1
|
Accustomed to the heat: Temperature and thyroid hormone influences on oogenesis and gonadal steroidogenesis pathways vary among populations of Amargosa pupfish (Cyprinodon nevadensis amargosae). Comp Biochem Physiol A Mol Integr Physiol 2022; 272:111280. [PMID: 35902003 DOI: 10.1016/j.cbpa.2022.111280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022]
Abstract
Many fish experience diminished reproductive performance under atypically high or prolonged elevations of temperature. Such high temperature inhibition of reproduction comes about in part from altered stimulation of gametogenesis by the hypothalamic-pituitary-gonadal (HPG) endocrine axis. Elevated temperatures have also been shown to affect thyroid hormone (TH) signaling, and altered TH status under high temperatures may impact gametogenesis via crosstalk with HPG axis pathways. Here, we examined effects of temperature and 3'-triiodo-L-thyronine (T3) on pathways for gonadal steroidogenesis and gametogenesis in Amargosa pupfish (Cyprinodon nevadensis amargosae) from two allopatric populations: 1) the Amargosa River - a highly variable temperature habitat, and 2) Tecopa Bore - an invariably warm groundwater-fed marsh. These populations were previously shown to differ in TH signaling profiles both in the wild and under common laboratory conditions. Sexually-mature pupfish from each population were maintained at 24 °C or 34 °C for 88 days, after which a subset of fish was treated with T3 for 18-24 h. In both populations, mRNA abundances for follicle-stimulating hormone receptor and luteinizing hormone receptor were higher in the ovary and testis at 24 °C compared to 34 °C. Females from Tecopa Bore - but not from the Amargosa River - also had greater ovarian transcript abundances for steroidogenic enzymes cytochrome P450 aromatase, 3β-hydroxysteroid dehydrogenase, and 17β-hydroxysteroid dehydrogenase at 24 °C compared to 34 °C, as well as higher liver mRNA levels of vitellogenins and choriogenins at cooler temperature. Transcript abundances for estrogen receptors esr1, esr2a, and esr2b were reduced at 34 °C in Amargosa River females, but not in Tecopa Bore females. T3 augmented gonadal gene transcript levels for steroid acute regulatory protein (StAR) transporter in both sexes and populations. T3 also downregulated liver estrogen receptor mRNAs in females from the warmer Tecopa Bore habitat only, suggesting T3 modulation of liver E2 sensitivity as a possible mechanism whereby temperature-induced changes in TH status may contribute to shifts in thermal sensitivity for oogenesis.
Collapse
|
2
|
Zhou G, Yang M, Chai J, Sun R, Zhang J, Huang H, Zhang Y, Deng Q, Jiang L, Ba Y. Preconception ambient temperature and preterm birth: a time-series study in rural Henan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9407-9416. [PMID: 33145731 DOI: 10.1007/s11356-020-11457-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Changes in the preconception ambient temperature (PAT) can affect the gametogenesis, disturbing the development of the embryo, but the health risks of PAT on the developing fetus are still unclear. Here, based on the National Free Preconception Health Examination Project in the rural areas of Henan Province, we evaluate the effects of PAT on preterm birth (PTB). Data of 1,231,715 records from self-reported interviews, preconception physical examination, early gestation follow-up, and postpartum follow-up were collected from 1 January 2013 to 31 December 2016. Generalized additive models were used to assess the cumulative and lag effects of PAT upon PTB. The significant cumulative effects of mean temperature within 2 weeks and 3 weeks on the risk of PTB, especially upon late PTB (34-36 weeks) (P < 0.05), were observed. Exposure to extreme heat (> 90th percentile) within 2 weeks (RR = 1.470) and 3 weeks (RR = 1.375) before conception could increase the risk of PTB. After stratifying PTB, exposure to extreme heat within 2 weeks before conception can increase the risks of early (< 34 weeks) and late PTB (P < 0.05). Besides, exposure to extreme cold (< 10th percentile) within 3 weeks or longer before conception can elevate the risk of PTB, especially late PTB. The significant lag effects of temperature changes on the risk of early PTB (lag-8 days or earlier) were observed. In conclusion, the risk of PTB was susceptible to PAT changes within 2 weeks or longer before conception. Our findings provide (i) guidance for rural couples to make pregnancy plans and (ii) scientific evidence for the government to formulate policies to prevent PTB.
