1
|
Huang H, Xiao K, Shu T, Liu X, Yang J. Effects of Kisspeptin on the reproductive function in the Dabry's sturgeon (Acipenser dabrynus). Gen Comp Endocrinol 2023; 336:114244. [PMID: 36841441 DOI: 10.1016/j.ygcen.2023.114244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/26/2022] [Accepted: 02/18/2023] [Indexed: 02/27/2023]
Abstract
Kisspeptin, a kind of neuropeptide, is involved in various physiological processes such as tumor metastasis inhibition and reproductive regulation due to its ability to interact with Kisspeptin receptor-Kissr. In teleost, Kisspeptin/Kissr system stimulates the hypothalamus-pituitary-gonadal axis (HPG axis), which is crucial for the reproductive regulation. Compared to one Kisspeptin protein Kiss1 was existed in mammals, two Kisspeptin were identified in sturgeon species, including Kiss1 and Kiss2, with specific receptors of Kissr1 and Kissr2, respectively. However, few reports described the effects of the two isoforms of Kisspeptin on the reproductive regulation in sturgeon. The core peptides of Kiss1 and Kiss2 (Kiss1-10 and Kiss2-10) of Dabry's sturgeon were successfully synthesized to explore the functional influence of Kisspeptin on the sturgeon HPG axis in the present study. The present findings suggested that intraperitoneal injection of Kiss1-10 and Kiss2-10 could significantly up-regulate the mRNA expression of Gnrh、Fsh and Lh in the hypothalamus and pituitary and the content of Lh protein in the serum. Assays of Kisspeptin-treated cells demonstrated that Kiss1-10 and Kiss2-10 can significantly promote the expression of Gnrh in hypothalamus cells and Lh and Fsh in pituitary cells of Dabry's sturgeon, indicating their direct-acting effect on pituitary cells and regulatory function on the reproductive development of sturgeon. This study described the reproductive function of the Kisspeptin in the Dabry's sturgeon for the first time, and provided supportive reference for the development of high-efficiency ripening technologies of artificially breeding sturgeon.
Collapse
Affiliation(s)
- Hongtao Huang
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China.
| | - Kan Xiao
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China.
| | - Tingting Shu
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China.
| | - Xueqing Liu
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China.
| | - Jing Yang
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China.
| |
Collapse
|
2
|
Hypothalamic kisspeptin and kisspeptin receptors: Species variation in reproduction and reproductive behaviours. Front Neuroendocrinol 2022; 64:100951. [PMID: 34757093 DOI: 10.1016/j.yfrne.2021.100951] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/22/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023]
Abstract
Kisspeptin, encoded by the KISS1 gene, was first discovered as a potential metastasis suppressor gene. The prepro-kisspeptin precursor is cleaved into shorter mature bioactive peptides of varying sizes that bind to the G protein-coupled receptor GPR54 (=KISS1R). Over the last two decades, multiple types of Kiss and KissR genes have been discovered in mammalian and non-mammalian vertebrate species, but they are remarkably absent in birds. Kiss neuronal populations are distributed mainly in the hypothalamus. The KissRs are widely distributed in the brain, including the hypothalamic and non-hypothalamic regions, such as the hippocampus, amygdala, and habenula. The role of KISS1-KISS1R in humans and Kiss1-Kiss1R in rodents is associated with puberty, gonadal maturation, and the reproductive axis. However, recent gene deletion studies in zebrafish and medaka have provided controversial results, suggesting that the reproductive role of kiss is dispensable. This review highlights the evolutionary history, localisation, and significance of Kiss-KissR in reproduction and reproductive behaviours in mammalian and non-mammalian vertebrates.
