1
|
Zhang W, Chen X, Guo A, Zhao Z, Zhang B, Li F, Zhang H. IGF2/IGFBP4 reduces apoptosis and increases free cholesterol of chicken granulosa cells in vitro. Poult Sci 2024; 103:104416. [PMID: 39432993 DOI: 10.1016/j.psj.2024.104416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/28/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
Follicle selection, a crucial step in maintaining continuous egg production in chickens, is a process that relies on granulosa cells (GCs). In this study, we aimed to identify the key genes that are involved in follicle selection from our previous single-cell transcriptomic data. We used a combination of techniques and assays, including quantitative real-time PCR, immunofluorescence, Oil Red O staining, transmission electron microscopy (TEM), enzyme-linked immunosorbent assay (ELISA), monodansylcadaverine (MDC) assay, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay, cell counting Kit-8 (CCK-8) assay, and 5-ethynyl-2-deoxyuridine (EdU) assay. Multiple indices, such as cell proliferation, cell differentiation, progesterone synthesis, lipid droplet production, total and free cholesterol content, apoptosis, and autophagy, were measured to determine the states of GCs in vitro. The results demonstrated that overexpression of genes related to insulin-like growth factor 2 (IGF2) or IGF-binding protein 4 (IGFBP4) increases intracellular free cholesterol (progesterone precursors) and lipid droplet production, inhibits apoptosis through increased autophagy, and inhibits cell proliferation. This indicates that IGF2 or IGFBP4 can maintain the survival state and improve differentiation tendency of chicken granulosa cells in vitro. Therefore, this study provides new evidence on the functions of IGFs and IGFBPs in chickens, establishing a crucial experimental foundation for understanding the regulatory mechanisms of follicle selection. In addition, our study contributes to understanding follicular development and improves the egg-laying performance of chickens.
Collapse
Affiliation(s)
- Wenhui Zhang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Xuejiao Chen
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Axiu Guo
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Zongyi Zhao
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Bo Zhang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Fuwei Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
| | - Hao Zhang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
2
|
Li T, Qin W, Wu B, Jin X, Zhang R, Zhang J, Du L. Effects of glycyrrhiza polysaccharides on growth performance, meat quality, serum parameters and growth/meat quality-related gene expression in broilers. Front Vet Sci 2024; 11:1357491. [PMID: 38435364 PMCID: PMC10904541 DOI: 10.3389/fvets.2024.1357491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
With growing restrictions on the use of antibiotics in animal feed, plant extracts are increasingly favored as natural feed additive sources. Glycyrrhiza polysaccharide (GP), known for its multifaceted biological benefits including growth promotion, immune enhancement, and antioxidative properties, has been the focus of recent studies. Yet, the effects and mechanisms of GP on broiler growth and meat quality remain to be fully elucidated. This study aimed to investigate the effects of GP on growth, serum biochemistry, meat quality, and gene expression in broilers. The broilers were divided into five groups, each consisting of five replicates with six birds. These groups were supplemented with 0, 500, 1,000, 1,500, and 2,000 mg/kg of GP in their basal diets, respectively, for a period of 42 days. The results indicated that from day 22 to day 42, and throughout the entire experimental period from day 1 to day 42, the groups receiving 1,000 and 1,500 mg/kg of GP showed a significant reduction in the feed-to-gain ratio (F:G) compared to the control group. On day 42, an increase in serum growth hormone (GH) levels was shown in groups supplemented with 1,000 mg/kg GP or higher, along with a significant linear increase in insulin-like growth factor-1 (IGF-1) concentration. Additionally, significant upregulation of GH and IGF-1 mRNA expression levels was noted in the 1,000 and 1,500 mg/kg GP groups. Furthermore, GP significantly elevated serum concentrations of alkaline phosphatase (AKP) and globulin (GLB) while reducing blood urea nitrogen (BUN) levels. In terms of meat quality, the 1,500 and 2,000 mg/kg GP groups significantly increased fiber density in pectoral muscles and reduced thiobarbituric acid (TBA) content. GP also significantly decreased cooking loss rate in both pectoral and leg muscles and the drip loss rate in leg muscles. It increased levels of linoleic acid and oleic acid, while decreasing concentrations of stearic acid, myristic acid, and docosahexaenoic acid. Finally, the study demonstrated that the 1,500 mg/kg GP group significantly enhanced the expression of myogenin (MyoG) and myogenic differentiation (MyoD) mRNA in leg muscles. Overall, the study determined that the optimal dosage of GP in broiler feed is 1,500 mg/kg.
