1
|
Feng J, Du J, Li S, Chen X. Akt regulates the fertility of Coridius chinensis by insulin signaling pathway. Sci Rep 2024; 14:28708. [PMID: 39567555 PMCID: PMC11579311 DOI: 10.1038/s41598-024-78416-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
Akt (also known as protein kinase B) belongs to the multifunctional serine/threonine kinase family and is an important component of the insulin signaling pathway that plays a key role in many biological processes such as cell growth, proliferation, and survival. However, few studies have reported the effect of Akt on reproduction in Hemiptera. In this study, we cloned and characterized the Akt gene from Coridius chinensis (CcAkt). The open reading frame of CcAkt has a length of 1,563 bp and encodes 520 amino acids. It has a conserved pleckstrin homology domain (PH), catalytic domain of serine/threonine protein kinases (S_TKc), and extension of Ser/Thr-type protein kinases (S_TK_X). Phylogenetic analysis showed that CcAkt and HhAkt of Halyomorpha halys had the highest similarity. Analysis of temporal and spatial expression patterns revealed that CcAkt is expressed throughout development and in various tissues of C. chinensis adults. CcAkt was highly expressed in the female adult and the fourth-instar nymph, as well as in the testis and ovary of C. chinensis. Injection of bovine insulin and methoprene induced the CcAkt expression, whereas that of 20-hydroxyecdysone significantly reduced the CcAkt expression. These three hormones, however, induced the expression of vitellogenin (Vg) and vitellogenin receptor (VgR). In unmated females, knockdown of CcAkt resulted in decreased expression of CcVg and CcVgR, stunted the development of the ovarioles, decreased the number of eggs and hatching rate. These findings from RNA interference experiment suggested that CcAkt may be involved in regulating the reproduction of C. chinensis.
Collapse
Affiliation(s)
- Jinyu Feng
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, 550025, Guizhou, China
| | - Juan Du
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, 550025, Guizhou, China
| | - Shangwei Li
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, 550025, Guizhou, China.
| | - Xingxing Chen
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, 550025, Guizhou, China
| |
Collapse
|
2
|
Wang M, Yang N, Guo W, Yang Y, Bao B, Zhang X, Zhang D. RNAi-mediated glucose transporter 4 (Glut4) silencing inhibits ovarian development and enhances deltamethrin-treated energy depletion in Locusta migratoria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106014. [PMID: 39084805 DOI: 10.1016/j.pestbp.2024.106014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
Energy metabolism is essential for insect development, reproduction and detoxification. Insects often reallocate energy and resources to manage external stress, balancing the demands of detoxification and reproduction. Glucose transport 4 (Glut4), a glucose transporter, is involved in glucose and lipid metabolism. However, the specific molecular mechanism of Glut4 in insect reproduction, and its role in the response to insecticide-induced oxidative stress remain unclear. In this study, LmGlut4 was identified and analyzed in Locusta migratoria. Silencing of LmGlut4 significantly reduced vitellogenin (Vg) biosynthesis in the fat body and Vg absorption by oocytes, ultimately hindering ovarian development and oocyte maturation. Knockdown of LmGlut4 also inhibited the biosynthesis of key insect hormones, such as juvenile hormone (JH), 20-hydroxyecdysone (20E) and insulin. Furthermore, LmGlut4 knockdown led to reduced triglyceride (TG) and glycogen content in the fat body and ovary, as well as decreased capacity for trehalose biosynthesis in adipocytes. Additionally, dsLmGlut4-treated locusts showed heightened sensitivity to deltamethrin, leading to increased triglyceride depletion during detoxification. This study sheds light on the biological function of LmGlut4 in the ovary and provides potential target genes for exploring biological pest management strategies.
Collapse
Affiliation(s)
- Mingjun Wang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Ningxin Yang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Wenhui Guo
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yong Yang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Bowen Bao
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Xiaohong Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China.
| | - Daochuan Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071002, China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China.
| |
Collapse
|
3
|
Qiu X, Huang W, Yue W, Li D, Zhi J. Response of the serine/threonine kinase AKT and phosphoinositide-dependent kinase PDK in Frankliniella occidentalis (Thysanoptera: Thripidae) to three kinds of foods and their regulation of reproductive function. INSECT MOLECULAR BIOLOGY 2024; 33:372-386. [PMID: 38450915 DOI: 10.1111/imb.12905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Frankliniella occidentalis (Pergande) is a typical omnivorous insect that feeds on host plants, pollens and mite eggs, and poses a threat to crops worldwide. The insulin signalling pathway (ISP) is a typical nutrient-sensitive pathway that participates in the regulation of various functions in insects. Serine/threonine kinases (AKTs) and phosphoinositide-dependent kinases (PDKs) are key components of the ISP. In this study, the FoAKT and FoPDK genes in F. occidentalis were cloned, and the effects of three foods on their expression were determined. The expression of FoAKT and FoPDK in the thrips fed on kidney bean leaves supplemented with pine pollen or mite eggs was higher than in those primarily fed on leaves alone. Meanwhile, the fecundity of thrips fed on leaves supplemented with pine pollen was highest. In addition, RNA interference-mediated knockdown of FoAKT and FoPDK decreased vitellogenin (Vg) content and Vg expression in females, shortened ovariole length, delayed egg development and reduced fecundity and offspring hatching rates. Furthermore, the synthesis of juvenile hormone (JH) was reduced, and the contents of glucose, trehalose, glycogen and trehalase were affected. These results suggest that FoAKT and FoPDK regulate the reproduction of F. occidentalis by regulating Vg and JH production as well as carbohydrate metabolism.
