Animal Production, Balice, Poland
| | - Katarzyna Połtowicz
- Department of Poultry Breeding, National Research Institute of Animal Production, Balice, Poland.
| | - Joanna Nowak
- Department of Poultry Breeding, National Research Institute of Animal Production, Balice, Poland
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Natalia Derebecka
- Adam Mickiewicz University, Faculty of Biology, Laboratory of High Throughput Technologies Institute of Molecular Biology and Biotechnology, Poznań, Poland
| | - Joanna Wesoły
- Adam Mickiewicz University, Faculty of Biology, Laboratory of High Throughput Technologies Institute of Molecular Biology and Biotechnology, Poznań, Poland
| | - Dorota Wojtysiak
- Department of Animal Genetics, Breeding and Ethology, University of Agriculture in Krakow, Cracow, Poland
| |
Collapse
|
5
|
Proszkowiec-Weglarz M, Dupont J, Rideau N, Gespach C, Simon J, Porter TE. Insulin immuno-neutralization decreases food intake in chickens without altering hypothalamic transcripts involved in food intake and metabolism. Poult Sci 2018; 96:4409-4418. [PMID: 29053815 PMCID: PMC5850116 DOI: 10.3382/ps/pex247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 08/10/2017] [Indexed: 12/04/2022] Open
Abstract
In mammals, insulin regulates blood glucose levels and plays a key regulatory role in appetite via the hypothalamus. In contrast, chickens are characterized by atypical glucose homeostasis, with relatively high blood glucose levels, reduced glucose sensitivity of pancreatic beta cells, and large resistance to exogenous insulin. The aim of the present study was to investigate in chickens the effects of 5 h fasting and 5 h insulin immuno-neutralization on hypothalamic mRNA levels of 23 genes associated with food intake, energy balance, and glucose metabolism. We observed that insulin immune-neutralization by administration of anti-porcine insulin guinea pig serum (AI) significantly decreased food intake and increased plasma glucose levels in chickens, while 5 h fasting produced a limited and non-significant reduction in plasma glucose. In addition, 5 h fasting increased levels of NPY, TAS1R1, DIO2, LEPR, GLUT1, GLUT3, GLUT8, and GCK mRNA. In contrast, AI had no impact on the levels of any selected mRNA. Therefore, our results demonstrate that in chickens, food intake inhibition or satiety mechanisms induced by insulin immuno-neutralization do not rely on hypothalamic abundance of the 23 transcripts analyzed. The hypothalamic transcripts that were increased in the fasted group are likely components of a mechanism of adaptation to fasting in chickens.
Collapse
Affiliation(s)
- M Proszkowiec-Weglarz
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742
| | - J Dupont
- Station de Recherches Avicoles (UR 83), INRA, 37380 Nouzilly, France
| | - N Rideau
- Station de Recherches Avicoles (UR 83), INRA, 37380 Nouzilly, France
| | - C Gespach
- INSERM U938, Molecular and Clinical Oncology, Hôpital Saint Antoine, Université Pierre et Marie Curie Paris 6, 75012 Paris, France
| | - J Simon
- Station de Recherches Avicoles (UR 83), INRA, 37380 Nouzilly, France
| | - T E Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742
| |
Collapse
|
6
|
Resnyk CW, Carré W, Wang X, Porter TE, Simon J, Le Bihan-Duval E, Duclos MJ, Aggrey SE, Cogburn LA. Transcriptional analysis of abdominal fat in chickens divergently selected on bodyweight at two ages reveals novel mechanisms controlling adiposity: validating visceral adipose tissue as a dynamic endocrine and metabolic organ. BMC Genomics 2017; 18:626. [PMID: 28814270 PMCID: PMC5559791 DOI: 10.1186/s12864-017-4035-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 08/08/2017] [Indexed: 11/10/2022] Open
Abstract
