1
|
Yang Q, Jia S, Tao J, Zhang J, Fan Z. Multiple effects of kisspeptin on neuroendocrine, reproduction, and metabolism in polycystic ovary syndrome. J Neuroendocrinol 2024:e13482. [PMID: 39694850 DOI: 10.1111/jne.13482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a highly prevalent and heterogeneous disease characterized by a combination of reproductive and endocrine abnormalities, often associated with metabolic and mental health disorders. The etiology and pathogenesis of PCOS remain unclear, but recent research has increasingly focused on the upstream mechanisms underlying its development. Among these, kisspeptin (KISS) signaling has emerged as a pivotal component in the regulation of the hypothalamic-pituitary-gonadal axis, with significant roles in reproductive function, energy regulation, and metabolism. Women with PCOS commonly exhibit disruptions in gonadotropin secretion, including elevated luteinizing hormone (LH) levels, imbalanced LH/follicle-stimulating hormone (FSH) ratios, and increased androgen levels, all of which are usually parallel with abnormal KISS signaling. Furthermore, alterations in the KISS/KISS1R system within the central and circulatory systems, as well as peripheral tissues, have been implicated in the development of PCOS. These changes affect multiple pathophysiological domains, including reproductive function, energy regulation, metabolic homeostasis, inflammatory response, and emotional disorders, and are further influenced by lifestyle and environmental factors. This review aims to comprehensively summarize the existing experimental and clinical evidence supporting these roles of KISS in PCOS, with the goal of establishing a foundation for future research and potential clinical applications.
Collapse
Affiliation(s)
- Qiaorui Yang
- Department of Gynecology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengxiao Jia
- Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Jing Tao
- Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Jinfu Zhang
- Department of Gynecology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Gynecology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
| | - Zhenliang Fan
- Nephrology Department, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Zhejiang, China
| |
Collapse
|
2
|
Szydełko-Gorzkowicz M, Poniedziałek-Czajkowska E, Mierzyński R, Sotowski M, Leszczyńska-Gorzelak B. The Role of Kisspeptin in the Pathogenesis of Pregnancy Complications: A Narrative Review. Int J Mol Sci 2022; 23:ijms23126611. [PMID: 35743054 PMCID: PMC9223875 DOI: 10.3390/ijms23126611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 12/15/2022] Open
Abstract
Kisspeptins are the family of neuropeptide products of the KISS-1 gene that exert the biological action by binding with the G-protein coupled receptor 54 (GPR54), also known as the KISS-1 receptor. The kisspeptin level dramatically increases during pregnancy, and the placenta is supposed to be its primary source. The role of kisspeptin has already been widely studied in hypogonadotropic hypogonadism, fertility, puberty disorders, and insulin resistance-related conditions, including type 2 diabetes mellitus, polycystic ovary syndrome, and obesity. Gestational diabetes mellitus (GDM), preeclampsia (PE), preterm birth, fetal growth restriction (FGR), or spontaneous abortion affected 2 to 20% of pregnancies worldwide. Their occurrence is associated with numerous short and long-term consequences for mothers and newborns; hence, novel, non-invasive predictors of their development are intensively investigated. The study aims to present a comprehensive review emphasizing the role of kisspeptin in the most common pregnancy-related disorders and neonatal outcomes. The decreased level of kisspeptin is observed in women with GDM, FGR, and a high risk of spontaneous abortion. Nevertheless, there are still many inconsistencies in kisspeptin concentration in pregnancies with preterm birth or PE. Further research is needed to determine the usefulness of kisspeptin as an early marker of gestational and neonatal complications.
Collapse
|
3
|
Kurt S, Eşki F, Mis L. Investigation of the usability of kisspeptin and oxidative stress parameters in the early diagnosis of asymptomatic cystic endometrial hyperplasia in dogs. Reprod Domest Anim 2021; 56:1529-1535. [PMID: 34496086 DOI: 10.1111/rda.14016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022]
Abstract
This study aimed to investigate the differences in oxidative stress index (OSI) and kisspeptin levels in clinically asymptomatic dogs with cystic endometrial hyperplasia (CEH) compared to healthy and pregnant dogs, and to determine the usability of the obtained results in the diagnosis of asymptomatic CEH. The study comprised three groups; a healthy (n = 8), a pregnant (n = 10) and a CEH (n = 10). All dogs in the three groups were included in the study at the 30 ± 3th day after estrus, and blood samples were collected for analysis of kisspeptin, total antioxidant status (TAS), total oxidant status (TOS), progesterone (P4), estradiol (E2) and some biochemical parameters (TSH; thyroid stimulating hormone, ALT; alanine aminotransferase, AST; aspartate aminotransferase, ALP; alkaline phosphatase, LDH; lactate dehydrogenase, CRE; creatine and BUN; blood urea nitrogen). In addition, OSI value was calculated. P4 and ALT and BUN levels were significantly lower and higher in CEH group than the pregnant group, respectively (p < .05). While kisspeptin and TAS levels were significantly lower in CEH group compared to the healthy and pregnant groups (p < .01), OSI level increased dramatically. In conclusion, it was confirmed that CEH clearly affected kisspeptin and OSI levels, and it is thought that these parameters may be an alternative diagnostic tool for the detection of CEH after further studies.