Collapse
Affiliation(s)
- Xinyue Qiu
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Wanqing Huang
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Tobacco Company, Tongren Branch, Tongren, China
| | - Wenbo Yue
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Dingyin Li
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Junrui Zhi
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Hu K, Jin R, Liu J, Zhu J, Dai W, Wang Y, Li Y, Liu F. Functional characterization of the InR/PI3K/AKT signaling pathway in female reproduction of the predatory bug Cyrtorhinus lividipennis (Hemiptera: Miridae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024:toae113. [PMID: 38783398 DOI: 10.1093/jee/toae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
The insulin signaling (IIS) pathway plays a key role in the regulation of various physiological functions in animals. However, the involvement of IIS pathway in the reproduction of natural enemy insects remains enigmatic. Here, 3 key genes (named ClInR, ClPI3K, and ClAKT) related to IIS pathway were cloned from Cyrtorhinus lividipennis (Reuter) (Hemiptera: Miridae), an important natural enemy in the rice ecosystem. These 3 proteins had the typical features of corresponding protein families and shared high similarity with their respective homologs from the Hemipteran species. The ClInR, ClPI3K, and ClAKT were highly expressed in the adult stage. Tissue distribution analysis revealed that ClInR, ClPI3K, and ClAKT were highly expressed in the midgut and ovary of adults. Silencing of ClInR, ClPI3K, and ClAKT caused 92.1%, 72.1%, and 57.8% reduction in the expression of ClVg, respectively. Depletion of these 3 genes impaired vitellogenin synthesis and ovary development. Moreover, the fecundity in the dsInR, dsPI3K, and dsAKT injected females were 53.9%, 50.8%, and 48.5% lower than the control treatment, respectively. These results indicated that ClInR, ClPI3K, and ClAKT are of great importance for the reproduction of C. lividipennis. Our results advance the knowledge about the molecular mechanism of reproduction regulation in natural enemy insects.
Collapse
Affiliation(s)
- Kui Hu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Rong Jin
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jianqi Liu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jun Zhu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Wei Dai
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Ying Wang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yao Li
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Fang Liu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Jiangsu, Yangzhou 225009, China
| |
Collapse
|
5
|
Li X, Li W, Zhang S, Sang W, Peng Y, Zhao Y. RNA interference against the putative insulin receptor substrate gene IRS1 affects growth and development in the pest natural enemy Pardosa pseudoannulata. PEST MANAGEMENT SCIENCE 2024; 80:648-660. [PMID: 37756442 DOI: 10.1002/ps.7792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/29/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Insulin signalling pathways play crucial roles in regulating growth and development in insects, but their effects on the growth and development of Arachnids, such as spiders, have rarely been studied. As a valuable pest natural enemy in agricultural fields, the molecular mechanisms of insulin signalling pathway-mediated growth and development of the wolf spider, Pardosa pseudoannulata, are of particular interest. RESULTS In this study, we identified and characterized six insulin signalling pathway genes - InR, InR2, IRS1, PI3K1, PI3K2, and PDK - in Pardosa pseudoannulata. Real-time quantitative polymerase chain reaction results were used to analyse the relative expression levels of the six genes in different developmental instars and tissues, and in response to starvation treatment. In addition, the function of the insulin receptor substrate (IRS1) gene was investigated using RNA interference technology, which found that IRS1 significantly influenced nutrient content, developmental duration, body weight, and gonad development. CONCLUSION This study revealed the roles of six key insulin signalling pathway genes in Pardosa pseudoannulata, and in particular the importance of the IRS1 gene in regulating growth and development in the spider. The results lay the foundation for further research on the internal regulation mechanisms of growth and development in Araneae species, and also provide a reference for the artificial breeding of spiders. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuelai Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Wei Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Shichang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Wen Sang
- College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yu Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Yao Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
6
|
Yan L, Du H, Li Y, Li X, Sun L, Cao C. Identification and characterization of key genes in insulin signaling pathway as molecular targets for controlling the fall webworm, Hyphantria cunea. PEST MANAGEMENT SCIENCE 2023; 79:899-908. [PMID: 36317953 DOI: 10.1002/ps.7268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The insulin signaling pathway is closely related to metabolism, growth, reproductive capacity and lifespan of insects. However, the physiological function of the insulin signaling pathway is little known in Hyphantria cunea. RESULTS Five insulin signaling pathway genes (HcInR, HcPI3K, HcAKT, HcFOXO and HcTOR) in H. cunea were identified and characterized in this study. The spatiotemporal expression profiles of the genes showed that HcInR, HcAKT, HcPI3K and HcTOR expressions were higher at the egg stage than those in other development stages, whereas HcFOXO was highly expressed in the adult stage; all of these genes were highly expressed in the larval digestive system, especially in the midgut and hindgut. After RNA interference (RNAi) of the five genes in 5th instar H. cunea larvae, weight gain and survival rate (except in the siHcAKT-injected group) were significantly decreased, and the developmental duration of larval and pupal stages were prolonged. In addition, knockdown of five genes in 7th instar larvae decreased the pupation rate, survival rate and oviposition capacity, and resulted in abnormal development during larval-pupal transition. CONCLUSION Our findings indicate that the insulin signaling pathway plays essential roles in growth and development and the molting process in H. cunea, providing an important basis for developing new potentially molecular targets for RNAi-based pest control and understanding the mechanism of H. cunea outbreak. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liqiong Yan
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Hui Du
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Ye Li
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Xue Li
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Lili Sun
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Chuanwang Cao
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| |
Collapse
|
7
|
Li H, Luo X, Li N, Liu T, Zhang J. Insulin-like peptide 8 (Ilp8) regulates female fecundity in flies. Front Cell Dev Biol 2023; 11:1103923. [PMID: 36743416 PMCID: PMC9890075 DOI: 10.3389/fcell.2023.1103923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Introduction: Insulin-like peptides (Ilps) play crucial roles in nearly all life stages of insects. Ilp8 is involved in developmental stability, stress resistance and female fecundity in several insect species, but the underlying mechanisms are not fully understood. Here we report the functional characterization of Ilp8s in three fly species, including Bactrocera dorsalis, Drosophila mercatorum and Drosophila melanogaster. Methods: Phylogenetic analyses were performed to identify and characterize insect Ilp8s. The amino acid sequences of fly Ilp8s were aligned and the three-dimensional structures of fly Ilp8s were constructed and compared. The tissue specific expression pattern of fly Ilp8s were examined by qRT-PCR. In Bactrocera dorsalis and Drosophila mercatorum, dsRNAs were injected into virgin females to inhibit the expression of Ilp8 and the impacts on female fecundity were examined. In Drosophila melanogaster, the female fecundity of Ilp8 loss-of-function mutant was compared with wild type control flies. The mutant fruit fly strain was also used for sexual behavioral analysis and transcriptomic analysis. Results: Orthologs of Ilp8s are found in major groups of insects except for the lepidopterans and coleopterans, and Ilp8s are found to be well separated from other Ilps in three fly species. The key motif and the predicted three-dimensional structure of fly Ilp8s are well conserved. Ilp8 are specifically expressed in the ovary and are essential for female fecundity in three fly species. Behavior analysis demonstrates that Ilp8 mutation impairs female sexual attractiveness in fruit fly, which results in decreased mating success and is likely the cause of fecundity reduction. Further transcriptomic analysis indicates that Ilp8 might influence metabolism, immune activity, oocyte development as well as hormone homeostasis to collectively regulate female fecundity in the fruit fly. Discussion: Our findings support a universal role of insect Ilp8 in female fecundity, and also provide novel clues for understanding the modes of action of Ilp8.