Background Decades of intensive genetic selection in the domestic chicken (Gallus gallus domesticus) have enabled the remarkable rapid growth of today’s broiler (meat-type) chickens. However, this enhanced growth rate was accompanied by several unfavorable traits (i.e., increased visceral fatness, leg weakness, and disorders of metabolism and reproduction). The present descriptive analysis of the abdominal fat transcriptome aimed to identify functional genes and biological pathways that likely contribute to an extreme difference in visceral fatness of divergently selected broiler chickens. Methods We used the Del-Mar 14 K Chicken Integrated Systems microarray to take time-course snapshots of global gene transcription in abdominal fat of juvenile [1-11 weeks of age (wk)] chickens divergently selected on bodyweight at two ages (8 and 36 wk). Further, a RNA sequencing analysis was completed on the same abdominal fat samples taken from high-growth (HG) and low-growth (LG) cockerels at 7 wk, the age with the greatest divergence in body weight (3.2-fold) and visceral fatness (19.6-fold). Results Time-course microarray analysis revealed 312 differentially expressed genes (FDR ≤ 0.05) as the main effect of genotype (HG versus LG), 718 genes in the interaction of age and genotype, and 2918 genes as the main effect of age. The RNA sequencing analysis identified 2410 differentially expressed genes in abdominal fat of HG versus LG chickens at 7 wk. The HG chickens are fatter and over-express numerous genes that support higher rates of visceral adipogenesis and lipogenesis. In abdominal fat of LG chickens, we found higher expression of many genes involved in hemostasis, energy catabolism and endocrine signaling, which likely contribute to their leaner phenotype and slower growth. Many transcription factors and their direct target genes identified in HG and LG chickens could be involved in their divergence in adiposity and growth rate. Conclusions The present analyses of the visceral fat transcriptome in chickens divergently selected for a large difference in growth rate and abdominal fatness clearly demonstrate that abdominal fat is a very dynamic metabolic and endocrine organ in the chicken. The HG chickens overexpress many transcription factors and their direct target genes, which should enhance in situ lipogenesis and ultimately adiposity. Our observation of enhanced expression of hemostasis and endocrine-signaling genes in diminished abdominal fat of LG cockerels provides insight into genetic mechanisms involved in divergence of abdominal fatness and somatic growth in avian and perhaps mammalian species, including humans. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4035-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C W Resnyk
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA
| | - W Carré
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.,Laboratoire de Génétique Moléculaire et Génomique, CHU Pontchaillou, 35033, Rennes, France
| | - X Wang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.,Department of Biological Sciences, Tennessee State University, Nashville, TN, 37209, USA
| | - T E Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - J Simon
- UR83 Recherches Avicoles, Institut National de la Recherche Agronomique (INRA), F-37380, Nouzilly, France
| | - E Le Bihan-Duval
- UR83 Recherches Avicoles, Institut National de la Recherche Agronomique (INRA), F-37380, Nouzilly, France
| | - M J Duclos
- UR83 Recherches Avicoles, Institut National de la Recherche Agronomique (INRA), F-37380, Nouzilly, France
| | - S E Aggrey
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - L A Cogburn
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
7
|
Liu L, Wang G, Xiao Y, Shipp SL, Siegel PB, Cline MA, Gilbert ER. Peripheral neuropeptide Y differentially influences adipogenesis and lipolysis in chicks from lines selected for low or high body weight. Comp Biochem Physiol A Mol Integr Physiol 2017; 213:1-10. [PMID: 28789975 DOI: 10.1016/j.cbpa.2017.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/29/2022]
Abstract
Neuropeptide Y (NPY) stimulates appetite and promotes lipid deposition. We demonstrated a differential sensitivity in the food intake response to central NPY in chicks from lines selected for low (LWS) or high (HWS) body weight, but have not reported whether such differences exist in the periphery. At 5days, LWS and HWS chicks were intraperitoneally injected with 0 (vehicle), 60, or 120μg/kg BW NPY and subcutaneous adipose tissue and plasma were collected at 1, 3, 6, 12, and 24h (n=12). NPY injection increased glycerol-3-phosphate dehydrogenase (G3PDH) activity at 1 and 3h and reduced plasma non-esterified fatty acids (NEFAs) at 1 and 12h. G3PDH activity