1
|
Jan K, Ahmed I, Dar NA, Farah MA, Khan FR, Shah BA. Towards a comprehensive understanding of the muscle proteome in Schizothorax labiatus: Insights from seasonal variations, metabolic responses, and reproductive signatures in the River Jhelum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170840. [PMID: 38340828 DOI: 10.1016/j.scitotenv.2024.170840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Proteomics is a very advanced technique used for defining correlations, compositions and activities of hundreds of proteins from organisms as well as effectively used in identifying particular proteins with varying peptide lengths and amino acid counts. In the present study, an endeavour has been put forth to create muscle proteome expression of snow trout, Schizothorax labiatus. Liquid chromatography-mass spectrometry (LC-MS) using label free quantification (LFQ) technique has extensively been carried out to explore changes in protein metabolism and its composition to discriminate across species, clarify functions and pinpoint protein biomarkers from organisms. In LFQ technique, the abundances of proteins are determined based on the signal intensities of their corresponding peptides in mass spectrometry. The main benefit of using this method is that it doesn't require pre-labelling proteins with isotopic tags, which streamlines the experimental procedure and gets rid of any bias that might have been caused by the labelling process. LFQ techniques frequently offer a wider dynamic range, making it possible to detect and quantify proteins over a broad range of abundances obtained from the complex biological materials including fish muscle. The results of proteomic analysis could provide an insight in understanding about how various proteins are expressed in response to environmental challenges. For proteomic study, two different weight groups of S. labiatus were taken from River Jhelum based on biological, physiological and logistical factors. These groups corresponded to different life stages, such as younger size and adults/brooders in order to capture potential variations in the muscle proteome related to growth and development. The proteomic analysis of S. labiatus depicted that an overall of 220 proteins in male and 228 in female fish of group 1 were noted. However, when male and female S. labiatus were examined based on spectral count and peptide abundance using ProteinLynx Global Software, a total of 10 downregulated and 32 upregulated proteins were found. In group 2 of S. labiatus, a total of 249 proteins in male and 301 in female fish were documented. When the two genders of S. labiatus were likened to one another by LFQ technique, a total of 41 downregulated and 06 upregulated proteins were identified. The variability in the protein numbers between two fish weight groups reflected biological differences, influenced by factors such as age, developmental stages, physiological condition and reproductive activities. During the study, it was observed that S. labiatus exhibited downregulated levels of proteins that were involved in feeding and growth. The contributing factors to this manifestation could be explained by lower feeding and metabolic activity of fish and decreased food availability during winter in River Jhelum. Contrarily, the fish immune response proteins were found to be significantly over-expressed in S. labiatus, indicating that the environment was more likely to undergo increased microbial infection, pollution load and anthropogenic activities. In addition, it was also discovered that there was an upregulated expression of the reproductive proteins in S. labiatus, which could be linked to the fish's pre-spawning time as the fish used in this study was collected in the winter season which is the pre-spawning period of the fish. Therefore, the present study would be useful in obtaining new insights regarding the molecular makeup of species, methods of adaptation and reactions to environmental stresses. This information contributes to our understanding of basic science and may have applications in environmental monitoring, conservation and preservation of fish species.
Collapse
Affiliation(s)
- Kousar Jan
- Fish Nutrition Research Laboratory, Department of Zoology, University of Kashmir, Hazratbal, Srinagar, India
| | - Imtiaz Ahmed
- Fish Nutrition Research Laboratory, Department of Zoology, University of Kashmir, Hazratbal, Srinagar, India.
| | - Nazir Ahmad Dar
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, India
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fatin Raza Khan
- Departmentof Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Basit Amin Shah
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, India
| |
Collapse
|
2
|
Liu M, Ding H, Jin C, Wang M, Li P, Bao Z, Wang B, Hu J. Theoretical Analysis and Expression Profiling of 17β-Hydroxysteroid Dehydrogenase Genes in Gonadal Development and Steroidogenesis of Leopard Coral Grouper ( Plectropomus leopardus). Int J Mol Sci 2024; 25:2180. [PMID: 38396857 PMCID: PMC10889806 DOI: 10.3390/ijms25042180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
The differentiation and developmental trajectory of fish gonads, significantly important for fish breeding, culture, and production, has long been a focal point in the fields of fish genetics and developmental biology. However, the mechanism of gonadal differentiation in leopard coral grouper (Plectropomus leopardus) remains unclear. This study investigates the 17β-Hydroxysteroid Dehydrogenase (Hsd17b) gene family in P. leopardus, with a focus on gene characterization, expression profiling, and functional analysis. The results reveal that the P. leopardus's Hsd17b gene family comprises 11 members, all belonging to the SDR superfamily. The amino acid similarity is only 12.96%, but conserved motifs, such as TGxxxGxG and S-Y-K, are present in these genes. Hsd17b12a and Hsd17b12b are unique homologs in fish, and chromosomal localization has confirmed that they are not derived from different transcripts of the same gene, but rather are two independent genes. The Hsd17b family genes, predominantly expressed in the liver, heart, gills, kidneys, and gonads, are involved in synthesizing or metabolizing sex steroid hormones and neurotransmitters, with their expression patterns during gonadal development categorized into three distinct categories. Notably, Hsd17b4 and Hsd17b12a were highly expressed in the testis and ovary, respectively, suggesting their involvement in the development of reproductive cells in these organs. Fluorescence in situ hybridization (FISH) further indicated specific expression sites for these genes, with Hsd17b4 primarily expressed in germ stem cells and Hsd17b12a in oocytes. This comprehensive study provides foundational insights into the role of the Hsd17b gene family in gonadal development and steroidogenesis in P. leopardus, contributing to the broader understanding of fish reproductive biology and aquaculture breeding.
