1
|
Tapper S, Tabh JKR, Tattersall GJ, Burness G. Changes in Body Surface Temperature Play an Underappreciated Role in the Avian Immune Response. Physiol Biochem Zool 2022; 95:152-167. [PMID: 35089849 DOI: 10.1086/718410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractFever and hypothermia are well-characterized components of systemic inflammation. However, our knowledge of the mechanisms underlying such changes in body temperature is largely limited to rodent models and other mammalian species. In mammals, high dosages of an inflammatory agent (e.g., lipopolysaccharide [LPS]) typically leads to hypothermia (decrease in body temperature below normothermic levels), which is largely driven by a reduction in thermogenesis and not changes in peripheral vasomotion (i.e., changes in blood vessel tone). In birds, however, hypothermia occurs frequently, even at lower dosages, but the thermoeffector mechanisms associated with the response remain unknown. We immune challenged zebra finches (Taeniopygia guttata) with LPS, monitored changes in subcutaneous temperature and energy balance (i.e., body mass, food intake), and assessed surface temperatures of and heat loss across the eye region, bill, and legs. We hypothesized that if birds employ thermoregulatory mechanisms similar to those of similarly sized mammals, LPS-injected individuals would reduce subcutaneous body temperature and maintain constant surface temperatures compared with saline-injected individuals. Instead, LPS-injected individuals showed a slight elevation in body temperature, and this response coincided with a reduction in peripheral heat loss, particularly across the legs, as opposed to changes in energy balance. However, we note that our interpretations should be taken with caution owing to small sample sizes within each treatment. We suggest that peripheral vasomotion, allowing for heat retention, is an underappreciated component of the sickness-induced thermoregulatory response of small birds.
Collapse
|
2
|
Melhado G, Herrera M LG, da Cruz-Neto AP. Bats respond to simulated bacterial infection during the active phase by reducing food intake. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:536-542. [PMID: 32691525 DOI: 10.1002/jez.2399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/27/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022]
Abstract
Sickness triggers a series of behavioral and physiological processes collectively known as acute phase response (APR). Bats are known as reservoirs of a broad variety of pathogens and the physiological changes resulting from APR activation have been tested predominantly during the resting phase (daytime) in several species exposed to lipopolysaccharide (LPS). In contrast, behavioral consequences of sickness for bats and other wild mammals have received less attention. We examined the physiological and behavioral consequences of APR activation in a fruit-eating bat (Carollia perspicillata) challenged with LPS during the active phase (nighttime). We measured changes in food intake, body mass, body temperature, total white blood cell counts, and the neutrophil/lymphocyte ratio (N/L). No fever and leukocytosis were observed in bats injected with LPS, but food intake decreased, bats lost body mass and their N/L ratio increased. The effect of LPS on daily energy balance is remarkable and, along with the increase in N/L ratio, it is assumed to be beneficial to fight disease. On the basis of our findings and those with other bats, it is probable that the physiological and behavioral components of the immune response to LPS follow circadian rhythms, but a formal test of this hypothesis is warranted.
Collapse
Affiliation(s)
- Gabriel Melhado
- Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, São Paulo, Brazil
| | - L Gerardo Herrera M
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional, Autónoma de México, San Patricio, Jalisco, México
| | - Ariovaldo P da Cruz-Neto
- Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, São Paulo, Brazil
| |
Collapse
|
3
|
Acute Inflammation Alters Brain Energy Metabolism in Mice and Humans: Role in Suppressed Spontaneous Activity, Impaired Cognition, and Delirium. J Neurosci 2020; 40:5681-5696. [PMID: 32513828 PMCID: PMC7363463 DOI: 10.1523/jneurosci.2876-19.2020] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/09/2023] Open
Abstract
Systemic infection triggers a spectrum of metabolic and behavioral changes, collectively termed sickness behavior, which while adaptive, can affect mood and cognition. In vulnerable individuals, acute illness can also produce profound, maladaptive, cognitive dysfunction including delirium, but our understanding of delirium pathophysiology remains limited. Here, we used bacterial lipopolysaccharide (LPS) in female C57BL/6J mice and acute hip fracture in humans to address whether disrupted energy metabolism contributes to inflammation-induced behavioral and cognitive changes. LPS (250 µg/kg) induced hypoglycemia, which was mimicked by interleukin (IL)-1β (25 µg/kg) but not prevented in IL-1RI−/− mice, nor by IL-1 receptor antagonist (IL-1RA; 10 mg/kg). LPS suppression of locomotor activity correlated with blood glucose concentrations, was mitigated by exogenous glucose (2 g/kg), and was exacerbated by 2-deoxyglucose (2-DG) glycolytic inhibition, despite preventing IL-1β synthesis. Using the ME7 model of chronic neurodegeneration in female mice, to examine vulnerability of the diseased brain to acute stressors, we showed that LPS (100 µg/kg) produced acute cognitive dysfunction, selectively in those animals. These acute cognitive impairments were mimicked by insulin (11.5 IU/kg) and mitigated by glucose, demonstrating that acutely reduced glucose metabolism impairs cognition selectively in the vulnerable brain. To test whether these acute changes might predict altered carbohydrate metabolism during delirium, we assessed glycolytic metabolite levels in CSF in humans during inflammatory trauma-induced delirium. Hip fracture patients showed elevated CSF lactate and pyruvate during delirium, consistent with acutely altered brain energy metabolism. Collectively, the data suggest that disruption of energy metabolism drives behavioral and cognitive consequences of acute systemic inflammation. SIGNIFICANCE STATEMENT Acute systemic inflammation alters behavior and produces disproportionate effects, such as delirium, in vulnerable individuals. Delirium has serious short and long-term sequelae but mechanisms remain unclear. Here, we show that both LPS and interleukin (IL)-1β trigger hypoglycemia, reduce CSF glucose, and suppress spontaneous activity. Exogenous glucose mitigates these outcomes. Equivalent hypoglycemia, induced by lipopolysaccharide (LPS) or insulin, was sufficient to trigger cognitive impairment selectively in animals with existing neurodegeneration and glucose also mitigated those impairments. Patient CSF from inflammatory trauma-induced delirium also shows altered brain carbohydrate metabolism. The data suggest that the degenerating brain is exquisitely sensitive to acute behavioral and cognitive consequences of disrupted energy metabolism. Thus “bioenergetic stress” drives systemic inflammation-induced dysfunction. Elucidating this may offer routes to mitigating delirium.