Collapse
Affiliation(s)
- Haomiao Li
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xi Luo
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Na Li
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Tao Liu
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Junzheng Zhang
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China,*Correspondence: Junzheng Zhang,
| |
Collapse
|
8
|
Zheng W, Wu F, Ye Y, Li T, Zhang Z, Zhang H. Small GTPase Rab40C is upregulated by 20-hydroxyecdysone and insulin pathways to regulate ovarian development and fecundity. INSECT SCIENCE 2022; 29:1583-1600. [PMID: 35349758 DOI: 10.1111/1744-7917.13026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
The insulin and 20-hydroxyecdysone (20E) pathways coordinately regulate insect vitellogenesis and ovarian development. However, the detailed molecular mechanisms such as the genes mediating the cooperation of the interaction of these 2 pathways in regulating insect reproductive development are not well understood. In the present study, a small GTPase, Rab40C, was identified from the notorious agricultural pest Bactrocera dorsalis. In addition to the well-known RAB domain, it also has a unique SOCS-box domain, which is different from other Rab-GTPases. Moreover, we found that Rab40C was enriched in the ovaries of sexually mature females. RNA interference (RNAi)-mediated knockdown of BdRab40C resulted in a decrease in vitellogenin synthesis, underdeveloped ovaries, and low fertility. Furthermore, depletion of insulin receptor InR or the heterodimer receptor of 20E (EcR or USP) by RNAi significantly decreased the transcription of BdRab40C and resulted in lower fecundity. Further studies revealed that the transcription of BdRab40C could be upregulated by the injection of insulin or 20E. These results indicate that Rab40C participates in the insulin and 20E pathways to coordinately regulate reproduction in B. dorsalis. Our results not only provide new insights into the insulin- and 20E-stimulated regulatory pathways controlling female reproduction in insects but also contribute to the development of potential eco-friendly strategies for pest control.
Collapse
Affiliation(s)
- Weiwei Zheng
- Key laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fangyu Wu
- Key laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yinhao Ye
- Key laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tianran Li
- Key laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhenyu Zhang
- Key laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- Key laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Fang H, Wang X, Liu X, Michaud JP, Wu Y, Zhang H, Li Y, Li Z. Molecular characterization of insulin receptor (IR) in oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae), and elucidation of its regulatory roles in glucolipid homeostasis and metamorphosis through interaction with miR-982490. INSECT MOLECULAR BIOLOGY 2022; 31:659-670. [PMID: 35690916 DOI: 10.1111/imb.12794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
As an intermediate molecule in the Insulin/Insulin-like growth factor signalling pathway (IIS), the insulin receptor (IR) plays vital roles linking nutritional signals to the downstream regulation of metabolic homeostasis, development, metamorphosis, reproduction and stress responses. In the present study, we describe the molecular characteristics of IR in the cosmopolitan fruit boring pest, Grapholita molesta, and its predicted posttranscription regulator miR-982490, and elucidate its regulatory roles in glucolipid homeostasis and metamorphosis. Phylogenetic and domain analyses indicate that lepidopteran IRs normally cluster within families, and that four main domains are conserved in GmIR and those of other Lepidoptera. Bio-informatic prediction, synchronic expression profile evaluation and dual luciferase reporter assays indicated negative regulation of GmIR by miR-982490. Injection of miR-982490 agomir into fifth instar larvae yielded effects similar to dsGmIR injection, resulting in enhanced levels of trehalose and triglyceride in haemolymph, and reduced pupation success and pupal weight, both of which could be rescued by co-injection of dsGmIR and miR-982490 antagomir. We infer that GmIR regulates glucolipid homeostasis and affects G. molesta metamorphosis via interactions with its posttranscriptional regulator miR-982490. This study expands our understanding of the regulatory network of IIS in insect nutritional homeostasis and development.