Collapse
Affiliation(s)
- Mingjian Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (H.D.); (C.J.); (M.W.); (P.L.); (Z.B.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China
| | - Hui Ding
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (H.D.); (C.J.); (M.W.); (P.L.); (Z.B.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China
| | - Chaofan Jin
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (H.D.); (C.J.); (M.W.); (P.L.); (Z.B.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China
| | - Mingyi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (H.D.); (C.J.); (M.W.); (P.L.); (Z.B.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China
| | - Peiyu Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (H.D.); (C.J.); (M.W.); (P.L.); (Z.B.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (H.D.); (C.J.); (M.W.); (P.L.); (Z.B.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China
- Hainan Seed Industry Laboratory, Sanya 572025, China
- Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China
| | - Bo Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (H.D.); (C.J.); (M.W.); (P.L.); (Z.B.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China
- Hainan Seed Industry Laboratory, Sanya 572025, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.L.); (H.D.); (C.J.); (M.W.); (P.L.); (Z.B.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China
- Hainan Seed Industry Laboratory, Sanya 572025, China
- Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China
| |
Collapse
|
3
|
Valdivieso A, Anastasiadi D, Ribas L, Piferrer F. Development of epigenetic biomarkers for the identification of sex and thermal stress in fish using DNA methylation analysis and machine learning procedures. Mol Ecol Resour 2023; 23:453-470. [PMID: 36305237 PMCID: PMC10098837 DOI: 10.1111/1755-0998.13725] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 01/04/2023]
Abstract
The sex ratio is a key ecological demographic parameter crucial for population viability. However, the epigenetic mechanisms operating during gonadal development regulating gene expression and the sex ratio remain poorly understood. Moreover, there is interest in the development of epigenetic markers associated with a particular phenotype or as sentinels of environmental effects. Here, we profiled DNA methylation and gene expression of 10 key genes related to sex development and stress, including steroidogenic enzymes, and growth and transcription factors. We provide novel information on the sex-related differences and on the influence of elevated temperature on these genes in zebrafish, a species with mixed genetic and environmental influences on sex ratios. We identified both positive (e.g., amh, cyp11c and hsd11b2) and negative (e.g., cyp11a1 and dmrt1) correlations in unexposed males, and negative correlation (amh) in exposed females between DNA methylation and gene expression levels. Further, we combined DNA methylation analysis with machine learning procedures and found a series of informative CpGs capable not only of correctly identifying sex (based on cyp19a1a DNA methylation levels) but also of identifying whether males and females had been exposed to abnormally elevated temperature when young (based on amh and foxl2a DNA methylation levels, respectively). This was achieved in the absence of conspicuous morphological alterations of the gonads. These DNA methylation-based epigenetic biomarkers represent molecular resources that can correctly recapitulate past thermal history and pave the way for similar findings in other species to assess potential ecological effects of environmental disturbances in the context of climate change.