Collapse
|
4
|
Wang Y, Han G, Pham CV, Koyanagi K, Song Y, Sudo R, Lauwereyns J, Cockrem JF, Furuse M, Chowdhury VS. An acute increase in water temperature can increase free amino acid concentrations in the blood, brain, liver, and muscle in goldfish (Carassius auratus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1343-1354. [PMID: 31001753 DOI: 10.1007/s10695-019-00642-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Water temperature directly affects the body temperature in fish, so increasing water temperatures in oceans and rivers will lead to increases in fish body temperatures. Whilst a range of responses of fish to increases in water temperature have been measured, amino acid metabolism in a fish under high water temperature (HT) conditions has not been investigated. The aim of this study was to determine the effects of an acute increase in water temperature on oxygen consumption, plasma cortisol concentrations, and free amino acid concentrations in plasma and several tissues in goldfish (Carassius auratus). Oxygen consumption and plasma cortisol concentrations were increased in goldfish exposed to HT (30 ± 1 °C) for 200 min compared with goldfish at a control water temperature (CT 17 ± 1 °C). Oxygen consumption and plasma cortisol concentrations in both groups of fish combined were positively correlated. When goldfish were exposed to HT for 300 min oxygen consumption and plasma concentrations of 15 free amino acids were increased compared with goldish at CT. Concentrations of several free amino acids were increased to varying extents in the brain, liver, and muscle tissues. In conclusion, an acute increase in water temperature affected amino acid metabolism differently in the brain, liver, and muscle tissues. Goldfish will be a useful species for further studies of the possible roles of various amino acids in the brain, muscle, and liver during acute increases in water temperature in fish.
Collapse
Affiliation(s)
- Yunhao Wang
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
- Laboratory of Stress Physiology and Metabolism, Faculty of Arts and Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Guofeng Han
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
- Laboratory of Stress Physiology and Metabolism, Faculty of Arts and Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Cuong V Pham
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
- Laboratory of Stress Physiology and Metabolism, Faculty of Arts and Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Kiyohiko Koyanagi
- Fishery Research Laboratory, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yandejia Song
- Laboratory of Cognative Neuroscience, Graduate School of System Life Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Ryunosuke Sudo
- Laboratory of Cognative Neuroscience, Graduate School of System Life Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Johan Lauwereyns
- Laboratory of Cognative Neuroscience, Graduate School of System Life Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - John F Cockrem
- School of Veterinary Science, Massey University, Palmerston North, 4442, New Zealand
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Vishwajit S Chowdhury
- Laboratory of Stress Physiology and Metabolism, Faculty of Arts and Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
5
|
Long KLP, Bailey AM, Greives TJ, Legan SJ, Demas GE. Endotoxin rapidly desensitizes the gonads to kisspeptin-induced luteinizing hormone release in male Siberian hamsters ( Phodopus sungorus). ACTA ACUST UNITED AC 2018; 221:jeb.185504. [PMID: 30297514 DOI: 10.1242/jeb.185504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/03/2018] [Indexed: 01/01/2023]
Abstract
Activation of the immune system induces rapid reductions in hypothalamic-pituitary-gonadal (HPG) axis activity, which in turn decreases secretion of sex steroids. This response is likely adaptive for survival by temporarily inhibiting reproduction to conserve energy; however, the physiological mechanisms controlling this response remain unclear. The neuropeptide kisspeptin is a candidate to mediate the decrease in sex hormones seen during sickness through its key regulation of the HPG axis. In this study, the effects of acute immune activation on the response to kisspeptin were assessed in male Siberian hamsters (Phodopus sungorus). Specifically, an immune response was induced in animals by a single treatment of lipopolysaccharide (LPS), and reproductive hormone concentrations were determined in response to subsequent injections of exogenous kisspeptin. Saline-treated controls showed a robust increase in circulating testosterone in response to kisspeptin; however, this response was blocked in LPS-treated animals. Circulating luteinizing hormone (LH) levels were elevated in response to kisspeptin in both LPS- and saline-treated groups and, thus, were unaffected by LPS treatment, suggesting gonad-level inhibition of testosterone release despite central HPG activation. In addition, blockade of glucocorticoid receptors by mifepristone did not attenuate the LPS-induced inhibition of testosterone release, suggesting that circulating glucocorticoids do not mediate this phenomenon. Collectively, these findings reveal that acute endotoxin exposure rapidly renders the gonads less sensitive to HPG stimulation, thus effectively inhibiting sex hormone release. More broadly, these results shed light on the effects of immune activation on the HPG axis and help elucidate the mechanisms controlling energy allocation and reproduction.