Collapse
Affiliation(s)
- Tiyu Li
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Weize Qin
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Baiyila Wu
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Xiao Jin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Rui Zhang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Jingyi Zhang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Liyin Du
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| |
Collapse
|
3
|
Francoeur L, Scoville DM, Johnson PA. Effect of IGF1 and FSH on the function of granulosa cells from prehierarchal follicles in chickens†. Biol Reprod 2023; 109:498-506. [PMID: 37504508 DOI: 10.1093/biolre/ioad082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/18/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Insulin-like growth factor 1 (IGF1) is an essential regulator of mammalian follicle development and synergizes with follicle-stimulating hormone (FSH) to amplify its effects. In avian preovulatory follicles, IGF1 increases the expression of genes involved in steroidogenesis and progesterone and inhibin A production. The role of IGF1 in prehierarchal follicles has not been well studied in chickens. The aim of this study was to investigate the role of IGF1 in granulosa cells from prehierarchal follicles and to determine whether IGF1 and FSH synergize to promote follicle development. Granulosa cells of 3-5 and 6-8 mm prehierarchal follicles were cultured with IGF1 (0, 10, 100 ng/mL) in the presence or absence of FSH (0, 10 ng/mL). Cell proliferation, expression of genes important in follicle development (FSHR, IGF1R, AMH, STAR, CYP11A1, INHA, and INHBA), and progesterone production were evaluated following treatment. IGF1 treatment alone significantly increased STAR, CYP11A1, and INHBA mRNA expression and cell proliferation in granulosa cells of 6-8 mm follicles. IGF1 and FSH synergized to increase STAR mRNA expression in 6-8 mm follicles. IGF1 and FSH co-treatment were necessary to increase INHA mRNA expression in 6-8 mm follicles. Although IGF1 significantly increased the expression of genes involved in steroidogenesis, progesterone production in granulosa cells of 6-8 mm follicles was not affected. IGF1 did not affect AMH mRNA expression, although FSH significantly decreased AMH expression in granulosa cells of 3-5 mm follicles. These results suggest that IGF1 may act with FSH to promote follicle selection at the prehierarchal follicle stage.
Collapse
Affiliation(s)
- Laurie Francoeur
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Deena M Scoville
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Patricia A Johnson
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
4
|
Untargeted Metabolomics Revealed Potential Biomarkers of Small Yellow Follicles of Chickens during Sexual Maturation. Metabolites 2023; 13:metabo13020176. [PMID: 36837802 PMCID: PMC9964950 DOI: 10.3390/metabo13020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Sexual maturation provides economically important traits in poultry production. Research on the initiation mechanism of sexual maturity is of great significance for breeding high-yield laying hens. However, the underlying mechanisms are not fully clear. Here, one hundred and fifty Chahua No. 2 laying hens (the CH2 group, which has precocious puberty) and one hundred and fifty Wu Liang Shan black-bone laying hens (the WLS group, a late-maturing chicken breed) with similar weights and ages were randomly selected. ELISA was used to determine the secretion levels of luteinizing hormone (LH), estradiol (E2), and progesterone (P4) in 150-day-old serum and small yellow follicle (SYF) tissues. A histology examination, immunohistochemistry, and quantitative real-time PCR (qPCR) were used to explore the molecular mechanism of how some genes related to oxidative stress affect sexual maturation. The results showed that the secretion levels of LH, E2, and P4 in the CH2 group serum and SYF were higher than those in the WLS group. The results of the real-time PCR of all genes showed that the expression levels of cytochrome P450 family 11 subfamily A member 1, steroidogenic acute regulatory protein, follicle-stimulating hormone receptor, and cytochrome P450 family 19 subfamily A member 1 in the CH2 group were significantly higher than those in the WLS groups (p < 0.001). Untargeted metabolomics combined with multivariate statistical analysis was used to identify biomarkers of SYF tissues in the CH2 and WLS groups. A trajectory analysis of the principal component analysis (PCA) results showed that the samples within the group were clustered and that the samples were dispersed between the CH2 and the WLS groups, indicating that the results of the measured data were reliable and could be used for further research. Further analysis showed that a total of 319 metabolites in small yellow follicles of the CH2 and WLS groups were identified, among which 54 downregulated differential metabolites were identified. These 54 metabolites were found as potential CH2 biomarkers compared with WLS at 150 days, and the different expressions of L-arginine, L-prolinamide, (R)-4-hydroxymandelate, glutathione, and homovanillic acid were more significant. Twenty metabolic pathways were found when significantly differential metabolites were queried in the KEGG database. According to the impact values of the metabolic pathways, eighteen differential metabolites belonged to the mTOR signaling pathway, glutathione metabolism, ABC transporters, the cell ferroptosis pathway, and D-arginine and D-ornithine metabolism. Interestingly, we identified that the cell ferroptosis pathway played an important role in chicken follicle selection for the first time. The histology and immunohistochemistry of SYF showed that the number of granulosa cells increased in the CH2 groups and the expression levels of glutathione peroxidase 4, tumor protein p53, ribosomal protein S6 kinase, and sterol regulatory element binding protein 1 in the granulosa cell layer were upregulated in the CH2 group at the time of sexual maturation. Furthermore, we also speculated that the antioxidant system may play an indispensable role in regulating sexual maturity in chickens. Overall, our findings suggest differentially expressed metabolites and metabolic pathways between CH2 and WLS chickens, providing new insights into the initiation mechanism of sexual maturation.
Collapse
|
5
|
Zhao J, Pan H, Liu Y, He Y, Shi H, Ge C. Interacting Networks of the Hypothalamic-Pituitary-Ovarian Axis Regulate Layer Hens Performance. Genes (Basel) 2023; 14:141. [PMID: 36672882 PMCID: PMC9859134 DOI: 10.3390/genes14010141] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Egg production is a vital biological and economic trait for poultry breeding. The 'hypothalamic-pituitary-ovarian (HPO) axis' determines the egg production, which affects the layer hens industry income. At the organism level, the HPO axis is influenced by the factors related to metabolic and nutritional status, environment, and genetics, whereas at the cellular and molecular levels, the HPO axis is influenced by the factors related to endocrine and metabolic regulation, cytokines, key genes, signaling pathways, post-transcriptional processing, and epigenetic modifications. MiRNAs and lncRNAs play a critical role in follicle selection and development, atresia, and ovulation in layer hens; in particular, miRNA is known to affect the development and atresia of follicles by regulating apoptosis and autophagy of granulosa cells. The current review elaborates on the regulation of the HPO axis and its role in the laying performance of hens at the organism, cellular, and molecular levels. In addition, this review provides an overview of the interactive network regulation mechanism of the HPO axis in layer hens, as well as comprehensive knowledge for successfully utilizing their genetic resources.