Collapse
Affiliation(s)
- Alejandro Valdivieso
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - Dafni Anastasiadi
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,The New Zealand Institute for Plant and Food Research Limited, Nelson, New Zealand
| | - Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
4
|
Robitaille J, Denslow ND, Escher BI, Kurita-Oyamada HG, Marlatt V, Martyniuk CJ, Navarro-Martín L, Prosser R, Sanderson T, Yargeau V, Langlois VS. Towards regulation of Endocrine Disrupting chemicals (EDCs) in water resources using bioassays - A guide to developing a testing strategy. ENVIRONMENTAL RESEARCH 2022; 205:112483. [PMID: 34863984 DOI: 10.1016/j.envres.2021.112483] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are found in every environmental medium and are chemically diverse. Their presence in water resources can negatively impact the health of both human and wildlife. Currently, there are no mandatory screening mandates or regulations for EDC levels in complex water samples globally. Bioassays, which allow quantifying in vivo or in vitro biological effects of chemicals are used commonly to assess acute toxicity in water. The existing OECD framework to identify single-compound EDCs offers a set of bioassays that are validated for the Estrogen-, Androgen-, and Thyroid hormones, and for Steroidogenesis pathways (EATS). In this review, we discussed bioassays that could be potentially used to screen EDCs in water resources, including in vivo and in vitro bioassays using invertebrates, fish, amphibians, and/or mammalians species. Strengths and weaknesses of samples preparation for complex water samples are discussed. We also review how to calculate the Effect-Based Trigger values, which could serve as thresholds to determine if a given water sample poses a risk based on existing quality standards. This work aims to assist governments and regulatory agencies in developing a testing strategy towards regulation of EDCs in water resources worldwide. The main recommendations include 1) opting for internationally validated cell reporter in vitro bioassays to reduce animal use & cost; 2) testing for cell viability (a critical parameter) when using in vitro bioassays; and 3) evaluating the recovery of the water sample preparation method selected. This review also highlights future research avenues for the EDC screening revolution (e.g., 3D tissue culture, transgenic animals, OMICs, and Adverse Outcome Pathways (AOPs)).
Collapse
Affiliation(s)
- Julie Robitaille
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), Quebec City, QC, Canada
| | | | - Beate I Escher
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Vicki Marlatt
- Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | | | - Thomas Sanderson
- Centre Armand-Frappier Santé Biotechnologie, INRS, Laval, QC, Canada
| | | | - Valerie S Langlois
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), Quebec City, QC, Canada.
| |
Collapse
|
5
|
Noëmie G, Béatrice G, Virginie C, Isabelle C, Fabien P, Patrice G, Olivier S. Multigenerational exposure to gamma radiation affects offspring differently over generations in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 244:106101. [PMID: 35123208 DOI: 10.1016/j.aquatox.2022.106101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 01/16/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Mutigenerational studies are now of great interest in ecotoxicology and previous studies have shown the importance of conducting multigenerational studies when assessing radiation toxicity in fish. In our study, the first objective was to study the early life stages (embryo-larval stages) and critical functions such as reproduction (which are generally studied in the context of ecological risk assessment (ERA)), in order to assess the sensitivity of zebrafish to ionizing radiation. The second objective was to assess acquisition of phenotypic effects at select life stages over generations. To our knowledge, this was the first time that irradiation of zebrafish (0.05 and 5 mGy.h-1) up to generation F2 was maintained with the following two exposure conditions: (1) recovery, only F0 genitors were irradiated and the progeny were placed in control condition, (2) irradiated condition, all generations were exposed. Multigenerational irradiation affected F1 parental reproductive capacity (reproductive success) mainly over the first reproductive cycle (104d) and larval survival rate. Unexpected yet significant effects on sex ratio were observed in F1 progeny after parental irradiation (mainly at 5 mGy.h-1). These effects were observed for both conditions -irradiated and recovery- suggesting transmitted effects from F0 genitors to offspring. All studied life stages were affected by ionizing radiation (IR), suggesting an alteration of vital physiological functions (reproduction and sexual determination). Such results highlight the hypothesis that IR affects population dynamics. In addition, the clear evidence of transmitted effects suggests worsening of effects at the population scale over generations. This approach is closer to environmental conditions to assess wild population fate, and thus highlights the importance of multigenerational studies to support ERA of ionizing radiation in fish.
Collapse
Affiliation(s)
- Guirandy Noëmie
- IRSN/PSE-ENV/SRTE/LECO, Centre de Cadarache, B.P. 3 - Bat 183, St Paul Lez Durance 13115, France.
