1
|
Robinson CV, Visona-Kelly BC. A geometric morphometric approach for detecting different reproductive stages of a free-ranging killer whale Orcinus orca population. Sci Rep 2025; 15:3239. [PMID: 39863647 PMCID: PMC11762319 DOI: 10.1038/s41598-025-86793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The expansion of drone-based aerial imagery has facilitated an increase in data obtained from free-ranging marine mammal populations, in particular cetacean species. This non-invasive approach allows for body condition assessments, including nutritional and reproductive health. Yet, existing methods of image analysis are time-consuming and lack the granularity to determine early-stage pregnancies and miscarriage rates. In this study, we leveraged a four-year dataset of drone-based aerial imagery paired with known reproductive statuses (i.e., non-pregnant, early-stage pregnant, late-stage pregnant, and lactating) for killer whales (Orcinus orca) to develop a geometric morphometric-based protocol for detecting reproductive status. We demonstrate the significant separation of resulting shapefiles related to reproductive status between all statuses apart from lactating. This approach reliably detects early-stage pregnancy and highlights the morphological locations of major shape changes during the lactation period. We illustrate the applicability of our geometric morphometric protocol for rapid, robust determination of reproductive status in a free-ranging cetacean species. This work helps to satisfy the need for universal tools for non-invasively gleaning population demographic data from free-ranging cetaceans especially of populations which are experiencing prey-related reproductive failures, to understand miscarriage rates and trigger subsequential conservation actions.
Collapse
Affiliation(s)
- Chloe V Robinson
- Whales Initiative, Ocean Wise Conservation Association, Vancouver, BC, Canada.
| | | |
Collapse
|
2
|
Fernandez Ajó A, Buck CL, Hunt KE, Pirotta E, New L, Dillon D, Bierlich KC, Hildebrand L, Bird CN, Torres LG. Variation in faecal testosterone levels in male gray whales on a foraging ground relative to maturity and timing. CONSERVATION PHYSIOLOGY 2025; 13:coae094. [PMID: 39834348 PMCID: PMC11744369 DOI: 10.1093/conphys/coae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/23/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025]
Abstract
Understanding wildlife reproductive seasonality is crucial for effective management and long-term monitoring of species. This study investigates the seasonal variability of testosterone in male Pacific Coast Feeding Group (PCFG) gray whales, using an eight-year dataset (2016-2023) of individual sightings, drone-based photogrammetry and endocrine analysis of faecal samples. We analyzed the relationship between faecal testosterone levels and total body length (TL), body condition (body area index, BAI), sexual maturity and day of the year using generalized additive mixed models. Our findings reveal a significant increase in faecal testosterone levels in mature males (MM) towards the end of the foraging season. This increase was not observed in JM, highlighting age-dependent development of sexual characteristics. No significant relationship was found between testosterone levels and TL. Additionally, BAI was not significantly associated with testosterone levels. Our results suggest that the increasing testosterone levels in MM gray whales may indicate preparation for mating before the southbound migration. These findings provide valuable insights into the reproductive biology of PCFG gray whales and underscore the importance of non-invasive faecal sampling for studying reproductive seasonality in large whales. Our approach not only provides further insights into the seasonality of male reproduction for the PCFG gray whales but also offers tools to enhance the understanding of male reproduction in baleen whales broadly with non-invasive approaches.
Collapse
Affiliation(s)
- A Fernandez Ajó
- Geospatial Ecology of Marine Megafauna Lab, Marine Mammal Institute, Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, 2030 SE Marine Science Dr, Newport, OR 97365, USA
| | - C L Buck
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - K E Hunt
- Smithsonian-Mason School of Conservation & Department of Biology, George Mason University, 1500 Remount Rd, Front Royal, VA 22630, USA
| | - E Pirotta
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, Buchanan Gardens, St Andrews, KY16 9LZ, UK
| | - L New
- Department of Mathematics, Computer Science and Statistics, Ursinus College, 601 E Main St, Collegeville, PA 19426, USA
| | - D Dillon
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
- Wildlife and Ocean Health Program Anderson Cabot Center for Ocean LifeNew England Aquarium, New England Aquarium, 1 Central Wharf, Boston, MA 02110, USA
| | - K C Bierlich
- Geospatial Ecology of Marine Megafauna Lab, Marine Mammal Institute, Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, 2030 SE Marine Science Dr, Newport, OR 97365, USA
| | - L Hildebrand
- Geospatial Ecology of Marine Megafauna Lab, Marine Mammal Institute, Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, 2030 SE Marine Science Dr, Newport, OR 97365, USA
| | - C N Bird
- Geospatial Ecology of Marine Megafauna Lab, Marine Mammal Institute, Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, 2030 SE Marine Science Dr, Newport, OR 97365, USA
| | - L G Torres
- Geospatial Ecology of Marine Megafauna Lab, Marine Mammal Institute, Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, 2030 SE Marine Science Dr, Newport, OR 97365, USA
| |
Collapse
|
3
|
Yang S, Jin Y, Li S, Liu Z. Integrated approaches for comprehensive cetacean research and conservation in the East China Sea. MARINE POLLUTION BULLETIN 2024; 206:116789. [PMID: 39094284 DOI: 10.1016/j.marpolbul.2024.116789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/30/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
This study thoroughly examines three cetacean monitoring methods and assessing their advantages and limitations, establishing a foundational basis for comprehensive information on composition, distribution, and behavior. While real-time and non-invasive, visual surveys favor surface-active cetaceans and are weather-dependent. Local ecological knowledge supplements insights into group behavior. Environmental DNA (eDNA) analysis efficiently detects species like the narrow-ridged finless porpoise (Neophocaena asiaeorientalis) and common bottlenose dolphin (Tursiops truncatus), offering non-invasive, and spatially adept monitoring. Furthermore, eDNA provides prey species information, revealing the narrow-ridged finless porpoise's winter migration to deeper waters due to prey distribution. The study identifies prevalent prey species, like the Japanese Anchovy (Engraulis japonicus) and Osbeck's grenadier anchovy (Coilia mystus), offering insights into the porpoise's feeding ecology and adaptation to changing prey availability in winter. This study systematically compares diverse methodologies employed in cetacean surveys, thereby yielding a comprehensive understanding of cetacean distribution, behavior, and feeding ecology.