was greater in HWS than LWS while NEFAs were greater in LWS. At 1h, peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer binding protein (C/EBP)α, and microsomal triglyceride transfer protein (MTTP) mRNAs were reduced in NPY-injected chicks whereas NPY receptor 1 (NPYR1) was increased. Expression of stearoyl-CoA desaturase (SCD1) was increased by NPY at 1h in HWS but not LWS. PPARγ (3 and 6h), C/EBPβ (3h), C/EBPα (6h) and NPYR1 and 2 (24h) mRNAs were greater in NPY- than vehicle-injected chicks. At several times, adipose triglyceride lipase, MTTP, perilipin 1, NPYR1, and NPYR2 mRNAs were greater in LWS than HWS, while expression of SCD1, glycerol-3-phosphate acyltransferase 3 and lipoprotein lipase was greater in HWS than LWS. Thus, NPY promotes fat deposition and inhibits lipolysis in chicks, with line differences indicative of greater rates of lipolysis in LWS and adipogenesis in HWS.
Collapse
Affiliation(s)
- Lingbin Liu
- Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Guoqing Wang
- Virginia Polytechnic Institute and State University, Department of Animal and Poultry Sciences, Blacksburg, Virginia 24061, United States
| | - Yang Xiao
- Virginia Polytechnic Institute and State University, Department of Animal and Poultry Sciences, Blacksburg, Virginia 24061, United States
| | - Steven L Shipp
- Virginia Polytechnic Institute and State University, Department of Animal and Poultry Sciences, Blacksburg, Virginia 24061, United States
| | - Paul B Siegel
- Virginia Polytechnic Institute and State University, Department of Animal and Poultry Sciences, Blacksburg, Virginia 24061, United States
| | - Mark A Cline
- Virginia Polytechnic Institute and State University, Department of Animal and Poultry Sciences, Blacksburg, Virginia 24061, United States
| | - Elizabeth R Gilbert
- Virginia Polytechnic Institute and State University, Department of Animal and Poultry Sciences, Blacksburg, Virginia 24061, United States.
| |
Collapse
|
8
|
Yi J, Yuan J, Gilbert ER, Siegel PB, Cline MA. Differential expression of appetite-regulating genes in avian models of anorexia and obesity. J Neuroendocrinol 2017; 29. [PMID: 28727208 DOI: 10.1111/jne.12510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/16/2017] [Accepted: 07/17/2017] [Indexed: 01/26/2023]
Abstract
Chickens from lines that have been selected for low (LWS) or high (HWS) juvenile body weight for more than 57 generations provide a unique model by which to research appetite regulation. The LWS display different severities of anorexia, whereas all HWS become obese. In the present study, we measured mRNA abundance of various factors in appetite-associated nuclei in the hypothalamus. The lateral hypothalamus (LHA), paraventricular nucleus (PVN), ventromedial hypothalamus (VMH), dorsomedial nucleus (DMN) and arcuate nucleus (ARC) were collected from 5 day-old chicks that were fasted for 180 minutes or provided with continuous access to food. Fasting increased neuropeptide Y receptor subtype 1 (NPYR1) mRNA in the LHA and c-Fos in the VMH, at the same time as decreasing c-Fos in the LHA, neuropeptide Y receptor subtype 5 and ghrelin in the PVN, and neuropeptide Y receptor subtype 2 in the ARC. Fasting increased melanocortin receptor subtype 3 (MC3R) expression in the DMN and NPY in the ARC of LWS but not HWS chicks. Expression of NPY was greater in LWS than HWS in the DMN. neuropeptide Y receptor subtype 5 mRNA was greater in LWS than HWS in the LHA, PVN and ARC. Expression of orexin was greater in LWS than HWS in the LHA. There was greater expression of NPYR1, melanocortin receptor subtype 4 and cocaine- and amphetamine-regulated transcript in HWS than LWS and mesotocin in LWS than HWS in the PVN. In the ARC, agouti-related peptide and MC3R were greater in LWS than HWS and, in the VMH, orexin receptor 2 and leptin receptor were greater in LWS than HWS. Greater mesotocin in the PVN, orexin in the LHA and ORXR2 in the VMH of LWS may contribute to their increased sympathetic tone and anorexic phenotype. The results of the present study also suggest that an increased hypothalamic anorexigenic tone in the LWS over-rides orexigenic factors such as NPY and AgRP that were more highly expressed in LWS than HWS in several nuclei.