Collapse
|
3
|
Zhao C, Wang B, Liu Y, Feng C, Xu S, Wang W, Liu Q, Li J. New Evidence for the Existence of Two Kiss/Kissr Systems in a Flatfish Species, the Turbot ( Scophthalmus maximus), and Stimulatory Effects on Gonadotropin Gene Expression. Front Endocrinol (Lausanne) 2022; 13:883608. [PMID: 35784551 PMCID: PMC9240279 DOI: 10.3389/fendo.2022.883608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Seasonal reproduction is generally controlled by the hypothalamus-pituitary-gonadal (HPG) axis in fish. Previous studies have demonstrated that the kisspeptin (Kiss)/kisspeptin receptor (Kissr) system, a positive regulator of the HPG axis, mediates the responses to environmental cues. Turbot (Scophthalmus maximus), a representative species of Pleuronectiformes, is one of the most commercially important fish species cultured in Europe and North China. However, the mechanisms by which the Kiss/Kissr system regulates the reproductive axis of turbot according to seasonal changes, especially photoperiod, have not been clearly characterized. In the current study, the cDNA sequences of kiss2/kissr2, along with kiss1/kissr3 which was thought to be lost in flatfish species, were cloned and functionally characterized. The kiss1, kiss2, and kissr3 transcripts were highly detected in the brain and gonad, while kissr2 mRNA was only abundantly expressed in the brain. Moreover, kiss/kissr mRNAs were further examined in various brain areas of both sexes. The kiss1, kissr2, kissr3 mRNAs were highly expressed in the mesencephalon, while a substantial degree of kiss2 transcripts were observed in the hypothalamus. During annual reproductive cycle, both kiss and kissr transcript levels declined significantly from the immature to mature stages and increased at the degeneration stage in the brains of both sexes, especially in the mesencephalon and hypothalamus. The ovarian kiss1, kiss2, and kissr2 mRNA levels were highest at the vitellogenic stage (mature stage), while expression of kissr3 was highest at the immature stage. The testicular kiss and kissr transcripts were highest in the immature and degeneration stages, and lowest at the mature stage. In addition, intraperitoneal injection of Kiss1-10 and Kiss2-10 significantly stimulated mRNA levels of pituitary lhβ, fhsβ, and gthα. In summary, two Kiss/Kissr systems were firstly proven in a flatfish species of turbot, and it has a positive involvement in controlling the reproduction of the Kiss/Kissr system in turbot. The results will provide preliminary information regarding how the Kiss/Kissr system controls seasonal reproduction in turbot broodstock.
Collapse
Affiliation(s)
- Chunyan Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
- The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yifan Liu
- The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, China
| | - Chengcheng Feng
- The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shihong Xu
- The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenqi Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Qinghua Liu
- The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jun Li
- The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- *Correspondence: Jun Li,
| |
Collapse
|
4
|
Vissio PG, Di Yorio MP, Pérez-Sirkin DI, Somoza GM, Tsutsui K, Sallemi JE. Developmental aspects of the hypothalamic-pituitary network related to reproduction in teleost fish. Front Neuroendocrinol 2021; 63:100948. [PMID: 34678303 DOI: 10.1016/j.yfrne.2021.100948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/27/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022]
Abstract
The hypothalamic-pituitary-gonadal axis is the main system that regulates reproduction in vertebrates through a complex network that involves different neuropeptides, neurotransmitters, and pituitary hormones. Considering that this axis is established early on life, the main goal of the present work is to gather information on its development and the actions of its components during early life stages. This review focuses on fish because their neuroanatomical characteristics make them excellent models to study neuroendocrine systems. The following points are discussed: i) developmental functions of the neuroendocrine components of this network, and ii) developmental disruptions that may impact adult reproduction. The importance of the components of this network and their susceptibility to external/internal signals that can alter their specific early functions and/or even the establishment of the reproductive axis, indicate that more studies are necessary to understand this complex and dynamic network.
Collapse
Affiliation(s)
- Paula G Vissio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina.
| | - María P Di Yorio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| | - Daniela I Pérez-Sirkin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima 739-8521, Japan
| | - Julieta E Sallemi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| |
Collapse
|
5
|
Sex Determination and Differentiation in Teleost: Roles of Genetics, Environment, and Brain. BIOLOGY 2021; 10:biology10100973. [PMID: 34681072 PMCID: PMC8533387 DOI: 10.3390/biology10100973] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/19/2023]
Abstract
The fish reproductive system is a complex biological system. Nonetheless, reproductive organ development is conserved, which starts with sex determination and then sex differentiation. The sex of a teleost is determined and differentiated from bipotential primordium by genetics, environmental factors, or both. These two processes are species-specific. There are several prominent genes and environmental factors involved during sex determination and differentiation. At the cellular level, most of the sex-determining genes suppress the female pathway. For environmental factors, there are temperature, density, hypoxia, pH, and social interaction. Once the sexual fate is determined, sex differentiation takes over the gonadal developmental process. Environmental factors involve activation and suppression of various male and female pathways depending on the sexual fate. Alongside these factors, the role of the brain during sex determination and differentiation remains elusive. Nonetheless, GnRH III knockout has promoted a male sex-biased population, which shows brain involvement during sex determination. During sex differentiation, LH and FSH might not affect the gonadal differentiation, but are required for regulating sex differentiation. This review discusses the role of prominent genes, environmental factors, and the brain in sex determination and differentiation across a few teleost species.
