1
|
Henriques-Santos BM, Baker D, Zhou N, Snavely T, Sacchettini JC, Pietrantonio PV. Target-based discovery of antagonists of the tick (Rhipicephalus microplus) kinin receptor identifies small molecules that inhibit midgut contractions. PEST MANAGEMENT SCIENCE 2024; 80:5168-5179. [PMID: 38899490 DOI: 10.1002/ps.8242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND A GPCR (G protein-coupled receptor) target-based approach was applied to identify antagonists of the arthropod-specific tick kinin receptor. These small molecules were expected to reproduce the detrimental phenotypic effects that had been observed in Rhipicephalus microplus females when the kinin receptor was silenced by RNA interference. Rhipicephalus microplus, the southern cattle tick, cattle fever tick, or Asian blue tick, is the vector of pathogenic microorganisms causing the deadly bovine babesiosis and anaplasmosis. The widespread resistance to acaricides in tick populations worldwide emphasizes that exploring novel targets for effective tick control is imperative. RESULTS Fifty-three structural analogs of previously identified tick kinin antagonists were screened in a 'dual-addition' calcium fluorescence assay using a CHO-K1 cell line expressing the tick kinin receptor. Seven molecules were validated as non-cytotoxic antagonists, four of which were partial (SACC-0428764, SACC-0428780, SACC-0428800, and SACC-0428803), and three were full antagonists (SACC-0428799, SACC-0428801, and SACC-0428815). Four of these antagonists (SACC-0428764, SACC-0428780, SACC-0428799, and SACC-0428815) also inhibited the tick midgut contractions induced by the myotropic kinin agonist analog 1728, verifying their antagonistic bioactivity. The small molecules were tested on recombinant human neurokinin (NK) receptors, the one most similar to the invertebrate kinin receptors. Most molecules were inhibitors of the NK1 receptor, except SACC-0412066, a previously identified tick kinin receptor antagonist, which inhibited the NK1 receptor only at the highest concentration tested (25 μm). None of the molecules inhibited the NK3 human receptor. CONCLUSION Molecules identified through this approach could be useful probes for studying the tick kinin signaling system and midgut physiology. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Dwight Baker
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Nian Zhou
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Thomas Snavely
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
2
|
Hernandez JR, Xiong C, Pietrantonio PV. A fluorescently-tagged tick kinin neuropeptide triggers peristalsis and labels tick midgut muscles. Sci Rep 2024; 14:10863. [PMID: 38740831 DOI: 10.1038/s41598-024-61570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Ticks are blood-feeding arthropods that require heme for their successful reproduction. During feeding they also acquire pathogens that are subsequently transmitted to humans, wildlife and/or livestock. Understanding the regulation of tick midgut is important for blood meal digestion, heme and nutrient absorption processes and for aspects of pathogen biology in the host. We previously demonstrated the activity of tick kinins on the cognate G protein-coupled receptor. Herein we uncovered the physiological role of the kinin receptor in the tick midgut. A fluorescently-labeled kinin peptide with the endogenous kinin 8 sequence (TMR-RK8), identical in the ticks Rhipicephalus microplus and R. sanguineus, activated and labeled the recombinant R. microplus receptor expressed in CHO-K1 cells. When applied to the live midgut the TMR-RK8 labeled the kinin receptor in muscles while the labeled peptide with the scrambled-sequence of kinin 8 (TMR-Scrambled) did not. The unlabeled kinin 8 peptide competed TMR-RK8, decreasing confocal microscopy signal intensity, indicating TMR-RK8 specificity to muscles. TMR-RK8 was active, inducing significant midgut peristalsis that was video-recorded and evaluated with video tracking software. The TMR-Scrambled peptide used as a negative control did not elicit peristalsis. The myotropic function of kinins in eliciting tick midgut peristalsis was established.