Collapse
Affiliation(s)
- J Yi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - J Yuan
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - E R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - P B Siegel
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - M A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
9
|
Avian and Mammalian Facilitative Glucose Transporters. MICROARRAYS 2017; 6:microarrays6020007. [PMID: 28379195 PMCID: PMC5487954 DOI: 10.3390/microarrays6020007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 12/17/2022]
Abstract
The GLUT members belong to a family of glucose transporter proteins that facilitate glucose transport across the cell membrane. The mammalian GLUT family consists of thirteen members (GLUTs 1-12 and H⁺-myo-inositol transporter (HMIT)). Humans have a recently duplicated GLUT member, GLUT14. Avians express the majority of GLUT members. The arrangement of multiple GLUTs across all somatic tissues signifies the important role of glucose across all organisms. Defects in glucose transport have been linked to metabolic disorders, insulin resistance and diabetes. Despite the essential importance of these transporters, our knowledge regarding GLUT members in avians is fragmented. It is clear that there are no chicken orthologs of mammalian GLUT4 and GLUT7. Our examination of GLUT members in the chicken revealed that some chicken GLUT members do not have corresponding orthologs in mammals. We review the information regarding GLUT orthologs and their function and expression in mammals and birds, with emphasis on chickens and humans.
Collapse
|
10
|
Shipp SL, Cline MA, Gilbert ER. Recent advances in the understanding of how neuropeptide Y and α-melanocyte stimulating hormone function in adipose physiology. Adipocyte 2016; 5:333-350. [PMID: 27994947 DOI: 10.1080/21623945.2016.1208867] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 12/20/2022] Open
Abstract
Communication between the brain and the adipose tissue has been the focus of many studies in recent years, with the "brain-fat axis" identified as a system that orchestrates the assimilation and usage of energy to maintain body mass and adequate fat stores. It is now well-known that appetite-regulating peptides that were studied as neurotransmitters in the central nervous system can act both on the hypothalamus to regulate feeding behavior and also on the adipose tissue to modulate the storage of energy. Energy balance is thus partly controlled by factors that can alter both energy intake and storage/expenditure. Two such factors involved in these processes are neuropeptide Y (NPY) and α-melanocyte stimulating hormone (α-MSH). NPY, an orexigenic factor, is associated with promoting adipogenesis in both mammals and chickens, while α-MSH, an anorexigenic factor, stimulates lipolysis in rodents. There is also evidence of interaction between the 2 peptides. This review aims to summarize recent advances in the study of NPY and α-MSH regarding their role in adipose tissue physiology, with an emphasis on the cellular and molecular mechanisms. A greater understanding of the brain-fat axis and regulation of adiposity by bioactive peptides may provide insights on strategies to prevent or treat obesity and also enhance nutrient utilization efficiency in agriculturally-important species.