Collapse
|
6
|
Macedo-Garzón B, Loredo-Ranjel R, Chávez-Maldonado M, Jiménez-Flores JR, Villamar-Duque TE, Cárdenas R. Distribution and expression of GnRH 1, kiss receptor 2, and estradiol α and ß receptors in the anterior brain of females of Chirostoma humboldtianum. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:33-47. [PMID: 33118089 DOI: 10.1007/s10695-020-00891-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Reproduction in vertebrates is a complex process regulated by many hormones, and by paracrine factors and their receptors. This study aimed to examine the expression of pjGonadotropin-releasing hormone (GnRH 1), the kisspeptin receptor 2 (kissr2), and estradiol receptors α and β (ER α and ER β) during different stages of the sexual cycle and their distribution within the anterior brain of females of Chirostoma humboldtianum. Among these molecules, the kissr2 showed the maximal variation in expression, while GnRH 1 showed minimal variation of expression, and ERβ and ERα had intermediate variation of expression. The distribution of these molecules in the anterior brain was consistent with their levels of expression; kissr2 was widely distributed throughout the telencephalon and diencephalon, while ER and GnRH 1 showed more restricted distributions. No coexpression of kissr2 and ER in GnRH 1ergic neurons, suggesting that regulation of this GnRH variant is indirectly mediated by kisspeptin and estradiol.
Collapse
Affiliation(s)
- Beatriz Macedo-Garzón
- Laboratorio de Endocrinología de peces, Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios # 1, Los Reyes Iztacacala, 54090, Tlalnepantla, Edo. de México, México
| | - Rosaura Loredo-Ranjel
- Laboratorio de Endocrinología de peces, Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios # 1, Los Reyes Iztacacala, 54090, Tlalnepantla, Edo. de México, México
| | - Mónica Chávez-Maldonado
- Laboratorio de Endocrinología de peces, Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios # 1, Los Reyes Iztacacala, 54090, Tlalnepantla, Edo. de México, México
| | - J Rafael Jiménez-Flores
- Laboratorio de Inmunología, Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de lo Barrios # 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo. de México, México
| | - Tomás E Villamar-Duque
- Bioterio General, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios # 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo. de México, México
| | - Rodolfo Cárdenas
- Laboratorio de Endocrinología de peces, Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios # 1, Los Reyes Iztacacala, 54090, Tlalnepantla, Edo. de México, México.
| |
Collapse
|
7
|
Kumari P, Kumar M, Sehgal N, Aggarwal N. In silico analysis of kiss2, expression studies and protein-protein interaction with gonadotropin-releasing hormone 2 (GnRH2) and luteinizing hormone beta (LHβ) in Heteropneustes fossilis. J Biomol Struct Dyn 2020; 40:4543-4557. [PMID: 33345697 DOI: 10.1080/07391102.2020.1860820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Kisspeptins, encoded by the kiss genes, are neuropeptides that regulate the onset of puberty, maturation of gonads, and fertility in higher vertebrates including fishes. The gene ontology suggests that kisspeptin plays an important role not only in reproduction but also in cell signaling, immune response and metabolic processes, and to decipher protein-protein interactions, computational approach has been favored. The present investigation focuses on the detailed structural analysis and molecular docking of kiss2 gene using in silico tools. A putative kiss2 protein of 113 amino acids was encoded by an open reading frame of 342 bp kiss2 gene. The protein is of 13.12 kDa with isoelectric point of 9.45. The secondary structure of the protein indicates more than 50% random coils, followed by 