Collapse
Affiliation(s)
- Jonathan R Hernandez
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
| | - Caixing Xiong
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
| | | |
Collapse
|
3
|
Orchard I, Leyria J, Al-Dailami AN, Nachman RJ, Lange AB. Functional characterization of the kinin receptor in the Chagas disease vector Rhodnius prolixus; activity of native kinins and potent biostable Aib-containing insect kinin analogs. Peptides 2024; 172:171135. [PMID: 38103839 DOI: 10.1016/j.peptides.2023.171135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
The causative agent for Chagas disease, Trypanosoma cruzi, is transmitted to a human host in the urine/feces of the kissing bug, Rhodnius prolixus, following blood feeding. Kinins are important chemical messengers in the overall control of blood feeding physiology in R. prolixus, including hindgut contractions and excretion. Thus, disruption in kinin signaling would have damaging consequences to the insect but also interfere with the transmission of Chagas Disease. Here, a heterologous functional receptor assay was used to confirm the validity of the previously cloned putative kinin G-protein-coupled receptor, RhoprKR, in Rhodnius prolixus. Three native R. prolixus kinins were chosen for analysis; two possessing the typical kinin WGamide C-terminal motif and one that possesses an atypical C-terminal WAamide. All three are potent (EC50 values in the nM range), with high efficacy, on CHO-K1-aeq cells expressing the RhoprKR, thereby confirming ligand binding. Members of three other R. prolixus peptide families, which are also myotropins (tachykinins, pyrokinins and sulfakinins) elicited little or no response. In addition, this heterologous receptor assay was used to test characteristics of kinin mimetics previously tested on tick and mosquito kinin receptors. Five α-aminoisobutyric acid (Aib) containing analogs were tested, and four found to have considerably higher potencies than the native kinins, with EC50 values in the pM range. Interestingly, adding Aib to the atypical WAamide kinin improves its EC50 value from 2 nM to 39 pM. Biostable kinin analogs may prove useful leads for novel pest control strategies. Since T. cruzi is transmitted to a human host in the urine/feces after blood feeding, disruption in kinin signaling would also interfere with the transmission of Chagas Disease.
Collapse
Affiliation(s)
- Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Areej N Al-Dailami
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ronald J Nachman
- Southern Plains Agricultural Research Center, USDA, College Station, TX, USA
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
4
|
Xiong C, Yang Y, Nachman RJ, Pietrantonio PV. Tick CAPA propeptide cDNAs and receptor activity of endogenous tick pyrokinins and analogs: Towards discovering pyrokinin function in ticks. Peptides 2021; 146:170665. [PMID: 34600038 DOI: 10.1016/j.peptides.2021.170665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023]
Abstract
Pyrokinins (PKs) are pleiotropic neuropeptides with significant roles in invertebrate physiology. Although functions of PKs are known in insects, there is a lack of knowledge of PK-encoding genes and PKs functions in ticks. Herein the first tick cDNAs of the capability (capa) gene were cloned from the southern cattle tick, Rhipicephalus microplus (Acari: Ixodidae), and the blacklegged tick, Ixodes scapularis. Each cDNA encoded one periviscerokinin and five different pyrokinins. Two PKs were identical in sequence in the two species. The three PKs unique to R. microplus (Rhimi-CAPA-PK1, -PK2, and -PK5) were tested on the recombinant R. microplus pyrokinin receptor using a calcium bioluminescence assay. The Rhimi-CAPA-PKs acted as agonists with EC50s ranging from 101-188 nM. Twenty PK analogs designed for enhanced bioavailability and biostability were tested on the receptor. Five of these were designed based on the sequences of the three unique Rhimi-CAPA-PKs. Eight PK analogs were also agonists; four of them were full agonists that exhibited comparable efficacy to the native Rhimi-CAPA-PKs, with EC50 ranging from 401 nM-1.9 μM. The structure-activity relationships (SAR) of all analogs were analyzed. Our results suggested that a positively charged, basic lysine at the variable position X of the PK active core (FXPRLamide) conferred enhanced affinity to the analogs in their interaction with the tick receptor. These analogs are promising tools to elucidate the pyrokinin function in ticks in vivo as these analogs are expected to have prolonged hemolymph residence time in comparison to the native peptides.
Collapse
Affiliation(s)
- Caixing Xiong
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Yunlong Yang
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA.
| | - Ronald J Nachman
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, U.S. Department of Agriculture, 2881 F/B Road, College Station, TX, 77845, USA.