Collapse
Affiliation(s)
- Shaobo Yang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; College of Marine Sciences of Shanghai Ocean University, Shanghai 201306, China
| | - Yan Jin
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Key Laboratory of East China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 200090, China
| | - Shengfa Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Key Laboratory of East China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 200090, China
| | - Zunlei Liu
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Key Laboratory of East China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 200090, China.
| |
Collapse
|
4
|
Melica V, Thornton SJ. Killer whale fecal samples: How to get the most out of a single extraction. Gen Comp Endocrinol 2024; 354:114544. [PMID: 38705419 DOI: 10.1016/j.ygcen.2024.114544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Fecal samples are a non-invasive and relatively accessible matrix for investigating physiological processes in resident killer whale (Orcinus orca) populations. The high lipid content of the diet (primarily salmonids) leads to lower density fecal material and slower dispersion, facilitating sample collection. As fecal discharge is relatively infrequent and the volume of sample is variable, maximizing analytical options is an important consideration. Here we present an extraction methodology to measure hormones and lipid content from the same fecal aliquot. Lipid extractions are commonly conducted using chloroform and methanol from Folch or Bligh and Dyer (B&D), while alcohol is the primary solvent for hormone extraction. We evaluated the possibility of using the methanol layer from lipid extractions to assess fecal steroid hormone levels. Folch and B&D methanol residues were assayed form metabolites of progesterone (PMs) and corticosterone (GCs), and results were compared to aliquots extracted in 70 % ethanol. Hormone concentrations measured in the methanol layer from Folch and B&D extractions were 55 % to 79 % lower than concentrations in 70 % ethanol. We developed mathematical corrections, using linear regression models fitted to Folch or B&D methanol vs 70 % ethanol hormone concentrations (p < 0.01). Fecal concentrations of PMs and GCs from methanol extractions were biologically validated and are significantly higher in confirmed pregnant females compared to non-pregnant individuals (p < 0.05). This study demonstrates that lipid extraction protocols may be used for the analysis of multiple biomarkers, maximizing the use of small-volume samples.
Collapse
Affiliation(s)
- V Melica
- Marine Mammal Conservation Physiology Program, Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, Canada
| | - S J Thornton
- Marine Mammal Conservation Physiology Program, Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, Canada.
| |
Collapse
|
5
|
Tang B, Hao Y, Wang C, Deng Z, Kou Z, Zhou H, Zhang H, Fan F, Wang K, Wang D. Biological characteristics of pregnancy in captive Yangtze finless porpoises revealed by urinary metabolomics†. Biol Reprod 2024; 110:808-818. [PMID: 38169437 PMCID: PMC11017131 DOI: 10.1093/biolre/ioad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
The Yangtze finless porpoises (Neophocaena asiaeorientalis a.) are an endemic and critically endangered species in China. Intensive captive breeding is essential for understanding the biology of critically endangered species, especially their pregnancy characteristics, knowledge of which is crucial for effective breeding management. Urine metabolomics can reveal metabolic differences, arising from physiological changes across pregnancy stages. Therefore, we used the urinary metabolomic technology, to explore urinary metabolite changes in pregnant Yangtze finless porpoises. A total of 2281 metabolites were identified in all samples, which including organic acids and derivatives (24.45%), organoheterocyclic compounds (20.23%), benzenoids (18.05%), organic oxygen compounds (7.73%), and phenylpropanoids and polyketides (6.48%). There were 164, 387, and 522 metabolites demonstrating differential abundance during early pregnancy, mid pregnancy, and late pregnancy, respectively, from the levels observed in nonpregnancy. The levels of pregnenolone, 17α-hydroxyprogesterone, and tetrahydrocortisone were significantly higher during all pregnancy stages, indicating their important roles in fetal development. The differential metabolites between nonpregnancy and pregnancy were mainly associated with amino acid and carbohydrate metabolism. Moreover, metabolic activity varied across pregnancy stages; steroid hormone biosynthesis was predominant in early pregnancy, and amino acid biosynthesis and carbohydrate metabolism were predominant in mid pregnancy and late pregnancy, respectively. Our results provide new insights into metabolic characteristics in the Yangtze finless porpoises' urine during pregnancy, and indicate that the differential levels of urine metabolites can determine pregnancy in Yangtze finless porpoises, providing valuable information for the husbandry and management of pregnant Yangtze finless porpoises in captivity.