| | - Gagnaire Béatrice
- IRSN/PSE-ENV/SRTE/LECO, Centre de Cadarache, B.P. 3 - Bat 183, St Paul Lez Durance 13115, France
| | - Camilleri Virginie
- IRSN/PSE-ENV/SRTE/LECO, Centre de Cadarache, B.P. 3 - Bat 183, St Paul Lez Durance 13115, France
| | - Cavalié Isabelle
- IRSN/PSE-ENV/SRTE/LECO, Centre de Cadarache, B.P. 3 - Bat 183, St Paul Lez Durance 13115, France
| | - Pierron Fabien
- UMR EPOC CNRS 5805, Place du Docteur Bertrand Peyneau, Arcachon 33120, France
| | - Gonzalez Patrice
- UMR EPOC CNRS 5805, Place du Docteur Bertrand Peyneau, Arcachon 33120, France
| | - Simon Olivier
- IRSN/PSE-ENV/SRTE/LECO, Centre de Cadarache, B.P. 3 - Bat 183, St Paul Lez Durance 13115, France
| |
Collapse
|
6
|
Risalde MA, Molina AM, Lora AJ, Ayala N, Gómez-Villamandos JC, Moyano MR. Immunohistochemical expression of aromatase cyp19a1a and cyp19a1b in the ovary and brain of zebrafish (Danio rerio) exposed to different concentrations of bisphenol A. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105876. [PMID: 34120034 DOI: 10.1016/j.aquatox.2021.105876] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/17/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is used to produce plastic and plastic derived products in multitude of daily utensils, being one of the industrial compounds most widely used. This endocrine disrupting chemical (EDCs) is a well-known environmental pollutant released into the aquatic environment from industrial wastewater, sewage sludge or landfill leachate. Aromatases are considered potential targets of EDCs with characteristics that make them suitable biomarkers of exposure to their effects. The main objective of our study was to evaluate the expression of cyp19a aromatase as a toxicological endpoint after BPA exposure through the identification and assessment of alterations of the main cells responsible for cyp19a1a and cyp19a1b expression in the zebrafish ovary and brain using different concentrations of BPA in water. Immunohistochemistry was used to analyze the expression of these enzymes in female zebrafish exposed and not exposed to different concentrations of BPA (1, 10, 100 and 1000 μg / L) in water (n = 6/group) for 14 days. The results obtained in this study showed that the cyp19a aromatase system, involved in the synthesis of steroid compounds, is specially located in distinct oocyte stages in the ovary (cyp19a1a) and in radial glial cells of the brain (cyp19a1b). An overexpression of these aromatases was observed after BPA exposure in zebrafish, peaking from a concentration of 10 µg/L and showing to be good biomarkers of exposure to identify the early effects of low BPA concentrations. To our knowledge, this study is the first to localize and quantify the expression of cyp19a1a and cyp19a1b in the cells of brain and ovary after fish exposure to different BPA concentrations in water.
Collapse
Affiliation(s)
- Maria A Risalde
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. Facultad de Veterinaria. Universidad de Córdoba (UCO), Campus de Rabanales, 14014 Córdoba, Spain; Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofía, Universidad de Córdoba (UCO), 14004 Córdoba, Spain
| | - Ana Mª Molina
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. Facultad de Veterinaria. Universidad de Córdoba (UCO), Campus de Rabanales, 14014 Córdoba, Spain.
| | - Antonio J Lora
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. Facultad de Veterinaria. Universidad de Córdoba (UCO), Campus de Rabanales, 14014 Córdoba, Spain
| | - Nahum Ayala
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. Facultad de Veterinaria. Universidad de Córdoba (UCO), Campus de Rabanales, 14014 Córdoba, Spain.
| | - Jose C Gómez-Villamandos
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. Facultad de Veterinaria. Universidad de Córdoba (UCO), Campus de Rabanales, 14014 Córdoba, Spain
| | - Mª Rosario Moyano
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. Facultad de Veterinaria. Universidad de Córdoba (UCO), Campus de Rabanales, 14014 Córdoba, Spain
| |
Collapse
|
7
|
Yang W, Wang W, Jing L, Chen SL. Label-free photoacoustic microscopy: a potential tool for the live imaging of blood disorders in zebrafish. BIOMEDICAL OPTICS EXPRESS 2021; 12:3643-3657. [PMID: 34221685 PMCID: PMC8221952 DOI: 10.1364/boe.425994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 05/29/2023]
Abstract
The zebrafish has emerged as a useful model for human hematological disorders. Transgenic zebrafish that express green fluorescence protein (GFP) in red blood cells (RBCs) visualized by fluorescence microscopy (FLM) is a fundamental approach in such studies to understand the cellular processes and biological functions. However, additional and cumbersome efforts are required to breed a transgenic zebrafish line with reliable GFP expression. Further, the yolk autofluorescence and finite GFP fluorescence lifetimes also have an adverse impact on the observation of target signals. Here, we investigate the identification of intracerebral hemorrhage (ICH) and hemolytic anemia (HA) in zebrafish embryos using label-free photoacoustic microscopy (PAM) for imaging. First, ICH and HA in transgenic LCR-EGFP zebrafish are mainly studied by PAM and FLM. The results show that PAM is comparable to FLM in good identification of ICH and HA. Besides, PAM is more advantageous in circumventing the issue of autofluorescence. Secondly, ICH and HA in the transparent casper zebrafish without fluorescent labeling are imaged by PAM and bright-field microscopy (BFM). Because of the high contrast to reveal RBCs, PAM obviously outperforms BFM in the identification of both ICH and HA. Note that FLM cannot observe casper zebrafish due to its lack of fluorescent labeling. Our work proves that PAM can be a useful tool to study blood disorders in zebrafish, which has advantages: (i) Reliable results enabled by intrinsic absorption of RBCs; (ii) wide applicability to zebrafish strains (no requirement of a transgene); (iii) high sensitivity in identification of ICH and HA compared with BFM.