| | | |
Collapse
|
5
|
Liu N, Wang Y, Li T, Feng X. G-Protein Coupled Receptors (GPCRs): Signaling Pathways, Characterization, and Functions in Insect Physiology and Toxicology. Int J Mol Sci 2021; 22:ijms22105260. [PMID: 34067660 PMCID: PMC8156084 DOI: 10.3390/ijms22105260] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are known to play central roles in the physiology of many organisms. Members of this seven α-helical transmembrane protein family transduce the extracellular signals and regulate intracellular second messengers through coupling to heterotrimeric G-proteins, adenylate cyclase, cAMPs, and protein kinases. As a result of the critical function of GPCRs in cell physiology and biochemistry, they not only play important roles in cell biology and the medicines used to treat a wide range of human diseases but also in insects’ physiological functions. Recent studies have revealed the expression and function of GPCRs in insecticide resistance, improving our understanding of the molecular complexes governing the development of insecticide resistance. This article focuses on the review of G-protein coupled receptor (GPCR) signaling pathways in insect physiology, including insects’ reproduction, growth and development, stress responses, feeding, behaviors, and other physiological processes. Hormones and polypeptides that are involved in insect GPCR regulatory pathways are reviewed. The review also gives a brief introduction of GPCR pathways in organisms in general. At the end of the review, it provides the recent studies on the function of GPCRs in the development of insecticide resistance, focusing in particular on our current knowledge of the expression and function of GPCRs and their downstream regulation pathways and their roles in insecticide resistance and the regulation of resistance P450 gene expression. The latest insights into the exciting technological advances and new techniques for gene expression and functional characterization of the GPCRs in insects are provided.
Collapse
Affiliation(s)
- Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
- Correspondence: ; Tel.: +1-334-844-5076
| | - Yifan Wang
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
| | - Ting Li
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
| | - Xuechun Feng
- Department of Biology Sciences, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
6
|
Xiong C, Baker D, Pietrantonio PV. A random small molecule library screen identifies novel antagonists of the kinin receptor from the cattle fever tick, Rhipicephalus microplus (Acari: Ixodidae). PEST MANAGEMENT SCIENCE 2021; 77:2238-2251. [PMID: 33415807 DOI: 10.1002/ps.6249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/17/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The southern cattle tick, Rhipicephalus microplus, is a primary vector of the deadly bovine disease babesiosis. Worldwide populations of ticks have developed resistance to acaricides, underscoring the need for novel target discovery for tick control. The arthropod-specific R. microplus kinin receptor is such a target, previously validated by silencing, which resulted in female reproductive fitness costs, including a reduced percentage of eggs hatching. RESULTS In order to identify potent small molecules that bind and activate or inhibit the kinin receptor, a high-throughput screening (HTS) assay was developed using a CHO-K1 cell line expressing the recombinant tick kinin receptor (BMLK3 ). A total of ~20 000 molecules from a random in-house small molecule library were screened in a 'dual-addition' calcium fluorescence assay. This was followed by dose-response validation of the hit molecules identified both from HTS and an in silico screen of ~390 000 molecules. We validated 29 antagonists, 11 of them were full antagonists with IC50 values between 0.67 and 8 μmol L-1 . To explore the structure-activity relationships (SAR) of the small molecules, we tested the activities of seven analogs of the most potent identified antagonist, additionally discovering three full antagonists and four partial antagonists. These three potent antagonists (IC50 < 3.2 μmol L-1 ) were validated in vitro using the recombinant mosquito kinin receptor and showed similar antagonistic activities. In vivo, these three compounds also inhibited the mosquito hindgut contraction rate induced by a myotropic kinin agonist analog 1728. CONCLUSION Antagonists identified in this study could become pesticide leads and are reagents for probing the kinin signaling system. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Caixing Xiong
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Dwight Baker
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
7
|