Collapse
Affiliation(s)
- Bin Tang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yujiang Hao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National Aquatic Biological Resource Center, NABRC, Wuhan, China
| | - Chaoqun Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National Aquatic Biological Resource Center, NABRC, Wuhan, China
| | - Zhengyu Deng
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National Aquatic Biological Resource Center, NABRC, Wuhan, China
| | - Zhangbing Kou
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Haojie Zhou
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haobo Zhang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Fan
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National Aquatic Biological Resource Center, NABRC, Wuhan, China
| | - Kexiong Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National Aquatic Biological Resource Center, NABRC, Wuhan, China
| | - Ding Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National Aquatic Biological Resource Center, NABRC, Wuhan, China
| |
Collapse
|
6
|
Guo Y, Shi W, Liu Z, Sun X, Wu Y. Cetaceans as bio-indicators revealed the increased risks of triclosan exposure and associated thyroid hormone disruption during the COVID-19 pandemic. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132289. [PMID: 37591165 DOI: 10.1016/j.jhazmat.2023.132289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
The global surge in disinfection practices from the COVID-19 response has raised concerns about the marine exposure to the hazardous ingredients in disinfectant products, including triclosan (TCS) and triclocarban (TCC). However, there are very limited studies on the response of marine TCS and TCC (TCs) loading to the COVID-19 pandemic. Here we used cetaceans as bio-indicators for a long-term retrospective analysis of TCs loading to the South China Sea (SCS) between 2004 and 2022. Hepatic TCs was 100% detected in all nine cetacean species (n = 120). Interestingly, TCS concentrations decreased in Indo-Pacific humpback dolphins (IPHD) before the pandemic from 2010 to 2017. However, after 2019, TCS concentrations in IPHD significantly increased several-fold. Similarly, post-pandemic TCS concentrations in Indo-Pacific finless porpoises (IPFP) and two fish species were significantly higher than pre-pandemic levels. There were significant relationships between thyroid hormones (THs) and TCs in IPHD and IPFP, suggesting that increased TCs may worsen the interference of THs homeostasis and nutritional conditions in cetaceans. These findings demonstrate the profound impact of the surging use of TCs-containing products from the COVID-19 response on marine ecosystems.
Collapse
Affiliation(s)
- Yongwei Guo
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Wei Shi
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Zhiwei Liu
- School of Ecology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xian Sun
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China.
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China.
| |
Collapse
|
7
|
Renaud LA, Bordeleau X, Kellar NM, Pigeon G, Michaud R, Morin Y, Lair S, Therien A, Lesage V. Estimating pregnancy rate from blubber progesterone levels of a blindly biopsied beluga population poses methodological, analytical and statistical challenges. CONSERVATION PHYSIOLOGY 2023; 11:coad075. [PMID: 37771677 PMCID: PMC10533324 DOI: 10.1093/conphys/coad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/13/2023] [Accepted: 09/06/2023] [Indexed: 09/30/2023]
Abstract
Beluga (Delphinapterus leucas) from the St. Lawrence Estuary, Canada, have been declining since the early 2000s, suggesting recruitment issues as a result of low fecundity, abnormal abortion rates or poor calf or juvenile survival. Pregnancy is difficult to observe in cetaceans, making the ground truthing of pregnancy estimates in wild individuals challenging. Blubber progesterone concentrations were contrasted among 62 SLE beluga with a known reproductive state (i.e. pregnant, resting, parturient and lactating females), that were found dead in 1997 to 2019. The suitability of a threshold obtained from decaying carcasses to assess reproductive state and pregnancy rate of freshly-dead or free-ranging and blindly-sampled beluga was examined using three statistical approaches and two data sets (135 freshly harvested carcasses in Nunavik, and 65 biopsy-sampled SLE beluga). Progesterone concentrations in decaying carcasses were considerably higher in known-pregnant (mean ± sd: 365 ± 244 ng g-1 of tissue) than resting (3.1 ± 4.5 ng g-1 of tissue) or lactating (38.4 ± 100 ng g-1 of tissue) females. An approach based on statistical mixtures of distributions and a logistic regression were compared to the commonly-used, fixed threshold approach (here, 100 ng g-1) for discriminating pregnant from non-pregnant females. The error rate for classifying individuals of known reproductive status was the lowest for the fixed threshold and logistic regression approaches, but the mixture approach required limited a priori knowledge for clustering individuals of unknown pregnancy status. Mismatches in assignations occurred at lipid content < 10% of sample weight. Our results emphasize the importance of reporting lipid contents and progesterone concentrations in both units (ng g-1 of tissue and ng g-1 of lipid) when sample mass is low. By highlighting ways to circumvent potential biases in field sampling associated with capturability of different segments of a population, this study also enhances the usefulness of the technique for estimating pregnancy rate of free-ranging population.
Collapse
Affiliation(s)
- L -A Renaud
- Department of Fisheries and Oceans Canada, Maurice Lamontagne Institute, P.O. Box 1000, 850 Route de la Mer, Mont-Joli, Québec, G5H 3Z4, Canada
| | - X Bordeleau
- Department of Fisheries and Oceans Canada, Maurice Lamontagne Institute, P.O. Box 1000, 850 Route de la Mer, Mont-Joli, Québec, G5H 3Z4, Canada
| | - N M Kellar
- Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, California 92038, USA
| | - G Pigeon
- Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec, J9X 5E4, Canada
| | - R Michaud
- Groupe de recherche et d’éducation sur les mammifères marins (GREMM), 108 de la Cale-Sèche, Tadoussac, Québec, G0T 2A0, Canada
| | - Y Morin
- Department of Fisheries and Oceans Canada, Maurice Lamontagne Institute, P.O. Box 1000, 850 Route de la Mer, Mont-Joli, Québec, G5H 3Z4, Canada
| | - S Lair
- Faculté de médecine vétérinaire, Université de Montréal, P.O. Box 5000, 3200 Rue Sicotte, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - A Therien
- Department of Fisheries and Oceans Canada, Maurice Lamontagne Institute, P.O. Box 1000, 850 Route de la Mer, Mont-Joli, Québec, G5H 3Z4, Canada
| | - V Lesage
- Department of Fisheries and Oceans Canada, Maurice Lamontagne Institute, P.O. Box 1000, 850 Route de la Mer, Mont-Joli, Québec, G5H 3Z4, Canada
| |
Collapse
|
8
|
Fernandez Ajó A, Pirotta E, Bierlich KC, Hildebrand L, Bird CN, Hunt KE, Buck CL, New L, Dillon D, Torres LG. Assessment of a non-invasive approach to pregnancy diagnosis in gray whales through drone-based photogrammetry and faecal hormone analysis. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230452. [PMID: 37476509 PMCID: PMC10354484 DOI: 10.1098/rsos.230452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
Knowledge of baleen whales' reproductive physiology is limited and requires long-term individual-based studies and innovative tools. We used 6 years of individual-level data on the Pacific Coast Feeding Group gray whales to evaluate the utility of faecal progesterone immunoassays and drone-based photogrammetry for pregnancy diagnosis. We explored the variability in faecal progesterone metabolites and body morphology relative to observed reproductive status and estimated the pregnancy probability for mature females of unknown reproductive status using normal mixture models. Individual females had higher faecal progesterone concentrations when pregnant than when presumed non-pregnant. Yet, at the population level, high overlap and variability in progesterone metabolite concentrations occurred between pregnant and non-pregnant groups, limiting this metric for accurate pregnancy diagnosis in gray whales. Alternatively, body width at 50% of the total body length (W50) correctly discriminated pregnant from non-pregnant females at individual and population levels, with high accuracy. Application of the model using W50 metric to mature females of unknown pregnancy status identified eight additional pregnancies with high confidence. Our findings highlight the utility of drone-based photogrammetry to non-invasively diagnose pregnancy in this group of gray whales, and the potential for improved data on reproductive rates for population management of baleen whales generally.