Collapse
Affiliation(s)
- Jinbo Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University Kunming, Kunming 650201, China
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161005, China
| | - Hongbin Pan
- Faculty of Animal Science and Technology, Yunnan Agricultural University Kunming, Kunming 650201, China
| | - Yong Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University Kunming, Kunming 650201, China
| | - Yang He
- Faculty of Animal Science and Technology, Yunnan Agricultural University Kunming, Kunming 650201, China
| | - Hongmei Shi
- Faculty of Animal Science and Technology, Yunnan Agricultural University Kunming, Kunming 650201, China
| | - Changrong Ge
- Faculty of Animal Science and Technology, Yunnan Agricultural University Kunming, Kunming 650201, China
| |
Collapse
|
6
|
Liu J, Zhao X, Dai Z, Yang P, Chen R, Guo B, Lei M, Shi Z. A Possible Mechanism for Double-Yolked Eggs in the Early Stage of Egg-Laying in Zhedong White Goose-Function of IGF1 and LHR Signaling. Animals (Basel) 2022; 12:2964. [PMID: 36359088 PMCID: PMC9654830 DOI: 10.3390/ani12212964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/14/2022] [Accepted: 10/26/2022] [Indexed: 05/06/2024] Open
Abstract
The cause of double-yolk (DY) egg production in birds is unclear, but it is related to body weight and adiposity. We explored the causes of the high proportion (up to 26%) of DY eggs in the first clutch of Zhedong white geese. We recorded the egg production of Zhedong white geese during the first egg-laying cycle and counted the proportion of DY eggs. We found that 30% of geese had 3 sets of double or triple follicles of the same diameter in the abdomen, which was close to the DY egg rate. In addition, the mRNA expression levels of the steroidogenic acute regulatory protein (StAR) and luteinizing hormone receptor (LHR) genes in granulosa cells were similar within the same set of follicles. Furthermore, the IGF1 concentration in geese that had at least 3 sets of follicles of the same diameter was significantly higher than that in birds with 0-1 set of follicles of the same diameter. Thus, we proposed that, in the first egg-laying stage of geese, high plasma concentrations of IGF1 stimulate the development of pre-hierarchal follicles and cause more than one follicle to be selected at the same time, mature at the same rate under the same gonadotrophin milieu, and ovulate at the same time to produce DY eggs.
Collapse
Affiliation(s)
- Jie Liu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Nanjing 210014, China
| | - Xingfei Zhao
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Nanjing 210014, China
| | - Zichun Dai
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Nanjing 210014, China
| | - Pengxia Yang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Nanjing 210014, China
| | - Rong Chen
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Nanjing 210014, China
| | - Binbin Guo
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Nanjing 210014, China
| | - Mingming Lei
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Nanjing 210014, China
| | - Zhendan Shi
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Nanjing 210014, China
| |
Collapse
|
7
|
Pan P, Huang X. The Clinical Application of Growth Hormone and Its Biological and Molecular Mechanisms in Assisted Reproduction. Int J Mol Sci 2022; 23:ijms231810768. [PMID: 36142677 PMCID: PMC9505823 DOI: 10.3390/ijms231810768] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Growth hormone (GH) has been used as a co-gonadotrophin in assisted reproduction, particularly in poor ovarian responders. The application of GH has been alleged to activate primordial follicles and improve oocyte quality, embryo quality, and steroidogenesis. However, the effects of GH on the live birth rate among women is controversial. Additionally, although the basic biological mechanisms that lead to the above clinical differences have been investigated, they are not yet well understood. The actions of GH are mediated by GH receptors (GHRs) or insulin-like growth factors (IGFs). GH regulates the vital signal transduction pathways that are involved in primordial follicular activation, steroidogenesis, and oocyte maturation. However, the therapeutic windows and duration of GH administration during assisted reproductive technology require further investigation. The review aimed to clarify the role of GH in human fertility from a molecular and biological point of view to provide evidence for proper GH administration.
Collapse
|
8
|
Ahmadi S, Ohkubo T. Leptin Promotes Primordial Follicle Activation by Regulating Ovarian Insulin-like Growth Factor System in Chicken. Endocrinology 2022; 163:6650339. [PMID: 35882602 DOI: 10.1210/endocr/bqac112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 11/19/2022]
Abstract
Leptin and insulin-like growth factor 1 (IGF-1) regulate follicle development and reproduction in vertebrates. This study investigated the role played by leptin and IGF-1 in primordial follicle activation in the ovary of 7-day-old chicks. Different doses of leptin were intraperitoneally administrated to female layer chicks, and further analyses were performed. While leptin administration did not affect hepatic leptin receptor (LEPR), growth hormone receptor (GHR), or IGF-1, the lower dose of leptin significantly increased the messenger RNA (mRNA) expression of IGF-1, IGF-1 receptor, and IGF-binding protein (IGFBP)-2 and attenuated anti-Müllerian hormone (AMH) gene expression in the ovary. Furthermore, the ovaries of the same age chicks were challenged with leptin and/or IGF-1 in vitro. Leptin at a lower dose increased the mRNA expression of IGF-1, LEPR, and leptin; 100 ng/mL leptin and 10 ng/mL IGF-1 alone or combined with leptin reduced IGFBP-2 mRNA expression. AMH gene expression was also reduced by all doses except 10 ng/mL leptin. Histological studies showed that a lower dose of leptin injection induced the primordial follicle growth in the ovary in vivo, and the number of primordial follicles was higher in all leptin treatments over control in vitro. Moreover, the luciferase assay revealed that leptin enhanced IGF-1 promoter activity in LEPR-expressing CHO-K1 cells. Collectively, these results indicate that leptin directly affects the IGF-1/IGFBP system and promotes primordial follicular growth in the ovary of early posthatch chicks. In addition, the follicular development by leptin-induced IGF-1 is, at least in part, caused by the suppression of AMH in the ovary.