Collapse
Affiliation(s)
- Haibo Fang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiu Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Medicinal Plant Development, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - J P Michaud
- Department of Entomology, Kansas State University, Agricultural Research Center-Hays, Kansas, USA
| | - Yanan Wu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Huaijiang Zhang
- Chinese Academy of Agricultural Sciences, Institute of Pomology, Liaoning, China
| | - Yisong Li
- The College of Agronomy, Xinjiang Agricultural University, Xinjiang, China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Xue H, Huang X, Chang G, Ma W, Hull JJ, Chen L. Reproductive capacity in Adelphocoris suturalis (Hemiptera: Miridae) is regulated by the insulin signaling pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105195. [PMID: 36127067 DOI: 10.1016/j.pestbp.2022.105195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/06/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
The peptide hormone insulin has essential roles in regulating insect metabolism, growth, and reproduction. There are, however, few studies assessing the effects of insulin signaling on reproduction in Miridae (Hemiptera). Here, we used RNA interference (RNAi)-mediated knockdown to examine the role of three critical insulin signaling pathway components (insulin receptor, InR; insulin receptor substrate 1, IRS1; and forkhead box O, FOXO) on reproductive capacity in the mirid Adelphocoris suturalis. Knockdown of AsIRS1 led to a significant reduction in egg maturation in unmated females. To further verify the role of AsIRS1, we examined several reproductive parameters following knockdown. Suppression of AsIRS1 transcript levels throughout the reproductive period resulted in reduced lifetime fecundity, egg hatch rate, and oviposition capacity as well as statistically significant reductions in female survival rate and longevity. These findings demonstrate that the insulin signaling pathway plays a key role in the reproductive development of A. suturalis, and that IRS1 is a key regulatory factor. These findings provide an important theoretical basis for the regulation of insect reproduction by insulin and introduce a new target for potential development is A. suturalis control.
Collapse
Affiliation(s)
- Hui Xue
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xingxing Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Guofeng Chang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Weihua Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - J Joe Hull
- U.S. Arid Land Agricultural Research Center, U.S. Agricultural Research Service, Department of Agriculture, Maricopa, AZ, USA
| | - Lizhen Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
11
|
Effect of Insulin Receptor on Juvenile Hormone Signal and Fecundity in Spodoptera litura (F.). INSECTS 2022; 13:insects13080701. [PMID: 36005325 PMCID: PMC9409390 DOI: 10.3390/insects13080701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary The tobacco cutworm, Spodoptera litura (F.), exemplifies strong reproductive capacities and damages many agricultural crops. The insulin signaling pathway is known as a key determinant of female reproduction in insects. However, the detailed molecular mechanisms in these processes are poorly studied. Here, we injected bovine insulin into the newly emerged moth, resulting in gene expression changes in the insulin pathway, while knockdown of SlInR caused an inverse gene expression change involved in the insulin pathway. Further studies indicated that the content of JH-III, Vg, total proteins and triacylgycerol could be suppressed by SlInR dsRNA injection. Furthermore, stunted ovaries and lower fecundity were observed by RNAi. Our studies indicated that SlInR plays a key role in JH-III synthesis and the ovarian development in S. litura. Abstract Insulin signaling can regulate various physiological functions, such as energy metabolism and reproduction and so on, in many insects, including mosquito and locust. However, the molecular mechanism of this physiological process remains elusive. The tobacco cutworm, Spodoptera litura, is one of the most important pests of agricultural crops around the world. In this study, phosphoinositide 3-kinase (SlPI3K), protein kinase B (SlAKT), target of rapamycin (SlTOR), ribosomal protein S6 kinase (SlS6K) and transcription factor cAMP-response element binding protein (SlCREB) genes, except transcription factor forkhead box class O (SlFoxO), can be activated by bovine insulin injection. Then, we studied the influence of the insulin receptor gene (SlInR) on the reproduction of S. litura using RNA interference technology. qRT-PCR analysis revealed that SlInR was most abundant in the head. The SlPI3K, SlAKT, SlTOR, SlS6K and SlCREB genes were decreased, except SlFoxO, after the SlInR gene knockdown. Further studies revealed that the expression of vitellogenin mRNA and protein, Methoprene-tolerant gene (SlMet), could be down-regulated by the injection of dsRNA of SlInR significantly. Furthermore, a depletion in the insulin receptor by RNAi significantly decreased the content of juvenile hormone III (JH-III), total proteins and triacylgycerol. These changes indicated that a lack of SlInR could impair ovarian development and decrease fecundity in S. litura. Our studies contribute to a comprehensive insight into reproduction, regulated by insulin and the juvenile hormone signaling pathway through nutrition, and a provide theoretical basis for the reproduction process in pest insects.
Collapse
|
12
|
He Z, Ye L, Yang D, Ma Z, Deng F, He Z, Hu J, Chen H, Zheng L, Pu Y, Jiao Y, Chen Q, Gao K, Xiong J, Lai B, Gu X, Huang X, Yang S, Zhang M, Yan T. Identification, characterization and functional analysis of gonadal long noncoding RNAs in a protogynous hermaphroditic teleost fish, the ricefield eel (Monopterus albus). BMC Genomics 2022; 23:450. [PMID: 35725373 PMCID: PMC9208217 DOI: 10.1186/s12864-022-08679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/09/2022] [Indexed: 11/11/2022] Open
Abstract
Background An increasing number of long noncoding RNAs (lncRNAs) have been found to play important roles in sex differentiation and gonad development by regulating gene expression at the epigenetic, transcriptional and posttranscriptional levels. The ricefield eel, Monopterus albus, is a protogynous hermaphroditic fish that undergoes a sequential sex change from female to male. However, the roles of lncRNA in the sex change is unclear. Results Herein, we performed RNA sequencing to analyse lncRNA expression patterns in five different stages of M. albus development to investigate the roles of lncRNAs in the sex change process. A total of 12,746 lncRNAs (1503 known lncRNAs and 11,243 new lncRNAs) and 2901 differentially expressed lncRNAs (DE-lncRNAs) were identified in the gonads. The target genes of the DE-lncRNAs included foxo1, foxm1, smad3, foxr1, camk4, ar and tgfb3, which were mainly enriched in signalling pathways related to gonadal development, such as the insulin signalling pathway, MAPK signalling pathway, and calcium signalling pathway. We selected 5 highly expressed DE-lncRNAs (LOC109952131, LOC109953466, LOC109954337, LOC109954360 and LOC109958454) for full length amplification and expression pattern verification. They were all expressed at higher levels in ovaries and intersex gonads than in testes, and exhibited specific time-dependent expression in ovarian tissue incubated with follicle-stimulating hormone (FSH) and human chorionic gonadotropin (hCG). The results of quantitative real-time PCR (qRT-PCR) analysis and a dual-luciferase assay showed that znf207, as the gene targeted by LOC109958454, was expressed in multiple tissues and gonadal developmental stages of M. albus, and its expression was also inhibited by the hormones FSH and hCG. Conclusions These results provide new insights into the role of lncRNAs in gonad development, especially regarding natural sex changes in fish, which will be useful for enhancing our understanding of sequential hermaphroditism and sex changes in the ricefield eel (M. albus) and other teleosts. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08679-2.