Collapse
Affiliation(s)
- Wenzhao Yang
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- These authors contributed equally to this work
| | - Wei Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- These authors contributed equally to this work
| | - Lili Jing
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sung-Liang Chen
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education, Shanghai 200030, China
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Improving the sexual activity and reproduction of female zebrafish with high testosterone levels. Sci Rep 2021; 11:3822. [PMID: 33589678 PMCID: PMC7884839 DOI: 10.1038/s41598-021-83085-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
High levels of testosterone cause clinical symptoms in female reproduction and possibly, alterations in sexuality. Yet, the underlying mechanisms remain to be examined. Here, we report a study that investigates the effects of testosterone in follicle development and sexual mating using zebrafish models. We developed an acute zebrafish model with high testosterone levels by exposing young female zebrafish to testosterone dissolved in swimming water. After given a high concentration of testosterone treatment (e.g., 100 ng/ml), the fish showed hallmark pathological symptoms similar to those displayed in patients with polycystic ovary syndrome (PCOS), such as follicular growth-arrest, rare ovulation, ovary enlargement, decrease in reproduction, and down regulation of the expression of some PCOS susceptible genes, such as Tox3. These fish are referred to as the PCOS fish. By monitoring mating-like swimming behaviors, we measured the sexual activity of PCOS zebrafish. In general, the PCOS fish showed no desire to interact with males. As a consequence, their mating rate was decreased as compared to control animals. The sexuality levels of PCOS fish, however, could be improved after short periods of rearing in conditions that lack of males. After only 3 days of rearing alone, the PCOS fish showed an increase in sexuality levels and displayed characteristic swimming patterns for mating. After 30 days of separation from males, not only the sexual activity, but also the mating rate was improved in the PCOS fish. Together, the data suggests that zebrafish can serve as a new type of research model to further develop strategies for the treatment of reproductive disorders, such as those related to PCOS.
Collapse
|
9
|
Nagahama Y, Chakraborty T, Paul-Prasanth B, Ohta K, Nakamura M. Sex determination, gonadal sex differentiation, and plasticity in vertebrate species. Physiol Rev 2020; 101:1237-1308. [PMID: 33180655 DOI: 10.1152/physrev.00044.2019] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A diverse array of sex determination (SD) mechanisms, encompassing environmental to genetic, have been found to exist among vertebrates, covering a spectrum from fixed SD mechanisms (mammals) to functional sex change in fishes (sequential hermaphroditic fishes). A major landmark in vertebrate SD was the discovery of the SRY gene in 1990. Since that time, many attempts to clone an SRY ortholog from nonmammalian vertebrates remained unsuccessful, until 2002, when DMY/dmrt1by was discovered as the SD gene of a small fish, medaka. Surprisingly, however, DMY/dmrt1by was found in only 2 species among more than 20 species of medaka, suggesting a large diversity of SD genes among vertebrates. Considerable progress has been made over the last 3 decades, such that it is now possible to formulate reasonable paradigms of how SD and gonadal sex differentiation may work in some model vertebrate species. This review outlines our current understanding of vertebrate SD and gonadal sex differentiation, with a focus on the molecular and cellular mechanisms involved. An impressive number of genes and factors have been discovered that play important roles in testicular and ovarian differentiation. An antagonism between the male and female pathway genes exists in gonads during both sex differentiation and, surprisingly, even as adults, suggesting that, in addition to sex-changing fishes, gonochoristic vertebrates including mice maintain some degree of gonadal sexual plasticity into adulthood. Importantly, a review of various SD mechanisms among vertebrates suggests that this is the ideal biological event that can make us understand the evolutionary conundrums underlying speciation and species diversity.