Collapse
Affiliation(s)
- A. Fernandez Ajó
- Geospatial Ecology of Marine Megafauna Lab, Marine Mammal Institute, Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, Newport 97365, OR, USA
| | - E. Pirotta
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK
| | - K. C. Bierlich
- Geospatial Ecology of Marine Megafauna Lab, Marine Mammal Institute, Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, Newport 97365, OR, USA
| | - L. Hildebrand
- Geospatial Ecology of Marine Megafauna Lab, Marine Mammal Institute, Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, Newport 97365, OR, USA
| | - C. N. Bird
- Geospatial Ecology of Marine Megafauna Lab, Marine Mammal Institute, Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, Newport 97365, OR, USA
| | - K. E. Hunt
- Smithsonian-Mason School of Conservation, Department of Biology, George Mason University, 1500 Remount Road, Front Royal, VA 22630, USA
| | - C. L. Buck
- Department of Biological Sciences, Northern Arizona University, 617 South Beaver Street, Flagstaff, AZ 86011, USA
| | - L. New
- Ursinus College, 601 East Main Street, Collegeville, PA 19426, USA
| | - D. Dillon
- Department of Biological Sciences, Northern Arizona University, 617 South Beaver Street, Flagstaff, AZ 86011, USA
| | - L. G. Torres
- Geospatial Ecology of Marine Megafauna Lab, Marine Mammal Institute, Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, Newport 97365, OR, USA
| |
Collapse
|
9
|
Effects of social stress on the welfare of captive male Alpine musk deer: Stereotypic behavior, fecal cortisol, and musk secretion. Appl Anim Behav Sci 2023. [DOI: 10.1016/j.applanim.2022.105828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Lemos LS, Haxel JH, Olsen A, Burnett JD, Smith A, Chandler TE, Nieukirk SL, Larson SE, Hunt KE, Torres LG. Effects of vessel traffic and ocean noise on gray whale stress hormones. Sci Rep 2022; 12:18580. [PMID: 36329054 PMCID: PMC9633705 DOI: 10.1038/s41598-022-14510-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 06/08/2022] [Indexed: 11/06/2022] Open
Abstract
Human use of marinescapes is rapidly increasing, especially in populated nearshore regions where recreational vessel traffic can be dense. Marine animals can have a physiological response to such elevated human activity that can impact individual health and population dynamics. To understand the physiological impacts of vessel traffic on baleen whales, we investigated the adrenal stress response of gray whales (Eschrichtius robustus) to variable vessel traffic levels through an assessment of fecal glucocorticoid metabolite (fGC) concentrations. This analysis was conducted at the individual level, at multiple temporal scales (1-7 days), and accounted for factors that may confound fGC: sex, age, nutritional status, and reproductive state. Data were collected in Oregon, USA, from June to October of 2016-2018. Results indicate significant correlations between fGC, month, and vessel counts from the day prior to fecal sample collection. Furthermore, we show a significant positive correlation between vessel traffic and underwater ambient noise levels, which indicates that noise produced by vessel traffic may be a causal factor for the increased fGC. This study increases knowledge of gray whale physiological response to vessel traffic and may inform management decisions regarding regulations of vessel traffic activities and thresholds near critical whale habitats.