Collapse
Affiliation(s)
- Serdal Kurt
- Kahramanmaraş Istiklal University, Elbistan Vocational School, Department of Veterinary, Kahramanmaraş, Turkey
| | - Funda Eşki
- Çukurova University, Clinic for Veterinary Obstetrics and Gynecology, Adana, Turkey
| | - Leyla Mis
- Van Yuzuncu Yil University, Veterinary Medicine, Department of Veterinary Physiology, Van, Turkey
| |
Collapse
|
4
|
Zmijewska A, Czelejewska W, Drzewiecka EM, Franczak A. Effect of kisspeptin (KISS) and RFamide-related peptide-3 (RFRP-3) on the synthesis and secretion of FSH in vitro by pituitary cells in pigs. Theriogenology 2021; 171:72-84. [PMID: 34044335 DOI: 10.1016/j.theriogenology.2021.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 04/17/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Kisspeptins (KISSs) and RFamide-related peptide-3 (RFRP-3) affect the synthesis and secretion of luteinizing hormone (LH) and modulate female reproductive processes. The presence of KISS and RFRP-3 in the porcine pituitary gland and their contribution to the regulation of follicle-stimulating hormone (FSH) synthesis and secretion is unknown. This study analyzed the presence of KISS and RFRP-3 in the pituitary of estrous-cyclic pigs on days 2 to 3, 10 to 11, 12 to 13, 15 to 16 and 19 to 20 and early pregnant pigs on days 10 to 11, 12 to 13 and 15 to 16, and evaluated the effect of KISS and RFRP-3 on β-Fsh mRNA expression and FSH secretion in vitro by pituitary cells collected on selected days of the estrous cycle. The cells were cultured in vitro and treated with KISS (10-6 M, 10-7 M) and RFRP-3 (10-6 M, 10-7 M) or gonadotropin-releasing hormone (GnRH; 100 ng/mL) alone and in combinations (4 h or 24 h). The relative abundance of Kiss and Rfrp-3 and their receptor mRNA transcripts, as well as the KISS and RFRP-3 proteins, were found in the pituitaries of estrous-cyclic and early pregnant pigs. KISS after 4 h increased the secretion of FSH in estrous cyclic pigs mostly during the early-luteal phase and luteolysis. RFRP-3 inhibited the synthesis and secretion of FSH in estrous-cyclic pigs on days 19 to 20 and the secretion of FSH on days 2 to 3 and 10 to 12 of the estrous cycle compared with GnRH-treated cells. KISS in co-treatment with GnRH after 24 h enhanced FSH release on days 2 to 3 and 15 to 16 of the estrous cycle. In conclusion, KISS and RFRP-3 systems are present in the pituitary of estrous-cyclic and pregnant pigs. In estrous-cyclic pigs, KISS and RFRP-3 may affect the synthesis and secretion of FSH by pituitary cells.
Collapse
Affiliation(s)
- Agata Zmijewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowski 1A, 10-719, Olsztyn, Poland.