34% of alpha helix and 13% extended strand. The protein was found to be extracellular and secretory in nature. Since, protein-protein interactions play a very crucial role in every cellular process and due to unavailability of crystal structure of our protein of interest in fishes computational approach has been employed. The 3D PDB modeling and the molecular docking of kiss2, Gonadotropin-releasing hormone 2 (GnRH2) and luteinizing hormone beta (LHβ) proteins in fishes have been demonstrated applying protein-docking approach. Molecular interactions of kiss2 protein were the highest with kisspeptin receptor 2 and lowest for the neuropeptide FF-amide peptide precursor protein. Expression of kiss2 transcripts, mainly in the brain and ovary of H. fossilis, supports its hypothalamic-pituitary-gonadal axis signaling and reproductive function. Further, changes in expression patterns of kiss2 mRNA during different developmental stages, indicate its potential role in embryonic development also. The present study conclusively reveals interaction of kiss2 with other neuropeptides. Prediction of binding structures and identification of key residues in protein-protein interaction illustrate direct interaction among these proteins, playing a cardinal role in neuroendocrine regulation of reproduction in catfish. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pooja Kumari
- Department of Zoology, University of Delhi, Delhi, India
| | - Mohit Kumar
- Department of Zoology, University of Delhi, Delhi, India
| | - Neeta Sehgal
- Department of Zoology, University of Delhi, Delhi, India
| | | |
Collapse
|
8
|
Oliveira CC, McStay E, Cabrita E, Castanheira MF, Migaud H, Dinis MT, Davie A. Investigating the kisspeptin system in the hermaphrodite teleost gilthead seabream (Sparus aurata). Comp Biochem Physiol A Mol Integr Physiol 2020; 241:110624. [DOI: 10.1016/j.cbpa.2019.110624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/17/2019] [Accepted: 11/24/2019] [Indexed: 12/12/2022]
|
9
|
Zhang R, Nie H, Duan S, Yan P, Izaz A, Wang R, Zhou Y, Wu X. Cloning, characterisation and expression profile of kisspeptin1 and the kisspeptin1 receptor in the hypothalamic–pituitary–ovarian axis of Chinese alligator Alligator sinensis during the reproductive cycle. Reprod Fertil Dev 2020; 32:792-804. [DOI: 10.1071/rd19332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/22/2020] [Indexed: 12/24/2022] Open
Abstract
Kisspeptin1 (Kiss1), a product of the Kiss1 gene, plays an important role in the regulation of reproduction in vertebrates by activating the Kiss1 receptor (Kiss1R) and its coexpression with gonadotrophin-releasing hormone (GnRH) in GnRH neurons. The purpose of this study was to clone the Kiss1 and Kiss1R genes found in the brain of Alligator sinensis and to explore their relationship with reproduction. The full-length cDNA of Kiss1 is 816bp, the open reading frame (ORF) is 417bp and the gene encodes a 138-amino acid precursor protein. The full-length cDNA of Kiss1R is 2348bp, the ORF is 1086bp and the gene encodes a 361-amino acid protein. Quantitative polymerase chain reaction showed that, except for Kiss1R expression in the hypothalamus, the expression of Kiss1 and Kiss1Rduring the reproductive period of A. sinensis was higher than that in the hypothalamus, pituitary gland and ovary during the hibernation period. The changes in GnRH2 mRNA in the hypothalamus were similar to those of GnRH1 and peaked during the reproductive period. This study confirms the existence of Kiss1 and Kiss1R in A. sinensis and the findings strongly suggest that Kiss1 and Kiss1R may participate in the regulation of GnRH secretion in the hypothalamus of alligators during the reproductive period. Furthermore, this is the first report of the full-length cDNA sequences of Kiss1 and Kiss1R in reptiles.