Collapse
Affiliation(s)
- Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lijuan Ye
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhijun Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Faqiang Deng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhide He
- Luzhou Municipal Bureau of Agriculture and Rural Affairs, Luzhou, 646000, Sichuan, China
| | - Jiaxiang Hu
- Sichuan Water Conservancy Vocational College, Chengdu, 611231, Sichuan, China
| | - Hongjun Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Li Zheng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yong Pu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yuanyuan Jiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qiqi Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Kuo Gao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jinxin Xiong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bolin Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaobin Gu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoli Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shiyong Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
13
|
Huang X, Zhu B, Zhang W, Chen L. Cloning and reproductive regulation of a trypsin precursor gene in Adelphocorissuturalis. Int J Biol Macromol 2021; 192:38-44. [PMID: 34597701 DOI: 10.1016/j.ijbiomac.2021.09.158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 11/19/2022]
Abstract
Adelphocoris suturalis is a major pest of cotton. Here, we identified a trypsin precursor gene (AsTryP) in A. suturali, which has an open reading frame region of 873 bp and belongs to the trypsin superfamily. The mRNA of the AsTryP gene was detectable in every life stage and different tissues of 8-day-old females, and the gene was highly expressed in fourth-instar nymphs and the thorax of 8-day-old females. Down-regulation of AsTryP by the injection of double-stranded RNA suppressed the ovarian development and female fertility. These results reveal that trypsin precursor is involved in the reproductive process of A. suturali, and may facilitate the development of new strategies for a better control of A. suturalis.
Collapse
Affiliation(s)
- Xingxing Huang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Bangqin Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Guiyang Center for Disease Control and Prevention, Guiyang 550003, Guizhou, China
| | - Wei Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Lizhen Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
14
|
Xu KK, Yan Y, Yan SY, Xia PL, Yang WJ, Li C, Yang H. Disruption of the Serine/Threonine Kinase Akt Gene Affects Ovarian Development and Fecundity in the Cigarette Beetle, Lasioderma serricorne. Front Physiol 2021; 12:765819. [PMID: 34690822 PMCID: PMC8529032 DOI: 10.3389/fphys.2021.765819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
Serine/threonine kinase Akt, an important component of the insulin signaling pathway, plays an essential role in many physiological processes. In this study, we identified and characterized an Akt gene (designated LsAkt) from the cigarette beetle, Lasioderma serricorne. LsAkt contains a 1614 bp open reading frame encoding a 537 amino acid protein that possesses a conserved pleckstrin homology domain and a serine/threonine kinase domain. The expression of LsAkt was high in pupal stages and peaked in day-4 female pupae. In adult tissues, LsAkt was highly expressed in the thorax, ovary, and midgut. The expression of LsAkt was induced by methoprene or bovine insulin in vivo, but significantly decreased by 20-hydroxyecdysone. RNA interference-mediated knockdown of LsAkt resulted in severely blocked ovarian development and reduced fecundity and hatchability. The vitellogenin (Vg) content and juvenile hormone (JH) titers of LsAkt-depletion beetles were decreased, and expressions of Vg and four JH signaling and biosynthetic genes were significantly decreased. Silencing of LsAkt reduced the amounts of glucose, glycogen, and trehalose in female adults and affected the expressions of seven key carbohydrate metabolic genes. Taken together, it is inferred that Akt implicates in L. serricorne reproduction by modification of Vg synthesis, juvenile hormone production and carbohydrate metabolism.
Collapse
Affiliation(s)
- Kang-Kang Xu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China.,Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Yi Yan
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China.,Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Shu-Yan Yan
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | | | - Wen-Jia Yang
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Hong Yang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China.,College of Tobacco Science, Guizhou University, Guiyang, China
| |
Collapse
|
15
|
He W, Wei DD, Xu HQ, Yang Y, Miao ZQ, Wang L, Wang JJ. Molecular Characterization and Transcriptional Expression Analysis of ABC Transporter H Subfamily Genes in the Oriental Fruit Fly. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1298-1309. [PMID: 33822985 DOI: 10.1093/jee/toab045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 06/12/2023]
Abstract
The oriental fruit fly, Bactrocera dorsalis Hendel (Diptera: Tephretidae), is a serious pest of fruits and vegetables and has developed high levels of insecticide resistance. ATP-binding cassette transporter genes (ABC transporters) are involved in mediating the energy-driven transport of many substances across membranes and are closely associated with development and insecticide detoxification. In this study, three ABC transporters in the H subfamily were identified, and the possible roles of these genes in B. dorsalis are discussed. Bioinformatics analysis revealed that those genes are conserved, typical of half-transporters. The expression profiles of BdABCH genes (BdABCHs) in the developmental stages, tissues, and following insecticide exposure, extreme temperature, warm- and cold-acclimated strain, starvation, and desiccation stress were determined by quantitative real-time PCR. Expression of BdABCHs can be detected in various tissues and in different developmental stages. They were most highly expressed in the hindgut and in newly emerged adults. The mRNA levels of BdABCHs in males (including most tissues and body segments) were higher than in females. The expression of BdABCH1 was significantly upregulated 3.8-fold in the cold-acclimated strain, and was significantly upregulated by 1.9-, 3.8- and 4.1-fold in the 0°C, starvation, and desiccation treatments, respectively. Treatment with malathion and avermectin at LD20 and LD30 concentrations produced no obvious changes in the levels of BdABCHs. BdABCHs may be involved in the transport of related hormones during eclosion, as well as water and inorganic salts. BdABCH1 also demonstrated that it is related to the ability to cope with adverse environments.