Collapse
Affiliation(s)
- Sadequllah Ahmadi
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
- College of Agriculture, Ibaraki University, Ibaraki, Japan
| | - Takeshi Ohkubo
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
- College of Agriculture, Ibaraki University, Ibaraki, Japan
| |
Collapse
|
9
|
Francoeur L, Stephens CS, Johnson PA. Ad Libitum Feeding in Broiler Breeder Hens Alters the Transcriptome of Granulosa Cells of Pre-Hierarchal Follicles. Animals (Basel) 2021; 11:2706. [PMID: 34573672 PMCID: PMC8472788 DOI: 10.3390/ani11092706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 01/12/2023] Open
Abstract
Intense selective breeding of chickens has resulted in suboptimal egg production in broiler breeder hens. This reproductive phenotype is exacerbated by ad libitum feeding, which leads to excessive and disorganized follicular growth. One strategy used to improve broiler breeder hens' reproductive efficiency is restricted feeding. In this study, we sought to identify transcriptional changes, which translate the level of dietary intake into increased follicle selection. Broiler breeder hens (n = 16 per group) were raised according to commercial guidelines until 28 weeks of age and then randomly assigned to an ad libitum diet (FF) or continued on a restricted diet (RF) for 6 weeks. Following dietary treatment, FF hens (n = 2) with excessive follicle selection and RF hens (n = 3) with normal follicle selection were selected for RNA-sequencing. Transcriptomes of granulosa cells from 6-8-mm follicles were sequenced to identify transcriptional differences in the follicle population from which selection was made for the preovulatory stage. Differential expression analysis identified several genes known to play a role in follicle development (CYP11A1, STAR, INHA, and INHBB) that are upregulated in FF hens. These changes in gene expression suggest earlier granulosa cell differentiation and steroidogenic competency in the granulosa layer from FF hens.
Collapse
Affiliation(s)
| | | | - Patricia A. Johnson
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA; (L.F.); (C.S.S.)
| |
Collapse
|
10
|
Long noncoding RNAs profiling in ovary during laying and nesting in Muscovy ducks (Cairina moschata). Anim Reprod Sci 2021; 230:106762. [PMID: 34022609 DOI: 10.1016/j.anireprosci.2021.106762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022]
Abstract
There are recent reports of the important functions of long noncoding RNAs (lncRNAs) in female reproductive and ovarian development. Studies in which there was characterization of lncRNAs in the ovaries of laying compared with nesting poultry, however, are limited. In this study, RNA libraries were constructed by obtaining sequencing data of ovarian tissues from laying and nesting Muscovy ducks. In the ovarian tissues of Muscovy ducks, a total of 334 differentially abundant mRNA transcripts (DEGs) and 36 differentially abundant lncRNA transcripts were identified in the nesting period, when compared with during the laying period. These results were subsequently validated by qRT-PCR using nine randomly-selected lncRNAs and six randomly-selected DAMTs. Furthermore, the cis- and trans-regulatory target genes of differentially abundant lncRNA transcripts were identified, and lncRNA-gene interaction networks of 34 differentially abundant lncRNAs and 263 DEGs were constructed. A total of 7601 lncRNAs neighboring 10,542 protein-coding genes were identified and found to be enriched in the Wnt signaling pathway and oocyte meiosis pathways associated with follicular development. Overall, only 11 cis-targets and 57 mRNA-mRNA except trans-targets were involved in the lncRNA-gene interaction networks. Based on the interaction networks, nine DEGs were trans-regulated by differentially abundant lncRNAs and 20 differentially abundant lncRNAs were hypothesized to have important functions in the regulation of broodiness in Muscovy ducks. In this study, a predicted interaction network of differentially abundant lncRNAs and DEGs in Muscovy ducks was constructed for the first time leading to an enhanced understanding of lncRNA and gene interactions regulating broodiness.