Xiong C, Kaczmarek K, Zabrocki J, Nachman RJ, Pietrantonio PV. Activity of native tick kinins and peptidomimetics on the cognate target G protein-coupled receptor from the cattle fever tick, Rhipicephalus microplus (Acari: Ixodidae). PEST MANAGEMENT SCIENCE 2020; 76:3423-3431. [PMID: 31794138 DOI: 10.1002/ps.5704] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/13/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Kinins are multifunctional neuropeptides that regulate key insect physiological processes such as diuresis, feeding, and ecdysis. However, the physiological roles of kinins in ticks are unclear. Furthermore, ticks have an expanded number of kinin paracopies in the kinin gene. Silencing the kinin receptor (KR) in females of Rhipicephalus microplus reduces reproductive fitness. Thus, it appears the kinin signaling system is important for tick physiology and its disruption may have potential for tick control. RESULTS We determined the activities of endogenous kinins on the KR, a G protein-coupled receptor, and identified potent peptidomimetics. Fourteen predicted R. microplus kinins (Rhimi-K), and 11 kinin analogs containing aminoisobutyric acid (Aib) were tested. The latter incorporated tick kinin sequences and/or were modified for enhanced resistance to arthropod peptidases. A high-throughput screen using a calcium fluorescence assay in 384-well plates was performed. All tested kinins and Aib analogs were full agonists. The most potent kinin and two kinin analogs were equipotent. Analogs 2414 ([Aib]FS[Aib]WGa) and 2412 ([Aib]FG[Aib]WGa) were the most active with EC50 values of 0.9 and 1.1 nM, respectively, matching the EC50 of the most potent tick kinin, Rhimi-K-14 (QDSFNPWGa) (EC50 = 1 nM). The potent analog 2415 ([Aib]FR[Aib]WGa, EC50 = 6.8 nM) includes both Aib molecules for resistance to peptidases and a positively charged residue, R, for enhanced water solubility and amphiphilic character. CONCLUSION These tick kinins and pseudopeptides expand the repertoire of reagents for tick physiology and toxicology towards finding novel targets for tick management. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Caixing Xiong
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Krzysztof Kaczmarek
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
- Insect Neuropeptide Lab, Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, U.S. Department of Agriculture, College Station, TX, USA
| | - Janusz Zabrocki
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
- Insect Neuropeptide Lab, Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, U.S. Department of Agriculture, College Station, TX, USA
| | - Ronald J Nachman
- Insect Neuropeptide Lab, Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, U.S. Department of Agriculture, College Station, TX, USA
| | | |
Collapse
|
8
|
Zhang C, Li X, Song D, Ling Y, Zhou Y, Yang X. Synthesis, aphicidal activity and conformation of novel insect kinin analogues as potential eco-friendly insecticides. PEST MANAGEMENT SCIENCE 2020; 76:3432-3439. [PMID: 31840904 DOI: 10.1002/ps.5721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/03/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The discovery of ecofriendly insecticides through a new strategy for aphid control is important because of the substantial resistance and unexpected eco-toxicity to honeybees caused by traditional insecticides. The insect kinins, a class of multifunctional insect neuropeptides, are considered for potential application in pest control. In our previous work we developed several series of insect kinin analogues and found a promising lead II-1 with good aphicidal activity. To seek further eco-friendly aphicides, the optimization of II-1 is carried out in this study. RESULTS Fifteen novel Yaa3 modified analogues based on the lead II-1 were synthesized. The aphicidal tests indicated that IV-3, IV-5 and IV-10 exhibited significant activity against the soybean aphid Aphis glycines with LC50 values of 0.0029, 0.0072 and 0.0086 mmol L-1 , respectively, higher than that of lead II-1 and the commercial Pymetrozine. The molecular modeling results showed that analogues II-1, IV-3, IV-5, IV-7 and IV-10 formed a β-turn-like conformation, while the conformation of analogues IV-1, IV-2 and IV-9 seemed to be linear. Some structural elements favorable for the activity were proposed based on the conformation-activity relationship of the analogues. CONCLUSION Insect kinin analogues derived from lead II-1 by modifying the hydrolysis site Yaa3 with natural, sterically hindered α- and β-amino acids showed great potential as eco-friendly insecticides. Inspiringly, the most active analogue IV-3 can be a candidate for further development. The β-turn-like conformation and the orientation of the aromatic rings of the side chain of Phe2 and Trp4 may be critical factors beneficial to activity. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chuanliang Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| | - Xinlu Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| | - Dunlun Song
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, P. R. China
| | - Yun Ling
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| | - Yuanlin Zhou
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| | - Xinling Yang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
9
|
Kwon H, Yang Y, Kumar S, Lee DW, Bajracharya P, Calkins TL, Kim Y, Pietrantonio PV. Characterization of the first insect prostaglandin (PGE 2) receptor: MansePGE 2R is expressed in oenocytoids and lipoteichoic acid (LTA) increases transcript expression. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 117:103290. [PMID: 31790798 DOI: 10.1016/j.ibmb.2019.103290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