Collapse
Affiliation(s)
- Leila S. Lemos
- grid.4391.f0000 0001 2112 1969Geospatial Ecology of Marine Megafauna Lab, Department of Fisheries, Wildlife, and Conservation Science, Marine Mammal Institute, Oregon State University, 2030 SE Marine Science Dr, Newport, OR 97365 USA ,grid.65456.340000 0001 2110 1845Institute of Environment, College of Arts, Science & Education, Florida International University, 3000 NE 151st St, North Miami, FL 33181 USA
| | - Joseph H. Haxel
- grid.451303.00000 0001 2218 3491Pacific Northwest National Laboratory, 1529 W Sequim Bay Rd, Sequim, WA 98382 USA ,grid.4391.f0000 0001 2112 1969Cooperative Institute for Marine Resources Studies, Oregon State University, 2030 SE Marine Science Dr, Newport, OR 97365 USA
| | - Amy Olsen
- grid.427422.50000 0000 9883 4476Conservation Programs and Partnerships, Seattle Aquarium, 1483 Alaskan Way Pier 59, Seattle, WA 98101 USA
| | - Jonathan D. Burnett
- grid.4391.f0000 0001 2112 1969Aerial Information Systems Laboratory, Forest Engineering, Resources and Management Department, Oregon State University, Oregon, USA
| | - Angela Smith
- grid.427422.50000 0000 9883 4476Conservation Programs and Partnerships, Seattle Aquarium, 1483 Alaskan Way Pier 59, Seattle, WA 98101 USA
| | - Todd E. Chandler
- grid.4391.f0000 0001 2112 1969Geospatial Ecology of Marine Megafauna Lab, Department of Fisheries, Wildlife, and Conservation Science, Marine Mammal Institute, Oregon State University, 2030 SE Marine Science Dr, Newport, OR 97365 USA
| | - Sharon L. Nieukirk
- grid.451303.00000 0001 2218 3491Pacific Northwest National Laboratory, 1529 W Sequim Bay Rd, Sequim, WA 98382 USA
| | - Shawn E. Larson
- grid.427422.50000 0000 9883 4476Conservation Programs and Partnerships, Seattle Aquarium, 1483 Alaskan Way Pier 59, Seattle, WA 98101 USA
| | - Kathleen E. Hunt
- grid.22448.380000 0004 1936 8032Department of Biology, Smithsonian-Mason School of Conservation, George Mason University, Fairfax, VA USA
| | - Leigh G. Torres
- grid.4391.f0000 0001 2112 1969Geospatial Ecology of Marine Megafauna Lab, Department of Fisheries, Wildlife, and Conservation Science, Marine Mammal Institute, Oregon State University, 2030 SE Marine Science Dr, Newport, OR 97365 USA
| |
Collapse
|
11
|
Lowe CL, Hunt KE, Neilson JL, Gabriele CM, Teerlink SS, Buck CL. Reproductive Steroid Hormone Patterns in Baleen of Two Pregnant Humpback Whales (Megaptera Novaeangliae). Integr Comp Biol 2022; 62:152-163. [PMID: 35671163 DOI: 10.1093/icb/icac070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/14/2022] Open
Abstract
Understanding reproductive physiology in mysticetes has been slowed by the lack of repeated samples from individuals. Analysis of humpback whale baleen enables retrospective hormone analysis within individuals dating back three to five years before death. Using this method, we investigated differences in four steroid hormones involved in reproduction and mating during confirmed pregnant and non-pregnant periods in two female humpback whales (Megaptera novaeangliae) with known reproductive histories based on sightings and necropsy data. Cortisol, corticosterone, testosterone and estradiol concentrations were determined via enzyme immunoassay using subsamples of each baleen plate at 2 cm intervals. There were no significant differences in cortisol or corticosterone during pregnancy when compared to non-pregnancy (inter-calving interval), but there were significant differences between the two whales in average glucocorticoid concentrations, with the younger whale showing higher values overall. For testosterone, levels for the younger female peaked at parturition in one pregnancy, but also had spikes during nonpregnancy. The older female had three large spikes in testosterone, one of which was associated with parturition. Estradiol had large fluctuations in both whales but had generally lower concentrations during non-pregnancy than during pregnancy. There were peaks in estradiol before each pregnancy, possibly coinciding with ovulation, and peaks coinciding with the month of parturition. Both estradiol and testosterone could be useful for determining ovulation or impending birth. Using baleen to investigate retrospective steroid hormone profiles can be used for elucidating long-term patterns of physiological change during gestation.
Collapse
Affiliation(s)
- Carley L Lowe
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011USA
| | - Kathleen E Hunt
- Department of Biology, Smithsonian-Mason School of Conservation & George Mason University, Front Royal, VI 22630USA
| | - Janet L Neilson
- Humpback Whale Monitoring Program, Glacier Bay National Park & Preserve, Gustavus, AK 99826USA
| | - Christine M Gabriele
- Humpback Whale Monitoring Program, Glacier Bay National Park & Preserve, Gustavus, AK 99826USA
| | | | - C Loren Buck
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011USA
| |
Collapse
|
12
|
Fernández Ajó A, Hunt KE, Dillon D, Uhart M, Sironi M, Rowntree V, Loren Buck C. Optimizing hormone extraction protocols for whale baleen: Tackling questions of solvent:sample ratio and variation. Gen Comp Endocrinol 2022; 315:113828. [PMID: 34058189 DOI: 10.1016/j.ygcen.2021.113828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022]
Abstract
Obtaining endocrine data from alternative sample types such as baleen and other keratinized tissues has proven a valuable tool to investigate reproductive and stress physiology via steroid hormone quantification, and metabolic stress via thyroid hormone quantification in whales and other vertebrates. These alternative sample types provide an integrated measure of plasma levels over the period that the structure was growing, thus capturing months or even years of an individual's endocrine history. Additionally, their robust and stable keratin matrix allows such samples to be stored for years to decades, enabling the analysis and comparison of endocrine patterns from past and modern populations. However, the extraction and analysis of hormones from baleen and other keratinized tissues remains novel and requires both biological and analytical validations to ensure the method fulfills the requirements for its intended use. We utilized baleen recovered at necropsy from southern right whales (Eubalaena australis) that died at Península Valdés, Argentina, using a commercially available progesterone enzyme immunoassay (EIA) to address two methodological questions: 1) what is the minimum sample mass required to reliably quantify hormone content of baleen samples analyzed with commercially available EIAs, and 2) what is the optimal ratio of solvent volume to sample mass, i.e., the ratio that yields the maximum amount of hormone with high accuracy and low variability between replicates. We concluded that masses of at least 20 mg should be used whenever possible, and extraction is best performed using an 80:1 ratio of solvent to sample (volume of solvent to sample mass; μl:mg). These results can help researchers to make informed methodological decisions when using a destructive extraction method with rare or unique specimens.