Collapse
Affiliation(s)
- Wang He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hui-Qian Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Yang Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Ze-Qing Miao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Lei Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
16
|
Hou QL, Chen EH, Xie YF, Dou W, Wang JJ. Ovary-Specific Transcriptome and Essential Role of Nanos in Ovary Development in the Oriental Fruit Fly (Diptera: Tephritidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:947-958. [PMID: 33537732 DOI: 10.1093/jee/toab004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Indexed: 06/12/2023]
Abstract
We used transcriptome analysis to research ovary development in Bactrocera dorsalis (Hendel). The ovary transcriptome of B. dorsalis yielded 66,463,710 clean reads that were assembled into 23,822 unigenes. After aligning to the Nr database in NCBI, 15,473 (64.95%) of the unigenes were matched to identified proteins. As determined by BLAST search, 11,043 (46.36%), 6,102 (25.61%), and 12,603 (52.90%) unigenes were each allocated to clusters via gene ontology, orthologous groups, and SwissProt, respectively. The Kyoto encyclopedia database of genes and genomes (KEGG) was further used to annotate these sequences, and 11,068 unigenes were mapped to 255 known pathways. Afterward, the genes that were possibly involved in oogenesis and ovary development were obtained from the transcriptome data and analyzed. Interestingly, seven ovary-specific genes were identified, including a Nanos gene that is involved in maintaining the primordial germ cells in many insects. Therefore, we further focused on the function of the BdNanos gene, and the gene was injected into B. dorsalis. As expected, the knocking down of Nanos gene expression led to significant inhibition of ovary development, suggesting an important role of this gene in the reproductive process of B. dorsalis. In summary, the present study provides an important reference for identifying the molecular mechanisms of oogenesis and ovary development in B. dorsalis. The BdNanos gene is crucial for ovary development in B. dorsalis and is therefore a potential new pest control target.
Collapse
Affiliation(s)
- Qiu-Li Hou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Er-Hu Chen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Yi-Fei Xie
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Liu W, Guo J, Luo J, Ren Q, Chen Z, Qu Z, Wu Z, Ni J, Xu X, Rashid M, Luo J, Yin H, Yang Z, Liu G. Analysis of microRNA expression profiles dynamic in different life stages of Haemaphysalis longicornis ticks by deep sequencing of small RNA libraries. Ticks Tick Borne Dis 2020; 11:101427. [PMID: 32370927 DOI: 10.1016/j.ttbdis.2020.101427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 10/24/2022]
Abstract
The three-host tick Haemaphysalis longicornis is an obligate blood-sucking ectoparasite. In life-stage transitions, microRNAs (miRNAs) show a variety of expression changes. To investigate these changes, deep sequencing technology was applied to identify the conserved and potentially novel miRNAs expressed during the different life stages of H. longicornis. Total RNA from eggs, unfed larvae, unfed nymphs and unfed adults was extracted for deep sequence analysis. Deep sequencing on a Hiseq 4000 generated a total of 111,192,069 reads, grouped into four small RNA (sRNA) libraries, one for each of the four developmental stages of H. longicornis. Among these sequences, 78 conserved and 55 potentially novel miRNAs were identified, including stage-specific and differentially expressed miRNAs. Gene ontology (GO) analysis indicated significantly enriched GO terms related to cell proliferation and differentiation, including specific terms for the processes of development, growth, metabolism, regulation of biological functions, reproduction, and membrane enzyme regular activity. Kyoto Encyclopedia of Gene and Genomes (KEGG) analysis revealed a significant enrichment of the insulin, notch, Hippo, and Wnt signaling pathways for growth and development. Our data highlight the abundance of miRNA changes (conserved and potentially novel) in the different life stages of H. longicornis. In particular, stage-specific miRNAs, as observed, are essential regulators for the development of H. longicornis.
Collapse
Affiliation(s)
- Wenge Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China; College of Animal Veterinary Medicine, Northwest A & F University, Yangling, China.
| | - Junhui Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China.
| | - Jin Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China.
| | - Qiaoyun Ren
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China.
| | - Ze Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China.
| | - Zhiqiang Qu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China.
| | - Zegong Wu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China.
| | - Jun Ni
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China.
| | - Xiaofeng Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China.
| | - Muhammad Rashid
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China.
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China.
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| | - Zengqi Yang
- College of Animal Veterinary Medicine, Northwest A & F University, Yangling, China.
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, China.
| |
Collapse
|
18
|
Shi Y, Jiang HB, Gui SH, Liu XQ, Pei YX, Xu L, Smagghe G, Wang JJ. Ecdysis Triggering Hormone Signaling (ETH/ETHR-A) Is Required for the Larva-Larva Ecdysis in Bactrocera dorsalis (Diptera: Tephritidae). Front Physiol 2017; 8:587. [PMID: 28878684 PMCID: PMC5572281 DOI: 10.3389/fphys.2017.00587] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/31/2017] [Indexed: 01/18/2023] Open
Abstract
Insects must undergo ecdysis for successful development and growth, and the ecdysis triggering hormone (ETH), released by the Inka cells, is a master hormone in this process. In this study, we determined the sequence of the ETH precursor and receptors in an agriculturally important pest insect, the oriental fruit fly Bactrocera dorsalis (Hendel). We identified two functionally distinct splice receptor isoforms: BdETH-R-A and BdETH-R-B, and when expressed in Chinese hamster ovary (CHO-WTA11) cells, they exhibited a high sensitivity to the two mature peptides BdETH1 and BdETH2. The BdETH transcript was detected in the tracheal tissue of the larvae. Inka cells were identified with immunohistochemical antibody staining against Drosophila melanogaster ETH1, and in situ hybridization with specific DNA probes. Selective RNA silencing of BdETH or BdETH-R-A, but not of BdETH-R-B, caused developmental failure at ecdysis. The dsRNA-treated larvae displayed tracheal defects and could not shed the old cuticle followed by death. Our results demonstrated that BdETH, via activation of BdETH-R-A but not ETH-R-B, plays an essential role in regulating the process of larva-larva ecdysis in B. dorsalis.