Collapse
Affiliation(s)
- Yoshitaka Nagahama
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Faculty of Biological Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Tapas Chakraborty
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan.,Karatsu Satellite of Aqua-Bioresource Innovation Center, Kyushu University, Karatsu, Japan
| | - Bindhu Paul-Prasanth
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidapeetham, Kochi, Kerala, India
| | - Kohei Ohta
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan
| | - Masaru Nakamura
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.,Research Center, Okinawa Churashima Foundation, Okinawa, Japan
| |
Collapse
|
10
|
De Oliveira J, Chadili E, Piccini B, Turies C, Maillot-Maréchal E, Palluel O, Pardon P, Budzinski H, Cousin X, Brion F, Hinfray N. Refinement of an OECD test guideline for evaluating the effects of endocrine disrupting chemicals on aromatase gene expression and reproduction using novel transgenic cyp19a1a-eGFP zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 220:105403. [PMID: 31927064 DOI: 10.1016/j.aquatox.2020.105403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/12/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Transgenic fish are powerful models that can provide mechanistic information regarding the endocrine activity of test chemicals. In this study, our objective was to use a newly developed transgenic zebrafish line expressing eGFP under the control of the cyp19a1a promoter in the OECD Fish Short Term Reproduction Assay (TG 229) to provide additional mechanistic information on tested substances. For this purpose, we exposed adult transgenic zebrafish to a reference substance of the TG 229, i.e. prochloraz (PCZ; 1.7, 17.2 and 172.6 μg/L). In addition to "classical" endpoints used in the TG 229 (reproductive outputs, vitellogenin), the fluorescence intensity of the ovaries was monitored at 4 different times of exposure using in vivo imaging. Our data revealed that 172.6 μg/L PCZ significantly decreased the number of eggs laid per female per day and the concentrations of vitellogenin in females, reflecting the decreasing E2 synthesis due to the inhibition of the ovarian aromatase activities. At 7 and 14 days, GFP intensities in ovaries were similar over the treatment groups but significantly increased after 21 days at 17.2 and 172.6 μg/L. A similar profile was observed for the endogenous cyp19a1a expression measured by qPCR thereby confirming the reliability of the GFP measurement for assessing aromatase gene expression. The overexpression of the cyp19a1a gene likely reflects a compensatory response to the inhibitory action of PCZ on aromatase enzymatic activities. Overall, this study illustrates the feasibility of using the cyp19a1a-eGFP transgenic line for assessing the effect of PCZ in an OECD test guideline while providing complementary information on the time- and concentration-dependent effects of the compound, without disturbing reproduction of fish. The acquisition of this additional mechanistic information on a key target gene through in vivo fluorescence imaging of the ovaries was realized without increasing the number of individuals.
Collapse
Affiliation(s)
- Julie De Oliveira
- INERIS, Unité d'écotoxicologie in vitro et in vivo, UMR I-02 SEBIO, Verneuil-en-Halatte, France
| | - Edith Chadili
- INERIS, Unité d'écotoxicologie in vitro et in vivo, UMR I-02 SEBIO, Verneuil-en-Halatte, France
| | - Benjamin Piccini
- INERIS, Unité d'écotoxicologie in vitro et in vivo, UMR I-02 SEBIO, Verneuil-en-Halatte, France
| | - Cyril Turies
- INERIS, Unité d'écotoxicologie in vitro et in vivo, UMR I-02 SEBIO, Verneuil-en-Halatte, France
| | | | - Olivier Palluel
- INERIS, Unité d'écotoxicologie in vitro et in vivo, UMR I-02 SEBIO, Verneuil-en-Halatte, France
| | - Patrick Pardon
- University of Bordeaux, LPTC, UMR EPOC, Bordeaux, France
| | | | - Xavier Cousin
- IFREMER, L3AS, UMR MARBEC, Palavas-les-Flots, France; INRA, UMR GABI, AgroParisTech, University Paris-Saclay, Jouy-en-Josas, France
| | - François Brion
- INERIS, Unité d'écotoxicologie in vitro et in vivo, UMR I-02 SEBIO, Verneuil-en-Halatte, France
| | - Nathalie Hinfray
- INERIS, Unité d'écotoxicologie in vitro et in vivo, UMR I-02 SEBIO, Verneuil-en-Halatte, France.
| |
Collapse
|
11
|
Sun A, Zhu H, Dong Y, Wang W, Hu HX. Establishment of a novel testicular cell line from sterlet Acipenser ruthenus and evaluation of its applications. JOURNAL OF FISH BIOLOGY 2019; 94:804-809. [PMID: 30484862 DOI: 10.1111/jfb.13855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/24/2018] [Indexed: 06/09/2023]
Abstract
In this study, a cell line, designated as Acipenser ruthenus testis (ART), was successfully established from testis tissues of the sterlet Acipenser ruthenus and characterized by studying and comparing the expression of specific genes between the cell line and the parent gonad tissues. The results suggested that the developed ART cell line was composed of a mixture of germ cells and somatic cells. Ploidy analysis indicated that the cell line exhibited a high degree of genetic stability and that the cells remained in a good proliferating state after being subcultured to passage 80.
