1
|
Fernini M, Menad R, Belhocine M, Lakabi L, Smaï S, Gernigon-Spychalowicz T, Khammar F, Bonnet X, Exbrayat JM, Moudilou E. Seasonal variations of testis anatomy and of G-coupled oestrogen receptor 1 expression in Gerbillus gerbillus. Anat Histol Embryol 2023; 52:1016-1028. [PMID: 37661709 DOI: 10.1111/ahe.12962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/31/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
The gerbil, Gerbillus gerbillus, a nocturnal desert rodent of northern Africa, exhibits a seasonal reproductive cycle with marked anatomical and behavioural shifts between breeding season and resting season. The aim of this study is to investigate key elements involved in these seasonal changes, specifically in males: the histology of the testis as well as the expression of the G-protein-coupled oestrogen receptor 1 (GPER1) in the testis. During the breeding season, the seminiferous tubules were full of spermatozoa, and their epithelium contained germinal cells embedded in Sertoli cells. Amidst tubules, well-developed Leydig cells were observed around blood vessels, with peritubular myoid cells providing structural and dynamic support to the tubules. GPER1 was largely expressed throughout the testis. Notably, Leydig cells, spermatogonia and spermatocytes showed strong immunohistochemical signals. Sertoli cells, spermatozoa and peritubular myoid cells were moderately stained. During the resting season, spermatogenesis was blocked at the spermatocyte stage, spermatids and spermatozoa were absent and the interstitial space was reduced. The weight of the testis decreased significantly. At this stage, GPER1 was found in Leydig cells, spermatocytes and peritubular myoid cells. Sertoli cells and spermatogonia were not marked. Overall, the testis of the gerbil, Gerbillus gerbillus, has undergone noticeable histological, cellular and weight changes between seasons. In addition, the seasonal expression pattern of GPER1, with pronounced differences between resting season and breeding season, indicates that this receptor is involved in the regulation of the reproductive cycle.
Collapse
Affiliation(s)
- Meriem Fernini
- Faculty of Natural Sciences and Life, Laboratory of Sciences and Techniques of Animal Production (LSTPA), Abdelhamid Ibn Badis University, Mostaganem, Algeria
| | - Rafik Menad
- Faculty of Biological Sciences, Laboratory of Research on Arid Areas, Small Vertebrates Reproduction, Houari Boumediene University of Sciences and Technology, Algiers, Algeria
- Department of Natural and Life Sciences, Faculty of Sciences, Laboratory of Valorization and Bioengineering of Natural Resources, University of Algiers, Algiers, Algeria
| | - Mansouria Belhocine
- Faculty of Natural Sciences and Life, Laboratory of Sciences and Techniques of Animal Production (LSTPA), Abdelhamid Ibn Badis University, Mostaganem, Algeria
| | - Lynda Lakabi
- Natural Resources Laboratory, University Mouloud Mammeri, Tizi-Ouzou, Algeria
| | - Souaâd Smaï
- Faculty of Biological Sciences, Laboratory of Research on Arid Areas, Small Vertebrates Reproduction, Houari Boumediene University of Sciences and Technology, Algiers, Algeria
| | - Thérèse Gernigon-Spychalowicz
- Faculty of Biological Sciences, Laboratory of Research on Arid Areas, Small Vertebrates Reproduction, Houari Boumediene University of Sciences and Technology, Algiers, Algeria
| | - Farida Khammar
- Faculty of Biological Sciences, Laboratory of Research on Arid Areas, Mammal Ecophysiology, Houari Boumediene University of Sciences and Technology, El Alia, Algiers, Algeria
| | | | - Jean-Marie Exbrayat
- UMRS 449, Laboratory of General Biology, Catholic University of Lyon, Reproduction and Comparative Development/EPHE, University of Lyon, Lyon, France
| | - Elara Moudilou
- UMRS 449, Laboratory of General Biology, Catholic University of Lyon, Reproduction and Comparative Development/EPHE, University of Lyon, Lyon, France
| |
Collapse
|
2
|
Huang S, Xia J, Zhang X, Zhou T, Wang J, Liu T, Xu S, Liang G. 2,2',4,4'-Tetrabromodiphenyl ether disrupts spermatogenesis in mice by interfering with the ER-Nrf1-Tfam-mitochondria pathway. Toxicol Ind Health 2022; 38:182-191. [PMID: 35238255 DOI: 10.1177/07482337221081206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
2,2',4,4' -tetrabromodiphenyl ether (BDE47), a well-known endocrine disruptor of the estrogen receptor (ER) is toxic to the mitochondria and spermatogenesis. This study aimed to explore the mechanism of BDE47 on spermatogenesis in mammals. Adult male Institute of Cancer Research (ICR) mice were gavaged daily with BDE47 (0, 1, or 10 mg/kg bw) for 8 weeks. Testicular weight, sperm production and motility, morphology of spermatogenic cells, nuclear respiratory factor 1 (Nrf1) level, and its expression in testes were determined. In vitro, cell viability, and key molecules in the ER-Nrf1-mitochondrial transcription factor A (Tfam)-mitochondria pathway in the immortalized mouse spermatogonia line (GC1) were determined at 48 h and 0-5 h after exposure; RNA interference (RNAi) was also performed to verify that the decreased Nrf1 was associated with mitochondrial dysfunction and the impaired viability of germ cells. The results indicated that BDE47 impaired testis weight and spermatogenesis, impaired mitochondria and germ cells, and decreased Nrf1 in the testes of mice. In vitro, after 48 h exposure, BDE47 reduced cell viability, Nrf1 protein, and mRNA of Nrf1, Tfam, ATP synthase subunit β (Atp5b), and cytochrome c oxidase subunit I (mt-CO1) in GC1 while also reducing mRNA of Nrf1 and Tfam promptly (from 1 to 5 h) after exposure. Furthermore, Nrf1 RNA interference decreased viability and mitochondrial function in GC1. These results indicated that BDE47 disrupts spermatogenesis in mice, probably by interfering with the ER-Nrf1-Tfam-mitochondria pathway, and Nrf1 is a target molecule of BDE47 estrogen receptor.