Collapse
Affiliation(s)
- Yan Shi
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest UniversityChongqing, China.,Academy of Agricultural Sciences, Southwest UniversityChongqing, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest UniversityChongqing, China.,Academy of Agricultural Sciences, Southwest UniversityChongqing, China
| | - Shun-Hua Gui
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest UniversityChongqing, China.,Academy of Agricultural Sciences, Southwest UniversityChongqing, China
| | - Xiao-Qiang Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest UniversityChongqing, China.,Academy of Agricultural Sciences, Southwest UniversityChongqing, China
| | - Yu-Xia Pei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest UniversityChongqing, China.,Academy of Agricultural Sciences, Southwest UniversityChongqing, China
| | - Li Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest UniversityChongqing, China.,Academy of Agricultural Sciences, Southwest UniversityChongqing, China
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest UniversityChongqing, China.,Academy of Agricultural Sciences, Southwest UniversityChongqing, China.,Department of Crop Protection, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest UniversityChongqing, China.,Academy of Agricultural Sciences, Southwest UniversityChongqing, China
| |
Collapse
|
19
|
Dou W, Tian Y, Liu H, Shi Y, Smagghe G, Wang JJ. Characteristics of six small heat shock protein genes from Bactrocera dorsalis: Diverse expression under conditions of thermal stress and normal growth. Comp Biochem Physiol B Biochem Mol Biol 2017; 213:8-16. [PMID: 28735974 DOI: 10.1016/j.cbpb.2017.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/11/2017] [Accepted: 07/17/2017] [Indexed: 11/29/2022]
Abstract
To explore the functions of small heat shock proteins (sHsps) in relation to thermal stress and development in Bactrocera dorsalis (Hendel), one of the most economically important pest species attacking a wide range of fruits and vegetables, six full-length cDNAs of sHsp genes (BdHsp17.7, 18.4, 20.4, 20.6, 21.6 and 23.8) were cloned, and the expression patterns in different developmental stages and tissues, as well as in response to both thermal and 20-hydroxyecdysone (20E) exposures, were examined using real time quantitative PCR. The open reading frames (ORFs) of six sHsps are 453, 489, 537, 543, 567 and 630bp in length, encoding proteins with molecular weights of 17.7, 18.4, 20.4, 20.6, 21.6 and 23.8kDa, respectively. BdHsp18.4 and BdHsp20.4 maintained lower expression levels in both eggs and larvae, whereas remarkably up-regulated after the larval-pupal transformation, suggesting that these two sHsps may be involved in metamorphosis. Significant tissue specificity exists among sHsps: the highest expression of BdHsp20.6 and BdHsp23.8 in the Malpighian tubules and ovary, respectively, versus a peak in the fat body for others. BdHsp20.4 and BdHsp20.6 were significantly up-regulated by thermal stress. In contrast, BdHsp18.4 and BdHsp23.8 reacted only to heat stress. BdHsp17.7 and BdHsp21.6 were insensitive to both heat and cold stresses. The degree of sHsps response depends on intensity of 20E treatment, i.e., dose and time. These results strongly suggest functional differentiation within the sHsp subfamily in B. dorsalis. The physiological function of sHsp members under thermal stress and normal growth remains the subjects of further investigation.
Collapse
Affiliation(s)
- Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Yi Tian
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Hong Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Yan Shi
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
20
|
Comparative Proteomic Profiling Reveals Molecular Characteristics Associated with Oogenesis and Oocyte Maturation during Ovarian Development of Bactrocera dorsalis (Hendel). Int J Mol Sci 2017; 18:ijms18071379. [PMID: 28665301 PMCID: PMC5535872 DOI: 10.3390/ijms18071379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/19/2017] [Accepted: 06/24/2017] [Indexed: 01/16/2023] Open
Abstract
Time-dependent expression of proteins in ovary is important to understand oogenesis in insects. Here, we profiled the proteomes of developing ovaries from Bactrocera dorsalis (Hendel) to obtain information about ovarian development with particular emphasis on differentially expressed proteins (DEPs) involved in oogenesis. A total of 4838 proteins were identified with an average peptide number of 8.15 and sequence coverage of 20.79%. Quantitative proteomic analysis showed that a total of 612 and 196 proteins were differentially expressed in developing and mature ovaries, respectively. Furthermore, 153, 196 and 59 potential target proteins were highly expressed in early, vitellogenic and mature ovaries and most tested DEPs had the similar trends consistent with the respective transcriptional profiles. These proteins were abundantly expressed in pre-vitellogenic and vitellogenic stages, including tropomyosin, vitellogenin, eukaryotic translation initiation factor, heat shock protein, importin protein, vitelline membrane protein, and chorion protein. Several hormone and signal pathway related proteins were also identified during ovarian development including piRNA, notch, insulin, juvenile, and ecdysone hormone signal pathways. This is the first report of a global ovary proteome of a tephritid fruit fly, and may contribute to understanding the complicate processes of ovarian development and exploring the potentially novel pest control targets.