Collapse
|
11
|
Baltazar-Lara R, Ávila-Mendoza J, Martínez-Moreno CG, Carranza M, Pech-Pool S, Vázquez-Martínez O, Díaz-Muñoz M, Luna M, Arámburo C. Neuroprotective Effects of Growth Hormone (GH) and Insulin-Like Growth Factor Type 1 (IGF-1) after Hypoxic-Ischemic Injury in Chicken Cerebellar Cell Cultures. Int J Mol Sci 2020; 22:ijms22010256. [PMID: 33383827 PMCID: PMC7795313 DOI: 10.3390/ijms22010256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
It has been reported that growth hormone (GH) and insulin-like growth factor 1 (IGF-1) exert protective and regenerative actions in response to neural damage. It is also known that these peptides are expressed locally in nervous tissues. When the central nervous system (CNS) is exposed to hypoxia-ischemia (HI), both GH and IGF-1 are upregulated in several brain areas. In this study, we explored the neuroprotective effects of GH and IGF-1 administration as well as the involvement of these endogenously expressed hormones in embryonic chicken cerebellar cell cultures exposed to an acute HI injury. To induce neural damage, primary cultures were first incubated under hypoxic-ischemic (<5% O2, 1g/L glucose) conditions for 12 h (HI), and then incubated under normal oxygenation and glucose conditions (HI + Ox) for another 24 h. GH and IGF-1 were added either during or after HI, and their effect upon cell viability, apoptosis, or necrosis was evaluated. In comparison with normal controls (Nx, 100%), a significant decrease of cell viability (54.1 ± 2.1%) and substantial increases in caspase-3 activity (178.6 ± 8.7%) and LDH release (538.7 ± 87.8%) were observed in the HI + Ox group. On the other hand, both GH and IGF-1 treatments after injury (HI + Ox) significantly increased cell viability (77.2 ± 4.3% and 72.3 ± 3.9%, respectively) and decreased both caspase-3 activity (118.2 ± 3.8% and 127.5 ± 6.6%, respectively) and LDH release (180.3 ± 21.8% and 261.6 ± 33.9%, respectively). Incubation under HI + Ox conditions provoked an important increase in the local expression of GH (3.2-fold) and IGF-1 (2.5-fold) mRNAs. However, GH gene silencing with a specific small-interfering RNAs (siRNAs) decreased both GH and IGF-1 mRNA expression (1.7-fold and 0.9-fold, respectively) in the HI + Ox group, indicating that GH regulates IGF-1 expression under these incubation conditions. In addition, GH knockdown significantly reduced cell viability (35.9 ± 2.1%) and substantially increased necrosis, as determined by LDH release (1011 ± 276.6%). In contrast, treatments with GH and IGF-1 stimulated a partial recovery of cell viability (45.2 ± 3.7% and 53.7 ± 3.2%) and significantly diminished the release of LDH (320.1 ± 25.4% and 421.7 ± 62.2%), respectively. Our results show that GH, either exogenously administered and/or locally expressed, can act as a neuroprotective factor in response to hypoxic-ischemic injury, and that this effect may be mediated, at least partially, through IGF-1 expression.
Collapse
Affiliation(s)
- Rosario Baltazar-Lara
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
| | - José Ávila-Mendoza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Carlos G. Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
| | - Martha Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
| | - Santiago Pech-Pool
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
| | - Olivia Vázquez-Martínez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
- Correspondence: (M.L.); (C.A.); Tel.: +52-55-5623-4066 (M.L.); +52-55-5623-4065 (C.A.); Fax: +52-55-5623-4005 (M.L. & C.A.)
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
- Correspondence: (M.L.); (C.A.); Tel.: +52-55-5623-4066 (M.L.); +52-55-5623-4065 (C.A.); Fax: +52-55-5623-4005 (M.L. & C.A.)
| |
Collapse
|
12
|
Fleming T, Balderas-Márquez JE, Epardo D, Ávila-Mendoza J, Carranza M, Luna M, Harvey S, Arámburo C, Martínez-Moreno CG. Growth Hormone Neuroprotection Against Kainate Excitotoxicity in the Retina is Mediated by Notch/PTEN/Akt Signaling. Invest Ophthalmol Vis Sci 2020; 60:4532-4547. [PMID: 31675424 DOI: 10.1167/iovs.19-27473] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose In the retina, growth hormone (GH) promotes axonal growth, synaptic restoration, and protective actions against excitotoxicity. Notch signaling pathway is critical for neural development and participates in the retinal neuroregenerative process. We investigated the interaction of GH with Notch signaling pathway during its neuroprotective effect against excitotoxic damage in the chicken retina. Methods Kainate (KA) was used as excitotoxic agent and changes in the mRNA expression of several signaling markers were determined by qPCR. Also, changes in phosphorylation and immunoreactivity were determined by Western blotting. Histology and immunohistochemistry were performed for morphometric analysis. Overexpression of GH was performed in the quail neuroretinal-derived immortalized cell line (QNR/D) cell line. Exogenous GH was administered to retinal primary cell cultures to study the activation of signaling pathways. Results KA disrupted the retinal cytoarchitecture and induced significant cell loss in several retinal layers, but the coaddition of GH effectively prevented these adverse effects. We showed that GH upregulates the Notch signaling pathway during neuroprotection leading to phosphorylation of the PI3K/Akt signaling pathways through downregulation of PTEN. In contrast, cotreatment of GH with the Notch signaling inhibitor, DAPT, prevented its neuroprotective effect against KA. We identified binding sites in Notch1 and Notch2 genes for STAT5. Also, GH prevented Müller cell transdifferentiation and downregulated Sox2, FGF2, and PCNA after cotreatment with KA. Additionally, GH modified TNF receptors immunoreactivity suggesting anti-inflammatory actions. Conclusions Our data indicate that the neuroprotective effects of GH against KA injury in the retina are mediated through the regulation of Notch signaling. Additionally, anti-inflammatory and antiproliferative effects were observed.