| | - Wioleta Czelejewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowski 1A, 10-719, Olsztyn, Poland
| | - Ewa M Drzewiecka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowski 1A, 10-719, Olsztyn, Poland
| | - Anita Franczak
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowski 1A, 10-719, Olsztyn, Poland
| |
Collapse
|
5
|
Hu KL, Chang HM, Zhao HC, Yu Y, Li R, Qiao J. Potential roles for the kisspeptin/kisspeptin receptor system in implantation and placentation. Hum Reprod Update 2020; 25:326-343. [PMID: 30649364 PMCID: PMC6450039 DOI: 10.1093/humupd/dmy046] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/19/2018] [Accepted: 12/09/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Initially identified as suppressors of metastasis in various types of cancer, kisspeptins are a family of neuropeptides that are key regulators of the mammalian reproductive axis. Accumulating evidence has shown that kisspeptin is able to control both the pulsatile and surge GnRH release, playing fundamental roles in female reproduction, which include the secretion of gonadotropins, puberty onset, brain sex differentiation, ovulation and the metabolic regulation of fertility. Furthermore, recent studies have demonstrated the involvement of the kisspeptin system in the processes of implantation and placentation. This review summarizes the current knowledge of the pathophysiological role and utility of these local placental regulatory factors as potential biomarkers during the early human gestation. OBJECTIVE AND RATIONALE A successful pregnancy, from the initiation of embryo implantation to parturition, is a complex process that requires the orchestration of a series of events. This review aims to concisely summarize what is known about the role of the kisspeptin system in implantation, placentation, early human pregnancy and pregnancy-related disorders, and to develop strategies for predicting, diagnosing and treating these abnormalities. SEARCH METHODS Using the PubMed and Google Scholar databases, we performed comprehensive literature searches in the English language describing the advancement of kisspeptins and the kisspeptin receptor (KISS1R) in implantation, placentation and early pregnancy in humans, since its initial identification in 1996 and ending in July 2018. OUTCOMES Recent studies have shown the coordinated spatial and temporal expression patterns of kisspeptins and KISS1R during human pregnancy. The experimental data gathered recently suggest putative roles of kisspeptin signaling in the regulation of trophoblast invasion, embryo implantation, placentation and early pregnancy. Dysregulation of the kisspeptin system may negatively affect the processes of implantation as well as placentation. Clinical studies indicate that the circulating levels of kisspeptins or the expression levels of kisspeptin/KISS1R in the placental tissues may be used as potential diagnostic markers for women with miscarriage and gestational trophoblastic neoplasia. WIDER IMPLICATIONS Comprehensive research on the pathophysiological role of the kisspeptin/KISS1R system in implantation and placentation will provide a dynamic and powerful approach to understanding the processes of early pregnancy, with potential applications in observational and analytic screening as well as the diagnosis, prognosis and treatment of implantation failure and early pregnancy-related disorders.
Collapse
Affiliation(s)
- Kai-Lun Hu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Hsun-Ming Chang
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Hong-Cui Zhao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Rong Li
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Jie Qiao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
6
|
Thongphakdee A, Sukparangsi W, Comizzoli P, Chatdarong K. Reproductive biology and biotechnologies in wild felids. Theriogenology 2020; 150:360-373. [PMID: 32102745 DOI: 10.1016/j.theriogenology.2020.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 12/18/2022]
Abstract
Conservation strategies in natural habitats as well as in breeding centers are necessary for maintaining and reinforcing viable populations of wild felids. Among the fundamental knowledge that is required for conservation breeding, a solid understanding of reproductive biology is critical for improving natural breeding and enhance genetic diversity. Additionally, it offers the opportunity to develop assisted reproductive technologies (ARTs) in threatened and endangered species. Conservation breeding and reproductive biotechnologies of wild felids have advanced in the past decade. It has been clearly shown that female felids have species and individual patterns of reproductive cycles and respond differently to exogenous hormones. In males, several species still have poor semen quality often due to the loss of genetic diversity in small populations. To overcome the challenges of natural breeding (incompatibility between individuals or suboptimal environment) and mitigate inbreeding, artificial insemination, embryo production and embryo transfer have been further developed in 24 wild cat species. Major factors limiting ART success are inconsistent responses to ovarian stimulation, variable quality of gametes and embryos, and preparation of recipient females. Additional approaches including stem cell technologies have been explored for future medical applications. However, there still is a critical need for better knowledge of feline reproductive biology and improvement of ARTs efficiency to increase the genetic diversity and create sustainable populations of wild felids.
Collapse
Affiliation(s)
- Ampika Thongphakdee
- Wildlife Reproductive Innovation Center, Bureau of Conservation and Research, Zoological Park Organization Under the Royal Patronage of H.M. the King, 267, Pracharaj 1 Road, Bang Sue, Bangkok, 10800, Thailand.