Collapse
|
10
|
Wang W, Chen J, Fang Y, Wang B, Zou Q, Wang L, Zhang W, Huang X, Lv H, Zhang C, Wang K. Identification of gnrh2 and gnrh3 and their expression during brood pouch growth and short-term benzo(a)pyrene exposure in lined seahorse (Hippocampus erectus). Comp Biochem Physiol C Toxicol Pharmacol 2019; 225:108579. [PMID: 31386905 DOI: 10.1016/j.cbpc.2019.108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 11/16/2022]
Abstract
Gonadotropin-releasing hormones (GnRH) regulate gonadal growth of teleosts. Benzo(a)pyrene (BaP) functions as a reproductive endocrine disruptor. Furthermore, endocrine regulation on brood pouch growth of Syngnathidaes is elusive. To better understand the role of GnRH in brood pouch growth and effects of BaP on reproductive endocrine in lined seahorse (Hippocampus erectus), gnrh2 and gnrh3 genes were identified. Results showed that lined seahorse GnRH2 and GnRH3 precursors included the conservative tripartite structure and their transcripts highly expressed in brain as other teleosts. Expression profiles of gnrh2 and gnrh3 transcripts were detected during brood pouch growth. Results indicated that brain gnrh2 transcripts remarkably increased at the middle-stage and late-stage of brood pouch growth, while brain gnrh3 transcripts significantly raised at the early-stage and middle-stage. These suggested that GnRH2 and GnRH3 regulated brood pouch growth at different stages. Short-term BaP exposure in lined seahorse was performed. Transcripts of gnrh2 and gnrh3 remarkably increased in females and males exposed to BaP. Besides, plasma 17-beta estradiol (E2) levels presented a reduced trend during female fish exposed to BaP. This revealed that BaP functioned as anti-estrogenic effects and it may result in high expression of gnrh mRNA. However, plasma 11-ketone testosterone (11-KT) levels showed an increased trend during male fish exposed to BaP. Taken together, these indicated interesting results of BaP on reproduction in each sex of seahorse. These observations contribute to provide novel information of regulation on brood pouch growth and effects of BaP on reproductive endocrine in Syngnathidaes.
Collapse
Affiliation(s)
- Wenqiang Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Jun Chen
- School of Agriculture, Ludong University, Yantai 264025, China.
| | - Yan Fang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Bin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qiang Zou
- Yantai Branch of Shandong Technology Transfer Center, Chinese Academy of Sciences, Yantai 264003, China
| | - Lei Wang
- College of life sciences, Ludong University, Yantai 264025, China
| | - Wenwen Zhang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xueying Huang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Haoyue Lv
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Chenxiao Zhang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Kai Wang
- School of Agriculture, Ludong University, Yantai 264025, China.
| |
Collapse
|
11
|
Ohga H, Selvaraj S, Matsuyama M. The Roles of Kisspeptin System in the Reproductive Physiology of Fish With Special Reference to Chub Mackerel Studies as Main Axis. Front Endocrinol (Lausanne) 2018; 9:147. [PMID: 29670580 PMCID: PMC5894438 DOI: 10.3389/fendo.2018.00147] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/19/2018] [Indexed: 12/27/2022] Open
Abstract
Kisspeptin, a novel neuropeptide product of the Kiss1 gene, activates the G protein-coupled membrane receptor G protein-coupled receptor 54 (now termed Kiss1r). Over the last 15 years, the importance of the kisspeptin system has been the subject of much debate in the mammalian research field. At the heart of the debate is whether kisspeptin is an absolute upstream regulator of gonadotropin-releasing hormone secretion, as it has been proposed to be the master molecule in reproductive events and plays a special role not only during puberty but also in adulthood. The teleostean kisspeptin system was first documented in 2004. Although there have been a number of kisspeptin studies in various fish species, the role of kisspeptin in reproduction remains a subject of controversy and has not been widely recognized. There is an extensive literature on the physiological and endocrinological bases of gametogenesis in fish, largely derived from studying small, model fish species, and reports on non-model species are limited. The reason for this discrepancy is the technical difficulty inherent in developing rigorous experimental systems in many farmed fish species. We have already established methods for the full life-cycle breeding of a commercially important marine fish, the chub mackerel (cm), and are interested in understanding the reproductive function of kisspeptins from various perspectives. Based on a series of experiments clarifying the role of the brain-pituitary-gonad axis in modulating reproduction in cm, we theorize that the kisspeptin system plays an important role in the reproduction of this scombroid species. In this review article, we provide an overview of kisspeptin studies in cm, which substantially aids in elucidating the role of kisspeptins in fish reproduction.