Collapse
Affiliation(s)
- Thomas Fleming
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México.,Department of Physiology, University of Alberta, Edmonton, Canada
| | - Jerusa E Balderas-Márquez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - David Epardo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - José Ávila-Mendoza
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| | - Martha Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Steve Harvey
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Carlos G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
13
|
Xu H, Li T, Wang Z, Adu-Asiamah P, Leng Q, Zheng J, Zhao Z, An L, Zhang X, Zhang L. Roles of chicken growth hormone receptor antisense transcript in chicken muscle development and myoblast differentiation. Poult Sci 2019; 98:6980-6988. [PMID: 31376348 PMCID: PMC8913965 DOI: 10.3382/ps/pez416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/04/2019] [Indexed: 12/20/2022] Open
Abstract
Muscle is one of the important economic traits in poultry production, and its production depends on the increased number of muscle fibers during the embryonic stage. Chicken GHR gene can transcribe in double directions, possessing not only GHR-S but also GHR-AS. The 2 kinds of transcripts are partially complementation in sequences and interact with each other. Until now, the roles and mechanisms of GHR-AS in myoblast differentiation was still unknown. In this study, we not only analyzed the GHR-AS expression patterns in myoblast differentiation phase but also clarified that GHR-AS promoted myoblast differentiation via GH-GHR-IGF1 signal pathway. Quantitative PCR analysis indicated that GHR-AS was increased during myoblast differentiation. Sub-cellular localization showed that GHR-AS and GHR-S were expressed at a higher level in the nucleus than that in the cytoplasm. The expression of MyoD and MyHC and the myoblast differentiation significantly increased after GHR-AS overexpression, while the distance between wounds decreased, suggesting that GHR-AS repressed myoblast migration and promoted differentiation. Additionally, the expression of GHR -AS, IGF1 and MyHC increased after GH protein treated, and the myoblast differentiation also increased. In conclusion, GHR-AS promoted myoblast differentiation by enhancing fusion and inhibiting migration possibly via GH-GHR-IGF1 signal pathway.
Collapse
Affiliation(s)
- H.D. Xu
- Agricultural College, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - T. Li
- Agricultural College, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Z. Wang
- Agricultural College, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - P. Adu-Asiamah
- Agricultural College, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Q.Y. Leng
- Agricultural College, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - J.H. Zheng
- Agricultural College, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Z.H. Zhao
- Agricultural College, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - L.L. An
- Agricultural College, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - X.Q. Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding, and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, PR China
| | - L. Zhang
- Agricultural College, Guangdong Ocean University, Zhanjiang 524088, PR China
- Corresponding author
| |
Collapse
|
14
|
Socha JK, Hrabia A. Response of the chicken ovary to GH treatment during a pause in laying induced by fasting. Domest Anim Endocrinol 2019; 69:84-95. [PMID: 31382237 DOI: 10.1016/j.domaniend.2019.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/27/2019] [Accepted: 05/26/2019] [Indexed: 02/03/2023]
Abstract
This study was undertaken to examine the effect of GH treatment during a pause in laying on (1) ovarian follicle formation, growth (folliculogenesis), and atresia; (2) follicle cell proliferation and apoptosis; and (3) mRNA expression of selected yolk-specific proteins in the chicken liver. A pause in egg laying was induced by food deprivation for 5 d, followed by feeding every other day, and then feeding daily from day 10 onward. Birds were divided into 3 groups: control (n = 18) fed ad libitum, subjected to a pause in laying (n = 18), and subjected to a pause in laying and injected every day with 200 μg/kg BW of chicken GH (chGH; n = 18). The liver, ovarian stroma, and follicles were isolated from the hens of each group on days 6 (ovary regression), 13 (ovary recrudescence), and 17 or 20 (ovary rejuvenated) of the experiment. The results showed that injection of chGH during fasting (1) increased the number of follicles <1 mm and proliferating cell nuclear antigen (PCNA)-positive (proliferating) cells in these follicles; (2) attenuated the expression of PCNA and survivin mRNA in the white follicles and the activity of caspases 3, 8, and 9 in the stroma and white follicles; (3) intensified the atresia of yellow hierarchical follicles; and (4) deepened the effect of starvation on egg yolk gene expression concomitantly with considerably increased IGF-1 transcription levels in the liver (P < 0.05 to P < 0.001). Prolongation of chGH injections into the refeeding period did not exert pronounced effects on the examined parameters. In summary, the results provide evidence that GH promotes the formation and development of prehierarchical follicles in the hen ovary during a pause in laying by regulating cell proliferation and apoptosis. Alterations in cell proliferation- and apoptosis-related gene expression or enzyme activity in ovarian follicles as well as the expression of egg yolk proteins in the liver after chGH treatment strongly suggest that this hormone is involved in determining the rate of regression and rejuvenation of the chicken ovary during a pause in laying.