| | - Woranop Sukparangsi
- Department of Biology, Faculty of Science, Burapha University, Saen Suk, Muang, Chonburi, 20131, Thailand
| | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, 3001 Connecticut Ave, NW, Washington, DC, 2008, USA
| | - Kaywalee Chatdarong
- Research Unit of Obstetrics and Reproduction in Animals, Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Henri-Dunant Road, Bangkok, 10330, Thailand
| |
Collapse
|
7
|
Hu KL, Zhao H, Yu Y, Li R. Kisspeptin as a potential biomarker throughout pregnancy. Eur J Obstet Gynecol Reprod Biol 2019; 240:261-266. [PMID: 31344665 DOI: 10.1016/j.ejogrb.2019.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 01/18/2023]
Abstract
Kisspeptins are a family of neuropeptides that are critical for the puberty initiation and female fertility. Plasma or serum kisspeptin is mainly derived from the placenta during pregnancy and plasma kisspeptin levels significantly increase across pregnancy. Plasma kisspeptin levels could be used as a potential biomarker for the detection of miscarriage, pre-eclampsia, gestational trophoblastic neoplasia (GTN), and fetal development. Kisspeptin may also be involved in the process of parturition by stimulating oxytocin secretion during term pregnancy. This review discussed the potential use of kisspeptin as a marker across pregnancy and highlighted the unresolved problems in this area. Tweetable abstract: Plasma kisspeptin levels could be used as a potential biomarker across pregnancy.
Collapse
Affiliation(s)
- Kai-Lun Hu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongcui Zhao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Rong Li
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
8
|
The Chronic and Unpredictable Stress Suppressed Kisspeptin Expression during Ovarian Cycle in Mice. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2019. [DOI: 10.12750/jarb.34.1.40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
9
|
Hu KL, Zhao H, Min Z, He Y, Li T, Zhen X, Ren Y, Chang HM, Yu Y, Li R. Increased Expression of KISS1 and KISS1 Receptor in Human Granulosa Lutein Cells-Potential Pathogenesis of Polycystic Ovary Syndrome. Reprod Sci 2018; 26:1429-1438. [PMID: 30595091 DOI: 10.1177/1933719118818899] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Kisspeptins are a family of neuropeptides that are essential for fertility. Recent experimental data suggest a putative role of kisspeptin signaling in the direct control of ovarian function. To explore the expression of KISS1 and KISS1 receptor (KISS1R) in human granulosa lutein cells and the potential role of KISS1/KISS1R system in the pathogenesis of polycystic ovary syndrome (PCOS), we measured the concentration of KISS1 in follicular fluid, the expression of KISS1 and KISS1R in granulosa lutein cells, and the circulating hormones. The expression levels of KISS1 and KISS1R were significantly upregulated in human granulosa lutein cells obtained from women with PCOS. The expression levels of KISS1 in human granulosa lutein cells highly correlated with those of KISS1R in non-PCOS patients, but not in patients with PCOS, most likely due to the divergent expression patterns in women with PCOS. Additionally, the expression levels of KISS1 highly correlated with the serum levels of anti-Müllerian hormone (AMH). The expression levels of KISS1 and KISS1R, as well as the follicular fluid levels of KISS1, were not significantly different between the pregnant and nonpregnant patients in both PCOS and non-PCOS groups. In conclusion, the increased expression of KISS1 and KISS1R in human granulosa lutein cells may contribute to the pathogenesis of PCOS. The expression levels of KISS1 highly correlated with the serum levels of AMH. The KISS1 and KISS1R system in the ovary may not have a remarkable role in predicting the in vitro fertilization (IVF) outcome.
Collapse
Affiliation(s)
- Kai-Lun Hu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Hongcui Zhao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Zheying Min
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yilei He
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Tianjie Li
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Xiumei Zhen
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yun Ren
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, University of British Columbia and British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Rong Li
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
10
|
Mishra GK, Patra MK, Singh LK, Upmanyu V, Chakravarti S, M. K, Singh SK, Das GK, Kumar H, Krisnaswami N. Kiss1 and its receptor: molecular characterization and immunolocalization in the hypothalamus and corpus luteum of the buffalo. Anim Biotechnol 2018; 30:342-351. [DOI: 10.1080/10495398.2018.1520715] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Girish Kumar Mishra
- Animal Reproduction Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Manas Kumar Patra
- Animal Reproduction Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Laishram Kipjen Singh
- Animal Reproduction Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Vikramaditya Upmanyu
- Biological Standardization Division, Indian Veterinary research Institute, Bareilly, Uttar Pradesh, India
| | - Soumendu Chakravarti
- Division of Biological Products, Indian Veterinary Research Institute, Izatnagar, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karikalan M.