Collapse
Affiliation(s)
- Kimberly L P Long
- Department of Biology, Indiana University, 1001 E 3rd Street, Bloomington, IN 47405, USA
| | - Allison M Bailey
- Department of Biology, Indiana University, 1001 E 3rd Street, Bloomington, IN 47405, USA
| | - Timothy J Greives
- Biological Sciences, North Dakota State University, 1340 Bolley Drive, 201 Stevens Hall, Fargo, ND 58102, USA
| | - Sandra J Legan
- Department of Physiology, University of Kentucky, MS601 Medical Science Building, Lexington, KY 40536, USA
| | - Gregory E Demas
- Department of Biology, Indiana University, 1001 E 3rd Street, Bloomington, IN 47405, USA
| |
Collapse
|
6
|
Sylvia KE, Demas GE. A Return to Wisdom: Using Sickness Behaviors to Integrate Ecological and Translational Research. Integr Comp Biol 2017; 57:1204-1213. [PMID: 28992281 PMCID: PMC5886345 DOI: 10.1093/icb/icx051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sickness is typically characterized by fever, anorexia, cachexia, and reductions in social, pleasurable, and sexual behaviors. These responses can be displayed at varying intensities both within and among individuals, and the adaptive nature of sickness responses can be demonstrated by the context-dependent nature of their expression. The study of sickness has become an important area of investigation for researchers in a wide range of areas, including psychoneuroimmunology (PNI) and ecoimmunology (EI). The general goal of PNI is to identify key interactions among the nervous, endocrine and immune systems and behavior, and how disruptions in these processes might contribute to disease states. EI, in turn, has been established more recently within the perspectives of ecology and evolutionary biology, and is aimed more at understanding natural variation in immune function and sickness responses within a broadly integrative, organismal, and evolutionary context. The goal of this review is to examine the literature on sickness from both basic and biomedical perspectives within PNI and EI and to demonstrate how the integrative study of sickness behavior can serve as an integrating agent to connect ecological and translational approaches to the study of disease. By focusing on a set of specific exemplars, including the energetics of sickness, social context, and environmental influences on sickness, we hope to accomplish the larger goal of developing a common synthetic framework to understand sickness from multiple levels of analysis and varying perspectives across the fields of PNI and EI. By applying this integrative approach to sickness, we will be able to develop a more comprehensive view of sickness as a suite of adaptive responses rather than the simply deleterious consequences of illness.
Collapse
Affiliation(s)
- Kristyn E Sylvia
- Department of Biology, Center for the Integrative Study of Animal Behavior, and Program in Neuroscience Indiana University, Bloomington, IN 47405, USA
| | - Gregory E Demas
- Department of Biology, Center for the Integrative Study of Animal Behavior, and Program in Neuroscience Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
7
|
Abstract
Multidirectional interactions among the immune, endocrine, and nervous systems have been demonstrated in humans and non-human animal models for many decades by the biomedical community, but ecological and evolutionary perspectives are lacking. Neuroendocrine-immune interactions can be conceptualized using a series of feedback loops, which culminate into distinct neuroendocrine-immune phenotypes. Behavior can exert profound influences on these phenotypes, which can in turn reciprocally modulate behavior. For example, the behavioral aspects of reproduction, including courtship, aggression, mate selection and parental behaviors can impinge upon neuroendocrine-immune interactions. One classic example is the immunocompetence handicap hypothesis (ICHH), which proposes that steroid hormones act as mediators of traits important for female choice while suppressing the immune system. Reciprocally, neuroendocrine-immune pathways can promote the development of altered behavioral states, such as sickness behavior. Understanding the energetic signals that mediate neuroendocrine-immune crosstalk is an active area of research. Although the field of psychoneuroimmunology (PNI) has begun to explore this crosstalk from a biomedical standpoint, the neuroendocrine-immune-behavior nexus has been relatively underappreciated in comparative species. The field of ecoimmunology, while traditionally emphasizing the study of non-model systems from an ecological evolutionary perspective, often under natural conditions, has focused less on the physiological mechanisms underlying behavioral responses. This review summarizes neuroendocrine-immune interactions using a comparative framework to understand the ecological and evolutionary forces that shape these complex physiological interactions.
Collapse
Affiliation(s)
- Noah T Ashley
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA.
| | - Gregory E Demas
- Department of Biology, Center for the Integrative Study of Animal Behavior - Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|