Collapse
Affiliation(s)
- J K Socha
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Krakow, Poland
| | - A Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Krakow, Poland.
| |
Collapse
|
15
|
Xie W, Tang Z, Guo Y, Zhang C, Zhang H, Han Y, Yuan Z, Weng Q. Seasonal expressions of growth hormone receptor, insulin-like growth factor 1 and insulin-like growth factor 1 receptor in the scented glands of the muskrats (Ondatra zibethicus). Gen Comp Endocrinol 2019; 281:58-66. [PMID: 31121166 DOI: 10.1016/j.ygcen.2019.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/11/2019] [Accepted: 05/18/2019] [Indexed: 12/22/2022]
Abstract
The growth hormone (GH)/insulin-like growth factor-1 (IGF-1) system plays an important role in regulating the cellular growth and organ development. The present study investigated the seasonal expressions of growth hormone receptor (GHR), IGF-1 and insulin-like growth factor 1 receptor (IGF-1R) in the scented glands of the muskrats. Morphological changes in the scented glands of the muskrats were observed significantly between the breeding and non-breeding seasons. Immunohistochemically, the expressions of GH, GHR, IGF-1 and IGF-1R were found in glandular cells and epithelial cells of the scented glands in both seasons. The protein and mRNA expression levels of GHR, IGF-1 and IGF-1R in the scented glands during the breeding season were noticeably higher than those of the non-breeding season. In parallel, the levels of GH and IGF-1 in the sera and scented glands were remarkably higher during the breeding season. In addition, small RNA sequencing showed that the predicted targets of the significantly changed hsa-miR-5100 and mmu-miR-6937-5p might regulate the expressions of Ghr, Igf-1 or Igf-1r. These results suggested that the morphological changes in the scented glands of the muskrats during the different seasons might be related to the expression levels of GHR, IGF-1 and IGF-1R. Meanwhile, GHR/IGF-1 system might regulate the scented glandular functions via endocrine or autocrine/paracrine manners.
Collapse
Affiliation(s)
- Wenqian Xie
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zeqi Tang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuanyuan Guo
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chunjiao Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Han
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhengrong Yuan
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
16
|
Verhagen I, Laine VN, Mateman AC, Pijl A, de Wit R, van Lith B, Kamphuis W, Viitaniemi HM, Williams TD, Caro SP, Meddle SL, Gienapp P, van Oers K, Visser ME. Fine-tuning of seasonal timing of breeding is regulated downstream in the underlying neuro-endocrine system in a small songbird. ACTA ACUST UNITED AC 2019; 222:jeb.202481. [PMID: 31371403 DOI: 10.1242/jeb.202481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022]
Abstract
The timing of breeding is under selection in wild populations as a result of climate change, and understanding the underlying physiological processes mediating this timing provides insight into the potential rate of adaptation. Current knowledge on this variation in physiology is, however, mostly limited to males. We assessed whether individual differences in the timing of breeding in females are reflected in differences in candidate gene expression and, if so, whether these differences occur in the upstream (hypothalamus) or downstream (ovary and liver) parts of the neuroendocrine system. We used 72 female great tits from two generations of lines artificially selected for early and late egg laying, which were housed in climate-controlled aviaries and went through two breeding cycles within 1 year. In the first breeding season we obtained individual egg-laying dates, while in the second breeding season, using the same individuals, we sampled several tissues at three time points based on the timing of the first breeding attempt. For each tissue, mRNA expression levels were measured using qPCR for a set of candidate genes associated with the timing of reproduction and subsequently analysed for differences between generations, time points and individual timing of breeding. We found differences in gene expression between generations in all tissues, with the most pronounced differences in the hypothalamus. Differences between time points, and early- and late-laying females, were found exclusively in the ovary and liver. Altogether, we show that fine-tuning of the seasonal timing of breeding, and thereby the opportunity for adaptation in the neuroendocrine system, is regulated mostly downstream in the neuro-endocrine system.
Collapse
Affiliation(s)
- Irene Verhagen
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
| | - Veronika N Laine
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
| | - A Christa Mateman
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
| | - Agata Pijl
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
| | - Ruben de Wit
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
| | - Bart van Lith
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
| | - Willem Kamphuis
- Netherlands Institute for Neuroscience (NIN-KNAW), 1105 BA Amsterdam-Zuidoost, The Netherlands
| | - Heidi M Viitaniemi
- Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| | - Tony D Williams
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Samuel P Caro
- Departement d'Ecologie Evolutive, Centre d'Ecologie Fonctionnelle & Evolutive, 34293 Montpellier 5, France
| | - Simone L Meddle
- Department of Behavioural Neuroendocrinology, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Phillip Gienapp
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
| |
Collapse
|
17
|
Jia Y, Jing Q, Gao Y, Huang B. Involvement and expression of growth hormone/insulin-like growth factor member mRNAs in the ovarian development of turbot (Scophthalmus maximus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:955-964. [PMID: 30610408 DOI: 10.1007/s10695-018-0604-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Accumulating evidence suggests that the growth hormone (GH)/insulin-like growth factor (IGF) system participates in fish reproduction. To understand the physiological functions of the GH/IGF system, the mRNA expression profiles of all known members of the GH/IGF system, including hepatic and ovarian gh, GH receptor (ghr), IGFs (igf-i, igf-ii), IGF-I receptor (igf-ir) and IGF binding protein (igfbp1, igfbp2), pituitary gh, and hepatic vitellogenin (vtg) were investigated during ovarian development in turbot Scophthalmus maximus. Results showed that ghr, igf-i, igf-ii, igf-ir, and igfbp2 were expressed in the liver and ovary, whereas igfbp1 and gh were undetected. The hepatosomatic index (HSI) and gonadosomatic index (GSI) gradually increased and peaked during the late vitellogenesis (Latvtg) and migratory nucleus (Mig-nucl) stages, respectively. The mRNA expression profiles of ovarian ghr, igf-ii, hepatic igf-ir, vtg, and pituitary gh were similar to the HSI; ovarian igf-i and igf-ir expression was close to the GSI. However, the hepatic mRNA levels of ghr, igf-i, and igf-ii peaked at the early vitellogenesis (Evtg) stage, and then drastically declined during ovarian development. The mRNA expression of hepatic igfbp2 decreased and reached the lowest at the atresia (Atre) stage, whereas that of ovarian igfbp2 increased and peaked at Latvtg stage. Furthermore, significant correlations between pituitary gh, ovarian ghr, igf-i, and igf-ii, and hepatic ghr, igf-i, igf-ir, and igf-ii were observed, respectively. These results suggest that GH/IGF members appear to play distinct roles in the regulation of ovarian development in turbot and will be valuable for fish reproduction and broodstock management of aqua-cultured fish species.