Collapse
Affiliation(s)
- Ai Sun
- Beijing Fisheries Research Institute & National Freshwater Fisheries Engineering Technology Research Center, Ministry of Science and Technology of China, Lab of Biological Technology and Breeding, Beijing Key Laboratory of Fishery Biotechnology, Beijing, China
| | - Hua Zhu
- Beijing Fisheries Research Institute & National Freshwater Fisheries Engineering Technology Research Center, Ministry of Science and Technology of China, Lab of Biological Technology and Breeding, Beijing Key Laboratory of Fishery Biotechnology, Beijing, China
| | - Ying Dong
- Beijing Fisheries Research Institute & National Freshwater Fisheries Engineering Technology Research Center, Ministry of Science and Technology of China, Lab of Biological Technology and Breeding, Beijing Key Laboratory of Fishery Biotechnology, Beijing, China
| | - Wei Wang
- Beijing Fisheries Research Institute & National Freshwater Fisheries Engineering Technology Research Center, Ministry of Science and Technology of China, Lab of Biological Technology and Breeding, Beijing Key Laboratory of Fishery Biotechnology, Beijing, China
| | - Hong Xia Hu
- Beijing Fisheries Research Institute & National Freshwater Fisheries Engineering Technology Research Center, Ministry of Science and Technology of China, Lab of Biological Technology and Breeding, Beijing Key Laboratory of Fishery Biotechnology, Beijing, China
| |
Collapse
|
12
|
Zheng Y, Yuan J, Meng S, Chen J, Gu Z. Testicular transcriptome alterations in zebrafish (Danio rerio) exposure to 17β-estradiol. CHEMOSPHERE 2019; 218:14-25. [PMID: 30465971 DOI: 10.1016/j.chemosphere.2018.11.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/11/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
The hormone 17β-estradiol (E2) can be found in rivers, effluents, and even drinking water. Researches have demonstrated that E2 affects various metabolic pathways through gene activation and may cause reproductive toxicity in fish. Therefore, the aim of this study was to evaluate E2-induced toxicity via testicular transcriptome of zebrafish (Danio rerio) exposed to different concentrations (10 ng L-1, and 100 ng L-1) of E2. A total of >600 significant differentially expressed genes (DEGs) were enriched among the three treatments. Short time-series expression miner analysis revealed five KEGG pathways including drug metabolism, other enzymes, calcium signaling pathway, ECM-receptor interaction, gap junction, and cell adhesion molecules. Twenty genes were selected to verify the accuracy of RNA-Seq. Other reported genes related to sex differentiation, development, energy metabolism, and other processes were found. One set of genes significantly increased/decreased/fluctuated over time, especially 12 h after E2 exposure. Genes associated with ovaries (zp3c), and development (bmp15, gdf9, and sycp2l) were significantly upregulated with increasing E2 concentration. E2 and testosterone was significantly decreased by 10 (except for T) and 100 ng L-1 E2 exposure at 12 h. The current study demonstrated that sex differentiation, development, energy metabolism, immunity, and ribosome biogenesis in male zebrafish were all significantly affected by 17β-estradiol exposure through transcriptional alterations.
Collapse
Affiliation(s)
- Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River/Wuxi Fishery College, Nanjing Agricultural University, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, China
| | - Julin Yuan
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Shunlong Meng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River/Wuxi Fishery College, Nanjing Agricultural University, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, China
| | - Jiazhang Chen
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River/Wuxi Fishery College, Nanjing Agricultural University, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, 100039, China.
| | - Zhimin Gu
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China.
| |
Collapse
|
13
|
Huang M, Chen J, Liu Y, Chen H, Yu Z, Ye Z, Peng C, Xiao L, Zhao M, Li S, Lin H, Zhang Y. New Insights Into the Role of Follicle-Stimulating Hormone in Sex Differentiation of the Protogynous Orange-Spotted Grouper, Epinephelus coioides. Front Endocrinol (Lausanne) 2019; 10:304. [PMID: 31156554 PMCID: PMC6529513 DOI: 10.3389/fendo.2019.00304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/29/2019] [Indexed: 11/13/2022] Open
Abstract
Follicle-stimulating hormone (FSH) signaling is considered to be essential for early gametogenesis in teleosts, but its functional roles during sex differentiation are largely unknown. In this study, we investigated the effects of long-term and short-term FSH injection on sex differentiation in the protogynous orange-spotted grouper (Epinephelus coioides). Long-term FSH treatment initially promoted the formation of ovaries but subsequently induced a male fate. The expression of female pathway genes was initially increased but then decreased, whereas the expression of male pathway genes was up-regulated only during long-term FSH treatment. The genes related to the synthesis of sex steroid hormones, as well as serum 11-ketotestosterone and estradiol, were also up-regulated during long-term FSH treatment. Short-term FSH treatment activated genes in the female pathway (especially cyp19a1a) at low doses but caused inhibition at high doses. Genes in the male pathway were up-regulated by high concentrations of FSH over the short term. Finally, we found that low, but not high, concentrations of FSH treatment activated cyp19a1a promoter activities in human embryonic kidney (HEK) 293 cells. Overall, our data suggested that FSH may induce ovarian differentiation or a change to a male sex fate in the protogynous orange-spotted grouper, and that these processes occurred in an FSH concentration-dependent manner.