- Centre for Wildlife Conservation Management and Disease Surveillance, Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Sanjay Kumar Singh
- Animal Reproduction Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Goutam Kumar Das
- Animal Reproduction Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Harendra Kumar
- Animal Reproduction Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Narayanan Krisnaswami
- Animal Reproduction Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
11
|
Rizzo A, Ceci E, Guaricci AC, Sciorsci RL. Kisspeptin in the early post-partum of the dairy cow. Reprod Domest Anim 2018; 54:195-198. [DOI: 10.1111/rda.13325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/25/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Annalisa Rizzo
- Department of Veterinary Medicine; University of Bari Aldo Moro; Valenzano (BA) Italy
| | - Edmondo Ceci
- Department of Veterinary Medicine; University of Bari Aldo Moro; Valenzano (BA) Italy
| | - Antonio Ciro Guaricci
- Department of Veterinary Medicine; University of Bari Aldo Moro; Valenzano (BA) Italy
| | | |
Collapse
|
12
|
Zhai J, Ding L, Zhao S, Li W, Sun Y, Su S, Zhang J, Zhao H, Chen ZJ. Kisspeptin: a new marker for human pre-ovulation. Gynecol Endocrinol 2017; 33:560-563. [PMID: 28266227 DOI: 10.1080/09513590.2017.1296129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Kisspeptin is a polypeptide that plays an important role in reproductive endocrine regulation. The aim of present study was to investigate the dynamic trend of kisspeptin levels during the menstrual cycle and to elucidate the relationship between kisspeptin ovulation. First, 15 female volunteers with regular menstrual cycles were recruited to detect the change in serum and urine kisspeptin levels over one menstrual cycle within each individual. Subsequently, 114 serum samples and 79 urine samples from 114 individuals were randomly collected at the outpatient department to better ascertain the results. Kisspeptin levels showed a distinctive stage-specific pattern during the normal menstrual cycle in both serum and urine. It was low during the first 5 days, while the first surge appeared on the 11th day (the diameter of the dominant follicle was approximately 1.2 cm). Later, a second smaller surge appeared around the 14th day and the same changes were identified in serum and urine. Furthermore, serum kisspeptin levels were positively related to 17-β estradiol (E2) level increase. Thus, kisspeptin surge in serum and urine may be used as a marker for dominant follicle development and pre-ovulation. Moreover, kisspeptin may also play a vital role in female reproduction through regulating hormonal state.
Collapse
Affiliation(s)
- Junyu Zhai
- a Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
- b Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics , Shanghai , China
| | - Lingling Ding
- c Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University , Jinan , China
| | - Shigang Zhao
- c Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University , Jinan , China
| | - Weiping Li
- a Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
- b Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics , Shanghai , China
| | - Yinhua Sun
- c Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University , Jinan , China
| | - Shizhen Su
- c Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University , Jinan , China
| | - Jiangtao Zhang
- c Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University , Jinan , China
| | - Han Zhao
- c Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University , Jinan , China
| | - Zi-Jiang Chen
- a Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
- b Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics , Shanghai , China
- c Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University , Jinan , China
- d National Research Center for Assisted Reproductive Technology and Reproductive Genetics , Jinan , China
- e The Key Laboratory for Reproductive Endocrinology of Ministry of Education , Jinan , China , and
- f Shandong Provincial Key Laboratory of Reproductive Medicine , Jinan , China
| |
Collapse
|
13
|
Hu KL, Zhao H, Chang HM, Yu Y, Qiao J. Kisspeptin/Kisspeptin Receptor System in the Ovary. Front Endocrinol (Lausanne) 2017; 8:365. [PMID: 29354093 PMCID: PMC5758547 DOI: 10.3389/fendo.2017.00365] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/13/2017] [Indexed: 12/26/2022] Open
Abstract
Kisspeptins are a family of neuropeptides that are critical for initiating puberty and regulating ovulation in sexually mature females via the central control of the hypothalamic-pituitary-gonadal axis. Recent studies have shown that kisspeptin and its receptor kisspeptin receptor (KISS1R) are expressed in the mammalian ovary. Convincing evidence indicates that kisspeptins can activate a wide variety of signals via its binding to KISS1R. Experimental data gathered recently suggest a putative role of kisspeptin signaling in the direct control of ovarian function, including follicular development, oocyte maturation, steroidogenesis, and ovulation. Dysregulation or naturally occurring mutations of the kisspeptin/KISS1R system may negatively affect the ovarian function, leading to reproductive pathology or female infertility. A comprehensive understanding of the expression, actions, and underlying molecular mechanisms of this system in the human ovary is essential for novel approaches to therapeutic and diagnostic interventions in reproductive diseases and infertility.
Collapse
Affiliation(s)
- Kai-Lun Hu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Hongcui Zhao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- *Correspondence: Hongcui Zhao, ; Yang Yu,
| | - Hsun-Ming Chang
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- *Correspondence: Hongcui Zhao, ; Yang Yu,
| | - Jie Qiao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|