Collapse
|
12
|
Pallotta MM, Turano M, Ronca R, Mezzasalma M, Petraccioli A, Odierna G, Capriglione T. Brain Gene Expression is Influenced by Incubation Temperature During Leopard Gecko (Eublepharis macularius) Development. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:360-370. [DOI: 10.1002/jez.b.22736] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 11/10/2022]
Affiliation(s)
| | - Mimmo Turano
- Dipartimento di Biologia; Università di Napoli Federico II; Napoli Italy
| | - Raffaele Ronca
- Dipartimento di Biologia; Università di Napoli Federico II; Napoli Italy
| | | | - Agnese Petraccioli
- Dipartimento di Biologia; Università di Napoli Federico II; Napoli Italy
| | - Gaetano Odierna
- Dipartimento di Biologia; Università di Napoli Federico II; Napoli Italy
| | - Teresa Capriglione
- Dipartimento di Biologia; Università di Napoli Federico II; Napoli Italy
| |
Collapse
|
13
|
Shahi N, Singh AK, Sahoo M, Mallik SK, Thakuria D. Molecular cloning, characterization and expression profile of kisspeptin1 and kisspeptin1 receptor at brain-pituitary-gonad (BPG) axis of golden mahseer, Tor putitora (Hamilton, 1822) during gonadal development. Comp Biochem Physiol B Biochem Mol Biol 2017; 205:13-29. [DOI: 10.1016/j.cbpb.2016.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/14/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
|
14
|
Tovar Bohórquez MO, Mechaly AS, Hughes LC, Campanella D, Ortí G, Canosa LF, Somoza GM. Kisspeptin system in pejerrey fish (Odontesthes bonariensis). Characterization and gene expression pattern during early developmental stages. Comp Biochem Physiol A Mol Integr Physiol 2017; 204:146-156. [DOI: 10.1016/j.cbpa.2016.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 01/05/2023]
|
15
|
Bar I, Cummins S, Elizur A. Transcriptome analysis reveals differentially expressed genes associated with germ cell and gonad development in the Southern bluefin tuna (Thunnus maccoyii). BMC Genomics 2016; 17:217. [PMID: 26965070 PMCID: PMC4785667 DOI: 10.1186/s12864-016-2397-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/14/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Controlling and managing the breeding of bluefin tuna (Thunnus spp.) in captivity is an imperative step towards obtaining a sustainable supply of these fish in aquaculture production systems. Germ cell transplantation (GCT) is an innovative technology for the production of inter-species surrogates, by transplanting undifferentiated germ cells derived from a donor species into larvae of a host species. The transplanted surrogates will then grow and mature to produce donor-derived seed, thus providing a simpler alternative to maintaining large-bodied broodstock such as the bluefin tuna. Implementation of GCT for new species requires the development of molecular tools to follow the fate of the transplanted germ cells. These tools are based on key reproductive and germ cell-specific genes. RNA-Sequencing (RNA-Seq) provides a rapid, cost-effective method for high throughput gene identification in non-model species. This study utilized RNA-Seq to identify key genes expressed in the gonads of Southern bluefin tuna (Thunnus maccoyii, SBT) and their specific expression patterns in male and female gonad cells. RESULTS Key genes involved in the reproductive molecular pathway and specifically, germ cell development in gonads, were identified using analysis of RNA-Seq transcriptomes of male and female SBT gonad cells. Expression profiles of transcripts from ovary and testis cells were compared, as well as testis germ cell-enriched fraction prepared with Percoll gradient, as used in GCT studies. Ovary cells demonstrated over-expression of genes related to stem cell maintenance, while in testis cells, transcripts encoding for reproduction-associated receptors, sex steroids and hormone synthesis and signaling genes were over-expressed. Within the testis cells, the Percoll-enriched fraction showed over-expression of genes that are related to post-meiosis germ cell populations. CONCLUSIONS Gonad development and germ cell related genes were identified from SBT gonads and their expression patterns in ovary and testis cells were determined. These expression patterns correlate with the reproductive developmental stage of the sampled fish. The majority of the genes described in this study were sequenced for the first time in T. maccoyii. The wealth of SBT gonadal and germ cell-related gene sequences made publicly available by this study provides an extensive resource for further GCT and reproductive molecular biology studies of this commercially valuable fish.