Collapse
Affiliation(s)
- Minwei Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, China
| | - Jiaxing Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yun Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Huimin Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zeshu Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhifeng Ye
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Cheng Peng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Ling Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Mi Zhao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China
- *Correspondence: Shuisheng Li
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China
- Yong Zhang
| |
Collapse
|
14
|
Weger M, Weger BD, Görling B, Poschet G, Yildiz M, Hell R, Luy B, Akcay T, Güran T, Dickmeis T, Müller F, Krone N. Glucocorticoid deficiency causes transcriptional and post-transcriptional reprogramming of glutamine metabolism. EBioMedicine 2018; 36:376-389. [PMID: 30266295 PMCID: PMC6197330 DOI: 10.1016/j.ebiom.2018.09.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 01/12/2023] Open
Abstract
Background Deficient glucocorticoid biosynthesis leading to adrenal insufficiency is life-threatening and is associated with significant co-morbidities. The affected pathways underlying the pathophysiology of co-morbidities due to glucocorticoid deficiency remain poorly understood and require further investigation. Methods To explore the pathophysiological processes related to glucocorticoid deficiency, we have performed global transcriptional, post-transcriptional and metabolic profiling of a cortisol-deficient zebrafish mutant with a disrupted ferredoxin (fdx1b) system. Findings fdx1b−/− mutants show pervasive reprogramming of metabolism, in particular of glutamine-dependent pathways such as glutathione metabolism, and exhibit changes of oxidative stress markers. The glucocorticoid-dependent post-transcriptional regulation of key enzymes involved in de novo purine synthesis was also affected in this mutant. Moreover, fdx1b−/− mutants exhibit crucial features of primary adrenal insufficiency, and mirror metabolic changes detected in primary adrenal insufficiency patients. Interpretation Our study provides a detailed map of metabolic changes induced by glucocorticoid deficiency as a consequence of a disrupted ferredoxin system in an animal model of adrenal insufficiency. This improved pathophysiological understanding of global glucocorticoid deficiency informs on more targeted translational studies in humans suffering from conditions associated with glucocorticoid deficiency. Fund Marie Curie Intra-European Fellowships for Career Development, HGF-programme BIFTM, Deutsche Forschungsgemeinschaft, BBSRC.
Collapse
Affiliation(s)
- Meltem Weger
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Benjamin D Weger
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Benjamin Görling
- Institute for Organic Chemistry and Institute for Biological Interfaces 4 - Magnetic Resonance, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Melek Yildiz
- Kanuni Sultan Süleyman Education and Research Hospital, Küçükçekmece, Istanbul, Turkey
| | - Rüdiger Hell
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Burkhard Luy
- Institute for Organic Chemistry and Institute for Biological Interfaces 4 - Magnetic Resonance, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Teoman Akcay
- Istinye University Gaziosmanpasa Medical Park Hospital Gaziosmanpasa, Istanbul, Turkey
| | - Tülay Güran
- Marmara University, Department of Pediatric Endocrinology and Diabetes, Pendik, Istanbul, Turkey
| | - Thomas Dickmeis
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Nils Krone
- Department of Oncology & Metabolism, University of Sheffield, Sheffield S10 2TH, UK; Department of Biomedical Science, The Bateson Centre, Firth Court, Western Bank, Sheffield S10 2TN, UK..
| |
Collapse
|
15
|
Crowder CM, Lassiter CS, Gorelick DA. Nuclear Androgen Receptor Regulates Testes Organization and Oocyte Maturation in Zebrafish. Endocrinology 2018; 159:980-993. [PMID: 29272351 PMCID: PMC5788001 DOI: 10.1210/en.2017-00617] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/07/2017] [Indexed: 12/12/2022]
Abstract
Androgens act through the nuclear androgen receptor (AR) to regulate gonad differentiation and development. In mice, AR is necessary for spermatogenesis, testis development, and formation of external genitalia in males and oocyte maturation in females. However, the extent to which these phenotypes are conserved in nonmammalian vertebrates is not well understood. Here, we generate zebrafish with a mutation in the ar gene (aruab105/105) and examine the role of AR in sexual determination and gonad development. We found that zebrafish AR regulates male sexual determination, because the majority of aruab105/105 mutant embryos developed ovaries and displayed female secondary sexual characteristics. The small percentage of mutants that developed testes displayed female secondary sexual characteristics, exhibited structurally disorganized testes, and were unable to release or produce normal levels of sperm, demonstrating that AR is necessary for zebrafish testis development and fertility. In females, we found that AR regulates oocyte maturation and fecundity. The aruab105/105 mutant females developed ovaries filled primarily with immature stage I oocytes and few mature stage III oocytes. Two genes whose expression is enriched in wild-type ovaries compared with testes (cyp19a1a, foxl2a) were upregulated in ar mutant testes, and two genes enriched in testes (amh, dmrt1) were upregulated in ar mutant ovaries. These findings demonstrate that AR regulates sexual determination, testis development, and oocyte maturation and suggest that AR regulates sexually dimorphic gene expression. The ar mutant we developed will be useful for modeling human endocrine function in zebrafish.
Collapse
Affiliation(s)
- Camerron M. Crowder
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | | | - Daniel A. Gorelick
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|