Collapse
|
21
|
Ding BY, Shang F, Zhang Q, Xiong Y, Yang Q, Niu JZ, Smagghe G, Wang JJ. Silencing of Two Insulin Receptor Genes Disrupts Nymph-Adult Transition of Alate Brown Citrus Aphid. Int J Mol Sci 2017; 18:ijms18020357. [PMID: 28230772 PMCID: PMC5343892 DOI: 10.3390/ijms18020357] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/26/2017] [Accepted: 02/02/2017] [Indexed: 12/23/2022] Open
Abstract
Insulin receptors play key roles in growth, development, and polymorphism in insects. Here, we report two insulin receptor genes (AcInR1 and AcInR2) from the brown citrus aphid, Aphis (Toxoptera) citricidus. Transcriptional analyses showed that AcInR1 increased during the nymph–adult transition in alate aphids, while AcInR2 had the highest expression level in second instar nymphs. AcInR1 is important in aphid development from fourth instar nymphs to adults as verified by dsRNA feeding mediated RNAi. The silencing of AcInR1 or/and AcInR2 produced a variety of phenotypes including adults with normal wings, malformed wings, under-developed wings, and aphids failing to develop beyond the nymphal stages. Silencing of AcInR1 or AcInR2 alone, and co-silencing of both genes, resulted in 73% or 60%, and 87% of aphids with problems in the transition from nymph to normal adult. The co-silencing of AcInR1 and AcInR2 resulted in 62% dead nymphs, but no mortality occurred by silencing of AcInR1 or AcInR2 alone. Phenotypes of adults in the dsInR1 and dsInR2 were similar. The results demonstrate that AcInR1 and AcInR2 are essential for successful nymph–adult transition in alate aphids and show that RNAi methods may be useful for the management of this pest.
Collapse
Affiliation(s)
- Bi-Yue Ding
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Feng Shang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Qiang Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Ying Xiong
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Qun Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Jin-Zhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Department of Crop Protection, Ghent University, 9000 Ghent, Belgium.
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
22
|
Bos N, Pulliainen U, Sundström L, Freitak D. Starvation resistance and tissue-specific gene expression of stress-related genes in a naturally inbred ant population. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160062. [PMID: 27152219 PMCID: PMC4852642 DOI: 10.1098/rsos.160062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/08/2016] [Indexed: 06/05/2023]
Abstract
Starvation is one of the most common and severe stressors in nature. Not only does it lead to death if not alleviated, it also forces the starved individual to allocate resources only to the most essential processes. This creates energetic trade-offs which can lead to many secondary challenges for the individual. These energetic trade-offs could be exacerbated in inbred individuals, which have been suggested to have a less efficient metabolism. Here, we studied the effect of inbreeding on starvation resistance in a natural population of Formica exsecta ants, with a focus on survival and tissue-specific expression of stress, metabolism and immunity-related genes. Starvation led to large tissue-specific changes in gene expression, but inbreeding had little effect on most of the genes studied. Our results illustrate the importance of studying stress responses in different tissues instead of entire organisms.
Collapse
Affiliation(s)
- Nick Bos
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Viikinaari 1, Biocenter 3, PO Box 65, Helsinki 00014, Finland
- University of Helsinki Tvärminne Zoological Station, Faculty of Biological and Environmental Sciences, J.A. Palménin tie 260, Hanko 10900, Finland
| | - Unni Pulliainen
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Viikinaari 1, Biocenter 3, PO Box 65, Helsinki 00014, Finland
- University of Helsinki Tvärminne Zoological Station, Faculty of Biological and Environmental Sciences, J.A. Palménin tie 260, Hanko 10900, Finland
| | - Liselotte Sundström
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Viikinaari 1, Biocenter 3, PO Box 65, Helsinki 00014, Finland
- University of Helsinki Tvärminne Zoological Station, Faculty of Biological and Environmental Sciences, J.A. Palménin tie 260, Hanko 10900, Finland
| | - Dalial Freitak
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Viikinaari 1, Biocenter 3, PO Box 65, Helsinki 00014, Finland
- University of Helsinki Tvärminne Zoological Station, Faculty of Biological and Environmental Sciences, J.A. Palménin tie 260, Hanko 10900, Finland
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Sciences, University of Jyväskylä, Survontie 9, Jyväskylä 40014, Finland
| |
Collapse
|
23
|
Wu YB, Yang WJ, Xie YF, Xu KK, Tian Y, Yuan GR, Wang JJ. Molecular characterization and functional analysis of BdFoxO gene in the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Gene 2015; 578:219-24. [PMID: 26701614 DOI: 10.1016/j.gene.2015.12.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/11/2015] [Accepted: 12/11/2015] [Indexed: 11/15/2022]
Abstract
The forkhead box O transcription factor (FoxO) is an important downstream transcription factor in the well-conserved insulin signaling pathway, which regulates the body size and development of insects. In this study, the FoxO gene (BdFoxO) was identified from the oriental fruit fly, Bactrocera dorsalis (Hendel). The open reading frame of BdFoxO (2732 bp) encoded a 910 amino acid protein, and the sequence was well conserved with other insect species. The BdFoxO was highly expressed in larvae and pupae among different development stages, and the highest tissue-specific expression level was found in the fat bodies compared to the testis, ovary, head, thorax, midgut, and Malpighian tubules of adults. Interestingly, we found BdFoxO expression was also up-regulated by starvation, but down-regulated when re-fed. Moreover, the injection of BdFoxO double-stranded RNAs into third-instar larvae significantly reduced BdFoxO transcript levels, which in turn down-regulated the expression of other four genes in the insulin signaling pathway. The silencing of BdFoxO resulted in delayed pupation, and the insect body weight increased significantly compared with that of the control. These results suggested that BdFoxO plays an important role in body size and development in B. dorsalis.
Collapse
Affiliation(s)
- Yi-Bei Wu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Wen-Jia Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Yi-Fei Xie
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Kang-Kang Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Yi Tian
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China.
| |
Collapse
|