Collapse
Affiliation(s)
- Ido Bar
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4558 Maroochydore DC, Queensland, Australia
| | - Scott Cummins
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4558 Maroochydore DC, Queensland, Australia
| | - Abigail Elizur
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4558 Maroochydore DC, Queensland, Australia
| |
Collapse
|
16
|
Fairgrieve MR, Shibata Y, Smith EK, Hayman ES, Luckenbach JA. Molecular characterization of the gonadal kisspeptin system: Cloning, tissue distribution, gene expression analysis and localization in sablefish (Anoplopoma fimbria). Gen Comp Endocrinol 2016; 225:212-223. [PMID: 26386183 DOI: 10.1016/j.ygcen.2015.07.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 07/02/2015] [Accepted: 07/21/2015] [Indexed: 10/23/2022]
Abstract
The kisspeptin system plays pivotal roles in the regulation of vertebrate reproduction. Classically, kisspeptin produced in the brain stimulates brain gonadotropin-releasing hormone signaling, which in turn activates the pituitary-gonad axis. Expression of the kisspeptin system has also been documented in peripheral tissues, including gonads of mammals and fishes. However, the fish gonadal kisspeptin system remained uncharacterized. Herein we report identification and characterization of four kisspeptin system mRNAs (kisspeptin 1 (kiss1), kiss2, and G protein-coupled receptor 54-1 (gpr54-1) and gpr54-2) in sablefish, Anoplopoma fimbria. Sablefish predicted protein sequences were highly similar to those of other marine teleosts, but less so to freshwater teleosts. Tissue distribution analyses revealed that all four kisspeptin-system transcripts were expressed in both brain and gonad. However, kiss2 was the predominant transcript in the gonads and the only transcript detected in ovulated eggs. Ontogenetic analysis of kiss2 expression in juvenile sablefish gonads demonstrated that levels were low during sex differentiation but increased with fish size and gonadal development. Dramatic increases in kiss2 mRNA occurred during primary oocyte growth, while levels remained relatively low in testes. In situ hybridization revealed that kiss2 mRNA was localized to cytoplasm of perinucleolus stage oocytes, suggesting it could play a local role in oogenesis or could be synthesized and stored within oocytes as maternal mRNA. This represents the first study to focus on the gonadal kisspeptin system in fishes and provides important tools for further investigation of both the gonadal and brain kisspeptin systems in sablefish.
Collapse
Affiliation(s)
- Marian R Fairgrieve
- Undergraduate Research Program, University of Washington, 171 Mary Gates Hall, Seattle, WA 98195-2803, USA
| | - Yasushi Shibata
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat St, Seattle, WA 98195-5020, USA
| | - Elizabeth K Smith
- Frank Orth and Associates, Under Contract to Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd E, Seattle, WA 98112, USA
| | - Edward S Hayman
- Frank Orth and Associates, Under Contract to Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd E, Seattle, WA 98112, USA
| | - J Adam Luckenbach
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd E, Seattle, WA 98112, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
17
|
Huo X, Chen D, He Y, Zhu W, Zhou W, Zhang J. Bisphenol-A and Female Infertility: A Possible Role of Gene-Environment Interactions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:11101-16. [PMID: 26371021 PMCID: PMC4586663 DOI: 10.3390/ijerph120911101] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023]
Abstract
Background: Bisphenol-A (BPA) is widely used and ubiquitous in the environment. Animal studies indicate that BPA affects reproduction, however, the gene-environment interaction mechanism(s) involved in this association remains unclear. We performed a literature review to summarize the evidence on this topic. Methods: A comprehensive search was conducted in PubMed using as keywords BPA, gene, infertility and female reproduction. Full-text articles in both human and animals published in English prior to December 2014 were selected. Results: Evidence shows that BPA can interfere with endocrine function of hypothalamic-pituitary axis, such as by changing gonadotropin-releasing hormones (GnRH) secretion in hypothalamus and promoting pituitary proliferation. Such actions affect puberty, ovulation and may even result in infertility. Ovary, uterus and other reproductive organs are also targets of BPA. BPA exposure impairs the structure and functions of female reproductive system in different times of life cycle and may contribute to infertility. Both epidemiological and experimental evidences demonstrate that BPA affects reproduction-related gene expression and epigenetic modification that are closely associated with infertility. The detrimental effects on reproduction may be lifelong and transgenerational. Conclusions: Evidence on gene-environment interactions, especially from human studies, is still limited. Further research on this topic is warranted.
Collapse
Affiliation(s)
- Xiaona Huo
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kong Jiang Road, Shanghai 200092, China
| | - Dan Chen
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kong Jiang Road, Shanghai 200092, China.
| | - Yonghua He
- School of Public Health, Guilin Medical University, Guilin 541004, China.
| | - Wenting Zhu
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kong Jiang Road, Shanghai 200092, China.
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China.
| | - Wei Zhou
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kong Jiang Road, Shanghai 200092, China.
| | - Jun Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kong Jiang Road, Shanghai 200092, China.
- School of Public Health, Guilin Medical University, Guilin 541004, China.
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China.
| |
Collapse
|