Collapse
|
11
|
Buzala M, Janicki B. Review: Effects of different growth rates in broiler breeder and layer hens on some productive traits. Poult Sci 2016; 95:2151-9. [PMID: 27194733 DOI: 10.3382/ps/pew173] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2016] [Indexed: 12/26/2022] Open
Abstract
Genetic selection that has been carried out for several dozen years has led to significant progress in poultry production by improving productive traits and increasing the profitability of broiler breeder and layer hen production. After hatching, broilers and layers differ mainly in feed intake, growth rate, efficiency of nutrient utilization, and development of muscles and adipose tissue. A key role can be played by hormonal mechanisms of appetite control in broilers and layers. The paper discusses the consequences of different growth rates resulting from long-term genetic selection on feed intake, efficiency of nutrient utilization, and development of muscles and adipose tissue, with particular consideration of the hormonal mechanisms of appetite control in broilers and layers. The information presented in this review paper shows that it would be worth comparing these issues in a meta-analysis.
Collapse
Affiliation(s)
- M Buzala
- Department of Animal Biochemistry and Biotechnology, UTP University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland
| | - B Janicki
- Department of Animal Biochemistry and Biotechnology, UTP University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland
| |
Collapse
|
12
|
Yi J, Delp MS, Gilbert ER, Siegel PB, Cline MA. Anorexia is Associated with Stress-Dependent Orexigenic Responses to Exogenous Neuropeptide Y. J Neuroendocrinol 2016; 28. [PMID: 26924179 DOI: 10.1111/jne.12378] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 11/28/2022]
Abstract
Chicken lines that have been divergently selected for either low (LWS) or high (HWS) body weight at 56 days of age for more than 57 generations have different feeding behaviours in response to a range of i.c.v. injected neurotransmitters. The LWS have different severities of anorexia, whereas the HWS become obese. Previously, we demonstrated that LWS chicks did not respond, whereas HWS chicks increased food intake, after central injection of neuropeptide Y (NPY). The present study aimed to determine the molecular mechanisms underlying the loss of orexigenic function of NPY in LWS. Chicks were divided into four groups: stressed LWS and HWS on day of hatch, and control LWS and HWS. The stressor was a combination of food deprivation and cold exposure. On day 5 post-hatch, each chick received an i.c.v. injection of vehicle or 0.2 nmol of NPY. Only the LWS stressed group did not increase food intake in response to i.c.v. NPY. Hypothalamic mRNA abundance of appetite-associated factors was measured at 1 h post-injection. Interactions of genetic line, stress and NPY treatment were observed for the mRNA abundance of agouti-related peptide (AgRP) and synaptotagmin 1 (SYT1). Intracerebroventricular injection of NPY decreased and increased AgRP and SYT1 mRNA, respectively, in the stressed LWS and increased AgRP mRNA in stressed HWS chicks. Stress was associated with increased NPY, orexin receptor 2, corticotrophin-releasing factor receptor 1, melanocortin receptor 3 (MC3R) and growth hormone secretagogue receptor expression. In conclusion, the loss of responsiveness to exogenous NPY in stressed LWS chicks may be a result of the decreased and increased hypothalamic expression of AgRP and MC3R, respectively. This may induce an intensification of anorexigenic melanocortin signalling pathways in LWS chicks that block the orexigenic effect of exogenous NPY. These results provide insights onto the anorexic condition across species, and especially for forms of inducible anorexia such as human anorexia nervosa.