Collapse
Affiliation(s)
- Alejandro Fernández Ajó
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., PO Box 5640, Flagstaff, AZ 86011, USA; Instituto de Conservación de Ballenas, Capital Federal, O'Higgins 4380, Ciudad Autónoma de Buenos Aires 1429, Argentina.
| | - Kathleen E Hunt
- George Mason University & Smithsonian-Mason School of Conservation, 1500 Remount Rd, Front Royal, VA 22630, USA
| | - Danielle Dillon
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., PO Box 5640, Flagstaff, AZ 86011, USA
| | - Marcela Uhart
- Southern Right Whale Health Monitoring Program, Los Alerces 3376, Puerto Madryn, Chubut 9120, Argentina; Wildlife Health Center, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive, VM3B Ground Floor, Davis, CA 95616, USA
| | - Mariano Sironi
- Instituto de Conservación de Ballenas, Capital Federal, O'Higgins 4380, Ciudad Autónoma de Buenos Aires 1429, Argentina; Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba, Av. Vélez Sársfield 299, Córdoba 5000, Argentina
| | - Victoria Rowntree
- Instituto de Conservación de Ballenas, Capital Federal, O'Higgins 4380, Ciudad Autónoma de Buenos Aires 1429, Argentina; Wildlife Health Center, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive, VM3B Ground Floor, Davis, CA 95616, USA; Department of Biology, University of Utah, 257 South 1400 East University of Utah, Salt Lake City, UT 84112, USA; Ocean Alliance/Whale Conservation Institute, 32 Horton St, Gloucester, MA 01930, USA
| | - C Loren Buck
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., PO Box 5640, Flagstaff, AZ 86011, USA
| |
Collapse
|
13
|
Rain K, Lok Yee C, Anggoro D, Indarjulianto S, Astuti P, Mona Airin C. Faecal Triiodothyronine Hormone Levels in Female Iguana during Weekday and Weekend in In Situ Conservation. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224901012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Iguanas are exotic animals that are widely kept as pets in our society,their performance and color being their main attraction. Jogja Exotarium is anin situ conservation park that carries the back to nature concept. Animals thatare kept at the Jogja Exotarium are allowed direct contact with visitors. Thisstudy aims to determine the hormone triiodothyronine in female iguanas that are raised and conserved in situ. This study used feces obtained from iguanas kept in Jogja Exotarium, sampling was carried out on Wednesdays and Sundays for 2 weeks. The collected faecal samples were processed by usingfreeze-drying method and then extracted using 80% methanol. The extracted samples were analyzed using the enzyme immunosorbent assay (EIA) method. The results showed during the week day was 107.1 ± 7.01 ng/gr dry feces, while the week end was 119.95 ± 4.3 ng/gr dry feces. Based on the results of the study, it can be concluded that there is no difference in the hormone triiodothyronine in female iguanas during weekday and weekend
Collapse
|
14
|
Potential endocrine correlation with exposure to domoic acid in Southern Right Whale (Eubalaena australis) at the Península Valdés breeding ground. Oecologia 2021; 198:21-34. [PMID: 34800166 DOI: 10.1007/s00442-021-05078-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2022]
Abstract
In waters off Península Valdés (PV), Argentina, southern right whales (SRW, Eubalaena australis) are occasionally exposed to domoic acid (DA), a neurotoxin produced by diatoms of the genus Pseudo-nitzschia. Domoic acid toxicity in marine mammals can cause gastrointestinal and neurological clinical signs, alterations in hematologic and endocrine variables, and can be fatal in extreme cases. In this study, we validated an enzyme immunoassay to quantify fecal glucocorticoid metabolites (fGCm) in 16 SRW fecal samples from live and dead stranded whales in PV from 2013 to 2018 and assessed fGCm levels associated with DA exposure. Overall, fGCm levels were significantly lower in SRWs with detectable fecal DA (n = 3) as compared to SRWs with undetectable fecal DA levels (n = 13). The highest fecal DA was observed in a live lactating female, which had low fGCm compared to the other lactating females studied. The highest fGCm was observed in a lactating female with undetectable DA; interestingly, at the time of sample collection, this female was sighted with two calves, an extremely unusual occurrence in this species. Though the sample size of these exceptionally rare breeding-season fecal samples was unavoidably small, our study provides evidence of potential adrenal alterations in whales exposed to an environmental neurotoxin such as DA.
Collapse
|
15
|
Lowe CL, Hunt KE, Rogers MC, Neilson JL, Robbins J, Gabriele CM, Teerlink SS, Seton R, Buck CL. Multi-year progesterone profiles during pregnancy in baleen of humpback whales ( Megaptera novaeangliae). CONSERVATION PHYSIOLOGY 2021; 9:coab059. [PMID: 34745632 PMCID: PMC8567847 DOI: 10.1093/conphys/coab059] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/27/2021] [Accepted: 07/13/2021] [Indexed: 05/27/2023]
Abstract
Understanding calving rates of wild whale populations is critically important for management and conservation. Reproduction of humpback whales (Megaptera novaeangliae) is difficult to monitor and, even with long-term sighting studies, basic physiological information such as pregnancy rates and calving intervals remain poorly understood in many populations. We hypothesized that pregnant whales have sustained elevations in baleen progesterone that temporally correlate with gestation. To test this hypothesis, baleen progesterone profiles from two adult female North Pacific humpbacks, both with extensive sighting records and documented pregnancies, were compared to those of a nulliparous female (adult female never seen with a calf) and a juvenile male. Baleen specimens recovered during necropsy were subsampled every 2 cm from the base to the tip of the plate, with each interval representing 30-45 days of growth. Homogenized baleen powder was assayed for progesterone using enzyme immunoassays. The date of growth of each sampling location on the baleen plate was estimated based on stable isotope analysis of annual δ15N cycles. Progesterone profiles from both pregnant whales showed sustained high progesterone content (>350 ng/g) in areas corresponding to known pregnancies, inferred from calf sightings and post-mortem data. The younger female, estimated to be 13 years old, had higher progesterone during pregnancy than the 44.5 year old, but levels during non-pregnancy were similar. The nulliparous female and the male had low progesterone throughout their baleen plates. Baleen hormone analysis can determine how progesterone concentrations change throughout gestation and has potential for estimating age at first reproduction, pregnancy intervals, failed pregnancies and early calf mortality. Understanding rates of calving and current and historic reproductive patterns in humpbacks is vital to continuing conservation measures in this species.