Collapse
Affiliation(s)
- Shaoping Huang
- Department of Histology and Embryology, Medical School, 12579Southeast University, Nanjing, China
| | - Jiangyan Xia
- Zhong Da Hospital, 12579Southeast University, Nanjing, China
| | - Xinxin Zhang
- Department of Histology and Embryology, Medical School, 12579Southeast University, Nanjing, China
| | - Tao Zhou
- Central Laboratory, Wuxi Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Nanjing, China
| | - Jing Wang
- Zhong Da Hospital, 12579Southeast University, Nanjing, China
| | - Tong Liu
- School of Public Health, 12579Southeast University, Nanjing, China
| | - Siyi Xu
- School of Public Health, 12579Southeast University, Nanjing, China
| | - Geyu Liang
- School of Public Health, 12579Southeast University, Nanjing, China
| |
Collapse
|
3
|
Scaia MF, Volonteri MC, Czuchlej SC, Ceballos NR. Estradiol and reproduction in the South American toad Rhinella arenarum (Amphibian, Anura). Gen Comp Endocrinol 2019; 273:20-31. [PMID: 29555118 DOI: 10.1016/j.ygcen.2018.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/24/2018] [Accepted: 03/14/2018] [Indexed: 12/28/2022]
Abstract
Rhinella arenarum is a South American toad with wide geographic distribution. Testes of this toad produce high amount of androgens during the non reproductive season and shift steroid synthesis from androgens to 5α-pregnanedione during the breeding. In addition, plasma estradiol (E2) in males of this species shows seasonal variations but, since testes of R. arenarum do not express aromatase, the source of plasma E2 remained unknown for several years. However, the Bidder's organ (BO), a structure located at one pole of each testis, is proposed to be the main source of E2 in male's toads since it expresses several steroidogenic enzymes and is able to produce E2 from endogenous substrates throughout the year. In addition, there were significant correlations between plasma E2 and total activity of BO aromatase, and between plasma E2 and the amount of hormone produced by the BO in vitro. In the toad, apoptosis induced by in vitro treatment with E2 was mostly detected in spermatocytes during the breeding and in spermatids during the post-reproductive season, suggesting that this steroid has an important role in controlling spermatogenesis. However, in vitro treatment with E2 had no effect on proliferation. This evidence suggests that the mechanism of action of E2 on amphibian spermatogenesis is complex and more studies are necessary to fully understand the role of estrogens regulating the balance between cellular proliferation and apoptosis. In addition, in R. arenarum in vitro studies suggested that E2 has no effect on CypP450c17 protein levels or enzymatic activity, while it reduces 3β-hydroxysteroid dehydrogenase/isomerase (3β-HSD/I) activity during the post reproductive season. As well, E2 regulates FSHβ mRNA expression all over the year suggesting a down regulation process carried out by this steroid. The effect on LHβ mRNA is dual, since during the reproductive season estradiol increases the expression of LHβ mRNA while in the non-reproductive season it has no effect. In conclusion, the effect of E2 on gonadotropins and testicular function is complex, not clearly understood and probably varies depending on the species. The aim of the current article is to review evidence on reproductive endocrinology and on the role of estradiol regulating reproduction in amphibians, with emphasis on the South American species Rhinella arenarum.
Collapse
Affiliation(s)
- María Florencia Scaia
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA - CONICET), Buenos Aires, Argentina.
| | - María Clara Volonteri
- Instituto de Diversidad y Evolución Austral (IDEAus - CONICET), Puerto Madryn, Chubut, Argentina
| | - Silvia Cristina Czuchlej
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina.