Collapse
Affiliation(s)
- Guoyu Zhou
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- Yellow River Institute for Ecological Protection & Regional Coordinated Development, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Meng Yang
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Jian Chai
- National Health Commission Key Laboratory of Birth Defects Prevention, Zhengzhou, 450002, Henan, People's Republic of China
- Key Laboratory of Population Defects Prevention, Henan Provincial Research, Zhengzhou, 450002, Henan, People's Republic of China
- Henan Institute of Reproduction Health Science and Technology, Zhengzhou, 450002, Henan, People's Republic of China
| | - Renjie Sun
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Junxi Zhang
- National Health Commission Key Laboratory of Birth Defects Prevention, Zhengzhou, 450002, Henan, People's Republic of China
- Key Laboratory of Population Defects Prevention, Henan Provincial Research, Zhengzhou, 450002, Henan, People's Republic of China
- Henan Institute of Reproduction Health Science and Technology, Zhengzhou, 450002, Henan, People's Republic of China
| | - Hui Huang
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yawei Zhang
- Department of Environment Health Science, Yale University School of Public Health, New Haven, CT, USA
| | - Qihong Deng
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- School of Energy Science and Engineering, Xiangya School of Public Health, Central South University, Changsha, 410083, Hunan, People's Republic of China
| | - Lifang Jiang
- National Health Commission Key Laboratory of Birth Defects Prevention, Zhengzhou, 450002, Henan, People's Republic of China.
- Key Laboratory of Population Defects Prevention, Henan Provincial Research, Zhengzhou, 450002, Henan, People's Republic of China.
- Henan Institute of Reproduction Health Science and Technology, Zhengzhou, 450002, Henan, People's Republic of China.
| | - Yue Ba
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- Yellow River Institute for Ecological Protection & Regional Coordinated Development, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
3
|
Alix M, Kjesbu OS, Anderson KC. From gametogenesis to spawning: How climate-driven warming affects teleost reproductive biology. JOURNAL OF FISH BIOLOGY 2020; 97:607-632. [PMID: 32564350 DOI: 10.1111/jfb.14439] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/05/2020] [Accepted: 06/18/2020] [Indexed: 05/17/2023]
Abstract
Ambient temperature modulates reproductive processes, especially in poikilotherms such as teleosts. Consequently, global warming is expected to impact the reproductive function of fish, which has implications for wild population dynamics, fisheries and aquaculture. In this extensive review spanning tropical and cold-water environments, we examine the impact of higher-than-optimal temperatures on teleost reproductive development and physiology across reproductive stages, species, generations and sexes. In doing so, we demonstrate that warmer-than-optimal temperatures can affect every stage of reproductive development from puberty through to the act of spawning, and these responses are mediated by age at spawning and are associated with changes in physiology at multiple levels of the brain-pituitary-gonad axis. Response to temperature is often species-specific and changes with environmental history/transgenerational conditioning, and the amplitude, timing and duration of thermal exposure within a generation. Thermally driven changes to physiology, gamete development and maturation typically culminate in poor sperm and oocyte quality, and/or advancement/delay/inhibition of ovulation/spermiation and spawning. Although the field of teleost reproduction and temperature is advanced in many respects, we identify areas where research is lacking, especially for males and egg quality from "omics" perspectives. Climate-driven warming will continue to disturb teleost reproductive performance and therefore guide future research, especially in the emerging areas of transgenerational acclimation and epigenetic studies, which will help to understand and project climate change impacts on wild populations and could also have implications for aquaculture.
Collapse
Affiliation(s)
- Maud Alix
- Institute of Marine Research, Bergen, Norway
| | | | - Kelli C Anderson
- Institute for Marine and Antarctic Studies, University of Tasmania Newnham Campus, Newnham, Tasmania, Australia
| |
Collapse
|
4
|
Wreckfish (Polyprion americanus). New Knowledge About Reproduction, Larval Husbandry, and Nutrition. Promise as a New Species for Aquaculture. FISHES 2019. [DOI: 10.3390/fishes4010014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Four different wreckfish (Polyprion americanus) broodstock batches were maintained in research facilities under different photo and thermo-period conditions, one in Greece, the Helenic Center for Marine Research (HCMR, n = 3) and three in Spain: Instituto Español de Oceanografía (IEO, n = 13) in Vigo, Aquarium Finisterrae (MC2, n = 21) in A Coruña and Consellería do Mar (CMRM, n = 11). The CMRM includes two centers that work together: Instituto Galego de Formación en Acuicultura (IGAFA) and Centro de Investigacións Mariñas (CIMA), both in Pontevedra. During the five years of the project DIVERSIFY (Exploring the biological and socio-economic potential of new-emerging candidate fish species for the expansion of the European aquaculture industry, 2013–2018) works focused on the reproductive biology of the species, broodstock, and larvae nutrition and development of incubation and larval rearing protocols have been carried out. In terms of reproduction, catch methods of new wild animals, the reproductive cycle, sperm characteristics evaluation, and spontaneous and induced spawning methods have been described for wreckfish. Regarding nutrition, the positive effect of two types of enrichment on the fatty acid profiles of Artemia and rotifer has been verified. The relationship between the fatty acid profile of the diets supplied to the broodstock and the fatty acid profile obtained in the oocytes and eggs of the females fed with different diets, has also been demonstrated. Finally, early larval ontogeny has been described and incubation and larval rearing protocols have been proposed based on the results obtained in the different experiments of temperature, growth, survival, and larval feeding that were carried out.
Collapse
|