Collapse
Affiliation(s)
- Carley L Lowe
- Department of Biological Sciences, Northern Arizona
University, Flagstaff, AZ 86011, USA
| | - Kathleen E Hunt
- Department of Biology, George Mason University and
Smithsonian-Mason School of Conservation, Front Royal, VA 22630,
USA
| | - Matthew C Rogers
- Alaska Fisheries Science Center Auke Bay Laboratories, NOAA,
National Marine Fisheries Service, Juneau, AK 99801, USA
| | - Janet L Neilson
- Humpback Whale Monitoring Program, Glacier Bay National Park
and Preserve, Gustavus, AK 99826, USA
| | - Jooke Robbins
- Center for Coastal Studies, Provincetown, MA
02657, USA
| | - Christine M Gabriele
- Humpback Whale Monitoring Program, Glacier Bay National Park
and Preserve, Gustavus, AK 99826, USA
| | | | | | - C Loren Buck
- Department of Biological Sciences, Northern Arizona
University, Flagstaff, AZ 86011, USA
| |
Collapse
|
16
|
McMahon EK, Cavigelli SA. Gaps to Address in Ecological Studies of Temperament and Physiology. Integr Comp Biol 2021; 61:1917-1932. [PMID: 34097030 DOI: 10.1093/icb/icab118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ecology is a diverse field with many researchers interested in drivers and consequences of variability within populations. Two aspects of variability that have been addressed are behavioral and physiological. While these have been shown to separately influence ecological outcomes such as survival, reproductive success and fitness, combined they could better predict within-population variability in survival and fitness. Recently there has been a focus on potential fitness outcomes of consistent behavioral traits that are referred to as personality or temperament (e.g. boldness, sociability, exploration, etc.). Given this recent focus, it is an optimal time to identify areas to supplement in this field, particularly in determining the relationship between temperament and physiological traits. To maximize progress, in this perspective paper we propose that the following two areas be addressed: (1) increased diversity of species, and (2) increased number of physiological processes studied, with an eye toward using more representative and relatively consistent measures across studies. We first highlight information that has been gleaned from species that are frequently studied to determine how animal personality relates to physiology and/or survival/fitness. We then shine a spotlight on important taxa that have been understudied and that can contribute meaningful, complementary information to this area of research. And last, we propose a brief array of physiological processes to relate to temperament, and that can significantly impact fitness, and that may be accessible in field studies.
Collapse
Affiliation(s)
- Elyse K McMahon
- Ecology Graduate Program, Pennsylvania State University, University Park, PA 16802, USA.,Center for Brain, Behavior, and Cognition, Pennsylvania State University, University Park, PA 16802, USA.,Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802, USA
| | - Sonia A Cavigelli
- Center for Brain, Behavior, and Cognition, Pennsylvania State University, University Park, PA 16802, USA.,Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
17
|
Lowe CL, Hunt KE, Robbins J, Seton RE, Rogers M, Gabriele CM, Neilson JL, Landry S, Teerlink SS, Buck CL. Patterns of cortisol and corticosterone concentrations in humpback whale ( Megaptera novaeangliae) baleen are associated with different causes of death. CONSERVATION PHYSIOLOGY 2021; 9:coab096. [PMID: 34987826 PMCID: PMC8710851 DOI: 10.1093/conphys/coab096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/08/2021] [Accepted: 12/06/2021] [Indexed: 05/15/2023]
Abstract
Baleen whales are subject to a myriad of natural and anthropogenic stressors, but understanding how these stressors affect physiology is difficult. Measurement of adrenal glucocorticoid (GC) hormones involved in the vertebrate stress response (cortisol and corticosterone) in baleen could help fill this data gap. Baleen analysis is a powerful tool, allowing for a retrospective re-creation of multiple years of GC hormone concentrations at approximately a monthly resolution. We hypothesized that whales that died from acute causes (e.g. ship strike) would have lower levels of baleen GCs than whales that died from extended illness or injury (e.g. long-term entanglement in fishing gear). To test this hypothesis, we extracted hormones from baleen plates of four humpback whales (Megaptera novaeangliae) with well-documented deaths including multiple and chronic entanglements (n = 1, female), ship strike (n = 2, male and female) and chronic illness with nutritional stress (n = 1, male). Over ~3 years of baleen growth and during multiple entanglements, the entangled whale had average corticosterone levels of 80-187% higher than the other three whales but cortisol levels were similar to two of the other three whales. The nutritionally stressed and chronically ill whale showed a slow increase in both cortisol and corticosterone spanning ~3 years, followed by a sharp decline in both hormones before death, possibly indicative of adrenal failure in this moribund individual. This whale's correlation between cortisol and corticosterone was significant but there were no correlations in the other three whales. Our results show that cortisol and corticosterone concentrations vary according to the type and duration of illness or injury. Single-point GC concentrations should be interpreted with caution as low values can occur in whales experiencing pronounced stress and individual baselines can be highly variable. Baleen analysis is a promising tissue type for retrospective analyses of physiological responses to various stressors affecting baleen whales.