| | - Nora Raquel Ceballos
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
4
|
Verderame M, Scudiero R. A comparative review on estrogen receptors in the reproductive male tract of non mammalian vertebrates. Steroids 2018; 134:1-8. [PMID: 29627338 DOI: 10.1016/j.steroids.2018.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 01/04/2023]
Abstract
Estrogen receptors alpha (ERα) and beta (ERβ) are transcription factors known to be involved in the regulation of many complex physiological processes in mammals. They are expressed primarily in the reproductive tract of all vertebrates females, thus indicating important and conserved functions in female reproductive success. ERs are also present in physiological different tissues as bone, brain, liver, skin and adipose tissues, in both females and males. In the latter, ERs have been found also in the genital tract, supporting the findings of a complex role for estrogen in spermatogenesis and, more generally, in male reproduction. This review provides an overview and update on ERα and ERβ expression and synthesis in male reproductive tract of non-mammalian vertebrates, with focus on their role in germ cells proliferation, maturation and survival. Data from studies on fish, amphibians, reptiles and birds were collated and common or species-specific distribution highlighted. The widespread distribution of estrogen receptors in testicular cells and ducts of all vertebrates so far investigated suggests that whatever are the roles that estrogens may exert on these structures, they are phylogenetically conserved and are possibly related to the physiological support given to achieve male reproductive success.
Collapse
Affiliation(s)
- Mariailaria Verderame
- Department of Biology, University Federico II, Via Mezzocannone 8, 80134 Napoli, Italy.
| | - Rosaria Scudiero
- Department of Biology, University Federico II, Via Mezzocannone 8, 80134 Napoli, Italy
| |
Collapse
|
5
|
Spermatogenic and Testosterone Cycles in a Desert-Adapted Amphibian Odontophrynus barrioi from the Monte Desert, Argentina. J HERPETOL 2018. [DOI: 10.1670/16-070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
The impacts of yoghurt butter oil on rat testicular morphology and sexual hormones in a 150-day study. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s00580-018-2688-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Menad R, Smaï S, Bonnet X, Gernigon-Spychalowicz T, Moudilou E, Khammar F, Exbrayat JM. Seasonal variations of aromatase and estrogen receptors expression in the testis of free-ranging sand rats. Acta Histochem 2017; 119:382-391. [PMID: 28427772 DOI: 10.1016/j.acthis.2017.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 12/16/2022]
Abstract
An increasing number of studies revealed the importance of estrogen in male reproduction. However, most research was conducted in laboratory rodents subjected to standardized environmental conditions. Therefore, seasonal regulations of estrogen pathways remain poorly understood under natural conditions. Using immunohistochemistry, the expression of several molecules involved in the functioning of testis (i.e. 17-β estradiol [E2], P450 aromatase, estrogen receptors ESR1, ESR2, and GPER1 [also known as GPR30]) were investigated in free-ranging fat sand rats, Psammomys obesus, during the breeding and resting seasons. Leydig cells showed a strong immunoreactivity for aromatase in the testis sampled during the breeding season only; however, E2, ESR1, ESR2 and GPER1 were present during both seasons. Sertoli cells showed a positive signal for E2 and ESR2 during the breeding season; though, all molecules, except GPER1, were present during the resting season. Spermatogonia were reactive for E2, ESR2 and GPER1 during the breeding season and for ESR1 and GPER1 during the resting season. During both seasons, spermatocytes-I presented a moderate reactivity for E2, ESR1, ESR2 and a strong reactivity for GPER1; aromatase was detected during the resting season only. Spermatids and spermatozoa were present exclusively during breeding season and were reactive for all molecules; except round spermatids that were negative for aromatase. The functioning of the testis depends on finely tuned stimulation and inhibition systems. Our results suggest that differential expression of aromatase, ESR1, ESR2, and GPER1 across cells types is involved in the seasonal activation/inactivation cycle of spermatogenesis in a free-ranging species.
Collapse
|
8
|
Scaia MF, Czuchlej SC, Cervino N, Ceballos NR. Apoptosis, proliferation and presence of estradiol receptors in the testes and Bidder's organ of the toadRhinella arenarum(Amphibia, Anura). J Morphol 2015; 277:412-23. [DOI: 10.1002/jmor.20507] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 11/29/2015] [Accepted: 12/06/2015] [Indexed: 01/23/2023]
Affiliation(s)
- María Florencia Scaia
- Laboratorio De Endocrinología Comparada, Departamento De Biodiversidad Y Biología Experimental, Facultad De Ciencias Exactas Y Naturales; Universidad De Buenos Aires, Consejo Nacional De Investigaciones Científicas Y Técnicas; Buenos Aires Argentina
| | - Silvia Cristina Czuchlej
- Laboratorio De Endocrinología Comparada, Departamento De Biodiversidad Y Biología Experimental, Facultad De Ciencias Exactas Y Naturales; Universidad De Buenos Aires, Consejo Nacional De Investigaciones Científicas Y Técnicas; Buenos Aires Argentina
| | - Nadia Cervino
- Laboratorio De Endocrinología Comparada, Departamento De Biodiversidad Y Biología Experimental, Facultad De Ciencias Exactas Y Naturales; Universidad De Buenos Aires, Consejo Nacional De Investigaciones Científicas Y Técnicas; Buenos Aires Argentina
| | - Nora Raquel Ceballos
- Laboratorio De Endocrinología Comparada, Departamento De Biodiversidad Y Biología Experimental, Facultad De Ciencias Exactas Y Naturales; Universidad De Buenos Aires, Consejo Nacional De Investigaciones Científicas Y Técnicas; Buenos Aires Argentina
| |
Collapse
|