Collapse
Affiliation(s)
- J Yi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - M S Delp
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - E R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - P B Siegel
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - M A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
13
|
Zynat J, Guo Y, Lu Y, Lin D. The Improvement of Hyperglycemia after RYGB Surgery in Diabetic Rats Is Related to Elevated Hypothalamus GLP-1 Receptor Expression. Int J Endocrinol 2016; 2016:5308347. [PMID: 27648071 PMCID: PMC5014957 DOI: 10.1155/2016/5308347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/28/2016] [Accepted: 07/19/2016] [Indexed: 12/25/2022] Open
Abstract
Objectives. This study aimed to explore the expression of GLP-1 receptor in hypothalamus and gastrointestinal tissues after Roux-en-Y gastric bypass (RYGB) surgery in diabetic rats. Methods. Male 12-week-old Wistar rats (control) and Goto-Kakizaki rats (diabetic) were randomly divided into two groups, respectively: control sham surgery group (C), control RYGB group (C + R), diabetic sham surgery group (D), and diabetic RYGB group (D + R). Body weight and blood glucose were monitored before and after surgery every week. Eight weeks after surgery, all rats were sacrificed and the serum fasting GLP-1 concentrations were measured by ELISA. GLP-1R and DPP-4 expression in hypothalamus and ileum were measured by RT-PCR. Results. The body weight and fasting/random blood glucose in the D + R group decreased significantly compared with the D group (P < 0.05). Serum GLP-1 levels in diabetic rats treated with RYGB were higher than the corresponding sham surgery rats. The expression of GLP-1R of hypothalamus in RYGB-treated diabetic rats was significantly higher than those of the sham surgery diabetic rats and both control group rats (P < 0.05). We found a negative correlation between hypothalamus GLP-1R mRNA and blood glucose level. No significant difference was seen in ileum GLP-1R and DPP-4 expression among all groups. Conclusions. RYGB efficiently promoted serum GLP-1 levels and the expression of GLP-1 receptor in the hypothalamus in diabetic rats. These data suggest that the hypothalamus GLP-1R may play an important role in the GLP-1 system for improving glucose homeostasis after reconstruction of the gastrointestinal tract.
Collapse
Affiliation(s)
- Jazyra Zynat
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuyu Guo
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yingli Lu
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dongping Lin
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Dongping Lin:
| |
Collapse
|
14
|
Delayed access of low body weight-selected chicks to food at hatch is associated with up-regulated pancreatic glucagon and glucose transporter gene expression. Comp Biochem Physiol A Mol Integr Physiol 2015; 189:124-9. [DOI: 10.1016/j.cbpa.2015.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/11/2015] [Accepted: 08/02/2015] [Indexed: 11/19/2022]
|
15
|
Dietary protein ingested before and during short photoperiods makes an impact on affect-related behaviours and plasma composition of amino acids in mice. Br J Nutr 2015; 114:1734-43. [DOI: 10.1017/s0007114515003396] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractIn mammals, short photoperiod is associated with high depression- and anxiety-like behaviours with low levels of the brain serotonin and its precursor tryptophan (Trp). Because the brain Trp levels are regulated by its ratio to large neutral amino acids (Trp:LNAA) in circulation, this study elucidated whether diets of various protein sources that contain different Trp:LNAA affect depression- and anxiety-like behaviours in C57BL/6J mice under short-day conditions (SD). In the control mice on a casein diet, time spent in the central area in the open field test (OFT) was lower in the mice under SD than in those under long-day conditions (LD), indicating that SD exposure induces anxiety-like behaviour. The SD-induced anxiety-like behaviour was countered by an α-lactalbumin diet given under SD. In the mice that were on a gluten diet before transition to SD, the time spent in the central area in the OFT under SD was higher than that in the SD control mice. Alternatively, mice that ingested soya protein before the transition to SD had lower immobility in the forced swim test, a depression-like behaviour, compared with the SD control. Analysis of Trp:LNAA revealed lower Trp:LNAA in the SD control compared with the LD control, which was counteracted by an α-lactalbumin diet under SD. Furthermore, mice on gluten or soya protein diets before transition to SD exhibited high Trp:LNAA levels in plasma under SD. In conclusion, ingestion of specific proteins at different times relative to photoperiodic transition may modulate anxiety- and/or depression-like behaviours, partially through changes in plasma Trp:LNAA.
Collapse
|
16
|
Fed and fasted chicks from lines divergently selected for low or high body weight have differential hypothalamic appetite-associated factor mRNA expression profiles. Behav Brain Res 2015; 286:58-63. [DOI: 10.1016/j.bbr.2015.02.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 01/31/2023]
|