In arthropods, eicosanoids derived from the oxygenated metabolism of arachidonic acid are significant in mediating immune responses. However, the lack of information about insect eicosanoid receptors is an obstacle to completely decipher immune mechanisms underlying both eicosanoid downstream signal cascades and their relationship to immune pathogen-associated molecular patterns (PAMPs). Here, we cloned and sequenced a G protein-coupled receptor (MW 46.16 kDa) from the model lepidopteran, Manduca sexta (Sphingidae). The receptor shares similarity of amino acid motifs to human prostaglandin E2 (PGE2) receptors, and phylogenetic analysis supports its classification as a prostaglandin receptor. In agreement, the recombinant receptor was activated by PGE2 resulting in intracellular cAMP increase, and therefore designated MansePGE2R. Expression of MansePGE2R in Sf9 cells in which the endogenous orthologous receptor had been silenced showed similar cAMP increase upon PGE2 challenge. Receptor transcript expression was identified in various tissues in larvae and female adults, including Malpighian tubules, fat body, gut and hemocytes, and in female ovaries. In addition to the cDNA cloned that encodes the functional receptor, an mRNA was found featuring the poly-A tail but lacking the predicted transmembrane (TM) regions 2 and 3, suggesting the possibility that internally deleted receptor proteins exist in insects. Immunocytochemistry and in situ hybridization revealed that among hemocytes, the receptor was exclusively localized in the oenocytoids. Larval immune challenges injecting bacterial components showed that lipoteichoic acid (LTA) increased MansePGE2R expression in hemocytes. In contrast, injection of LPS or peptidoglycan did not increase MansePGE2R transcript levels in hemocytes, suggesting the LTA-associated increase in receptor transcript is regulated through a distinct pathway. This study provides the first characterization of an eicosanoid receptor in insects, and paves the way for establishing the hierarchy in signaling steps required for establishing insect immune responses to infections.
Collapse
Affiliation(s)
- Hyeogsun Kwon
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA.
| | - Yunlong Yang
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA.
| | - Sunil Kumar
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea.
| | - Dae-Weon Lee
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA.
| | - Prati Bajracharya
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA.
| | - Travis L Calkins
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA.
| | - Yonggyun Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea.
| | | |
Collapse
|
10
|
Xiong C, Baker D, Pietrantonio PV. The Cattle Fever Tick, Rhipicephalus microplus, as a Model for Forward Pharmacology to Elucidate Kinin GPCR Function in the Acari. Front Physiol 2019; 10:1008. [PMID: 31447698 PMCID: PMC6692460 DOI: 10.3389/fphys.2019.01008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
The success of the acaricide amitraz, a ligand of the tick tyramine/octopamine receptor (a G protein-coupled receptor; GPCR), stimulated interest on arthropod-specific GPCRs as targets to control tick populations. This search advances tick physiology because little is known about the pharmacology of tick GPCRs, their endogenous ligands or their physiological functions. Here we explored the tick kinin receptor, a neuropeptide GPCR, and its ligands. Kinins are pleiotropic insect neuropeptides but their function in ticks is unknown. The endogenous tick kinins are unknown and their cDNAs have not been cloned in any species. In contrast, more than 271 insect kinin sequences are available in the DINeR database. To fill this gap, we cloned the kinin cDNA from the cattle fever tick, Rhipicephalus microplus, which encodes 17 predicted kinins, and verified the kinin gene structure. We predicted the kinin precursor sequences from additional seven tick species, including Ixodes scapularis. All species showed an expansion of kinin paracopies. The "kinin core" (minimal active sequence) of tick kinins FX1X2WGamide is similar to those in insects. Pro was predominant at the X2 position in tick kinins. Toward accelerating the discovery of kinin function in ticks we searched for novel synthetic receptor ligands. We developed a dual-addition assay for functional screens of small molecules and/or peptidomimetics that uses a fluorescent calcium reporter. A commercial library of fourteen small molecules antagonists of mammalian neurokinin (NK) receptors was screened using this endpoint assay. One acted as full antagonist (TKSM02) with inhibitory concentration fifty (IC50) of ∼45 μM, and three were partial antagonists. A subsequent calcium bioluminescence assay tested these four antagonists through kinetic curves and confirmed TKSM02 as full antagonist and one as partial antagonist (TKSM14). Antagonists of NK receptors displayed selectivity (>10,000-fold) on the tick kinin receptor. Three peptidomimetic ligands of the mammalian NK receptors (hemokinin 1, antagonist G, and spantide I) were tested in the bioluminescence assay but none were active. Forward approaches may accelerate discovery of kinin ligands, either as reagents for tick physiological research or as lead molecules for acaricide development, and they demonstrate that selectivity is achievable between mammalian and tick neuropeptide systems.
Collapse
Affiliation(s)
- Caixing Xiong
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Dwight Baker
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | | |
Collapse
|