Collapse
Affiliation(s)
- Yudong Jia
- Chinese Academy of Fishery Sciences, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Qingdao, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Qiqi Jing
- Chinese Academy of Fishery Sciences, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Qingdao, 266071, China
| | - Yunhong Gao
- Chinese Academy of Fishery Sciences, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Qingdao, 266071, China
| | - Bin Huang
- Chinese Academy of Fishery Sciences, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
18
|
Napso T, Yong HEJ, Lopez-Tello J, Sferruzzi-Perri AN. The Role of Placental Hormones in Mediating Maternal Adaptations to Support Pregnancy and Lactation. Front Physiol 2018; 9:1091. [PMID: 30174608 PMCID: PMC6108594 DOI: 10.3389/fphys.2018.01091] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
During pregnancy, the mother must adapt her body systems to support nutrient and oxygen supply for growth of the baby in utero and during the subsequent lactation. These include changes in the cardiovascular, pulmonary, immune and metabolic systems of the mother. Failure to appropriately adjust maternal physiology to the pregnant state may result in pregnancy complications, including gestational diabetes and abnormal birth weight, which can further lead to a range of medically significant complications for the mother and baby. The placenta, which forms the functional interface separating the maternal and fetal circulations, is important for mediating adaptations in maternal physiology. It secretes a plethora of hormones into the maternal circulation which modulate her physiology and transfers the oxygen and nutrients available to the fetus for growth. Among these placental hormones, the prolactin-growth hormone family, steroids and neuropeptides play critical roles in driving maternal physiological adaptations during pregnancy. This review examines the changes that occur in maternal physiology in response to pregnancy and the significance of placental hormone production in mediating such changes.
Collapse
Affiliation(s)
- Tina Napso
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Hannah E J Yong
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Jorge Lopez-Tello
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
19
|
Ávila-Mendoza J, Pérez-Rueda E, Urban-Sosa V, Carranza M, Martínez-Moreno CG, Luna M, Arámburo C. Characterization and distribution of GHRH, PACAP, TRH, SST and IGF1 mRNAs in the green iguana. Gen Comp Endocrinol 2018; 255:90-101. [PMID: 28974369 DOI: 10.1016/j.ygcen.2017.09.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/18/2017] [Accepted: 09/28/2017] [Indexed: 11/17/2022]
Abstract
The somatotropic axis (SA) regulates numerous aspects of vertebrate physiology such as development, growth, and metabolism and has influence on several tissues including neural, immune, reproductive and gastric tract. Growth hormone (GH) is a key component of SA, it is synthesized and released mainly by pituitary somatotrophs, although now it is known that virtually all tissues can express GH, which, in addition to its well-described endocrine roles, also has autocrine/paracrine/intracrine actions. In the pituitary, GH expression is regulated by several hypothalamic neuropeptides including GHRH, PACAP, TRH and SST. GH, in turn, regulates IGF1 synthesis in several target tissues, adding complexity to the system since GH effects can be exerted either directly or mediated by IGF1. In reptiles, little is known about the SA components and their functional interactions. The aim of this work was to characterize the mRNAs of the principal SA components in the green iguana and to develop the tools that allow the study of the structural and functional evolution of this system in reptiles. By employing RT-PCR and RACE, the cDNAs encoding for GHRH, PACAP, TRH, SST and IGF1 were amplified and sequenced. Results showed that these cDNAs coded for the corresponding protein precursors of 154, 170, 243, 113, and 131 amino acids, respectively. Of these, GHRH, PACAP, SST and IGF1 precursors exhibited a high structural conservation with respect to its counterparts in other vertebrates. On the other hand, iguana's TRH precursor showed 7 functional copies of mature TRH (pyr-QHP-NH2), as compared to 4 and 6 copies of TRH in avian and mammalian proTRH sequences, respectively. It was found that in addition to its primary production site (brain for GHRH, PACAP, TRH and SST, and liver for IGF1), they were also expressed in other peripheral tissues, i.e. testes and ovaries expressed all the studied mRNAs, whereas TRH and IGF1 mRNAs were observed ubiquitously in all tissues considered. These results show that the main SA components in reptiles of the Squamata Order maintain a good structural conservation among vertebrate phylogeny, and suggest important physiological interactions (endocrine, autocrine and/or paracrine) between them due to their wide peripheral tissue expression.
Collapse
Affiliation(s)
- José Ávila-Mendoza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico
| | - Ernesto Pérez-Rueda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor. 62210, Mexico; Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Mérida, Yuc. 97302, Mexico
| | - Valeria Urban-Sosa
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico
| | - Martha Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico
| | - Carlos G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico.
| |
Collapse
|