Collapse
Affiliation(s)
- Carley L Lowe
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86001, USA
- Corresponding author: Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86001, USA. Tel: 702-524-3667. Fax: 928-523-7500.
| | - Kathleen E Hunt
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86001, USA
- Smithsonian-Mason School of Conservation & George Mason University, Front Royal, VA 22630, USA
| | - Jooke Robbins
- Center for Coastal Studies, Provincetown, MA 02657, USA
| | - Rosemary E Seton
- Allied Whale, College of the Atlantic, Bar Harbor, ME 04609, USA
| | - Matthew Rogers
- NOAA Fisheries, Alaska Fisheries Science Center Auke Bay Laboratories, Juneau, AK 99801, USA
| | | | - Janet L Neilson
- Glacier Bay National Park & Preserve, Gustavus, AK 99826, USA
| | - Scott Landry
- Center for Coastal Studies, Provincetown, MA 02657, USA
| | - Suzie S Teerlink
- NOAA Fisheries, Alaska Regional Office, Protected Resources Division, Juneau AK, 99801 USA
| | - C Loren Buck
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86001, USA
| |
Collapse
|
18
|
Social, Reproductive and Contextual Influences on Fecal Glucocorticoid Metabolites in Captive Yangtze Finless Porpoises (Neophocaena asiaeorientalis asiaeorientalis) and Bottlenose Dolphins (Tursiops truncatus). JOURNAL OF ZOOLOGICAL AND BOTANICAL GARDENS 2020. [DOI: 10.3390/jzbg1010003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Although the use of fecal glucocorticoid metabolite (FGCM) measurements as non-invasive biomarkers for the stress response in mammals has increased, few studies have been conducted in odontocetes. We investigated if animal sex, age, pregnancy or contextual variations (season, sampling time, enrichment, social separation and presence of visitors) influenced the FGCM concentrations in presumably healthy, captive and endangered Yangtze finless porpoises (YFPs, N = 4) and bottlenose dolphins (BDs, N = 3). For YFPs, the FGCM concentrations were influenced by season (p = 0.01), diurnal variation (p = 0.01) and pregnancy (p = 0.005). Contextual variables that were associated with increases in FGCM concentrations included social separations (p = 0.003) and numbers of visitors (p = 0.0002). Concentrations of FGCMs were lower (p = 0.001) after exposure to environmental enrichment. For BDs, enrichment was associated with reduced concentrations of FGCMs (p < 0.0001). The presence of visitors also influenced this species’ FGCM concentrations (p = 0.006). These results demonstrate that changes in the FGCM concentrations in YFPs and BDs may occur in response to contextual and social changes. In combination with other behavioral and physiological assessments, measurements of FGCMs may be a useful tool for monitoring cetacean welfare. Such monitoring may help researchers identify and better understand situations that may be stressful for animals and, therefore, improve management and husbandry. Furthermore, results from our study and inferences of the FGCM concentrations in cetaceans, and their potential relationship to stress, may be extrapolated to studies of free-ranging animals, which may help detect possible environmental or anthropogenic stressors that could be affecting these populations.
Collapse
|
19
|
Cates KA, Atkinson S, Pack AA, Straley JM, Gabriele CM, Yin S. Corticosterone in central North Pacific male humpback whales (Megaptera novaeangliae): Pairing sighting histories with endocrine markers to assess stress. Gen Comp Endocrinol 2020; 296:113540. [PMID: 32585212 DOI: 10.1016/j.ygcen.2020.113540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/08/2020] [Accepted: 06/13/2020] [Indexed: 10/24/2022]
Abstract
Developing a better understanding of the stress response is critical to ensuring the health and sustainability of marine mammal populations. However, accurately measuring and interpreting a stress response in free-ranging, large cetaceans is a nascent field. Here, an enzyme immunoassay for corticosterone was validated for use in biopsy samples from male humpback whales (Megaptera novaeangliae). Analyses were conducted on 247 male North Pacific humpback whale blubber samples, including 238 non-calves and 9 calves that were collected on the Hawaiian breeding and Southeast Alaskan feeding grounds from 2004 to 2006. Significant relationships were found when corticosterone concentrations were examined by year, age class and distribution between locations. When examined by year, corticosterone concentrations for male humpback whales were higher in Hawaii in 2004 than in 2005 and 2006 (p < 0.05). Corticosterone concentration also varied by age class with initially high concentrations at birth which subsequently tapered off and remained relatively low until sexual maturity was reached around age 8-10 years. Corticosterone concentrations appeared to peak in male humpback whales around 15-25 years of age. Blubber biopsies from Alaska and Hawaii had similar mean corticosterone concentrations, yet the variability in these samples was much greater for whales located in Hawaii. It is clear that much work remains to be done in order to accurately define or monitor a stress response in male humpback whales and that specific attention is required when looking at age, sex, and yearly trends. Our results suggest that a stress response may be most impacted by age and yearly oceanographic conditions and needs to be initially examined at the individual level.
Collapse
Affiliation(s)
- Kelly A Cates
- University of Alaska Fairbanks, College of Fisheries and Ocean Sciences, Fisheries Department, Juneau Center, 17101 Pt. Lena Loop Road, Juneau, Alaska 99801, USA.
| | - Shannon Atkinson
- University of Alaska Fairbanks, College of Fisheries and Ocean Sciences, Fisheries Department, Juneau Center, 17101 Pt. Lena Loop Road, Juneau, Alaska 99801, USA
| | - Adam A Pack
- Departments of Psychology and Biology, University of Hawai'i at Hilo, 200 West Kawili Street, Hilo, Hawai'i 96720, USA; The Dolphin Institute, P.O. Box 6279, Hilo, Hawai'i 96720, USA
| | - Janice M Straley
- University of Alaska Southeast Sitka Campus, 1332 Seward Ave., Sitka, Alaska 99835, USA
| | | | - Suzanne Yin
- Hawai'i Marine Mammal Consortium, P.O. Box 6107, Kamuela, Hawai'i 96743, USA
| |
Collapse
|
20
|
Pujade Busqueta L, Crocker DE, Champagne CD, McCormley MC, Deyarmin JS, Houser DS, Khudyakov JI. A blubber gene expression index for evaluating stress in marine mammals. CONSERVATION PHYSIOLOGY 2020; 8:coaa082. [PMID: 32904591 PMCID: PMC7456562 DOI: 10.1093/conphys/coaa082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/06/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Evaluating the impacts of anthropogenic disturbance on free-ranging marine mammal populations, many of which are in decline, requires robust diagnostic markers of physiological stress and health. However, circulating levels of canonical 'stress hormones' such as glucocorticoids, which are commonly used to evaluate animal health, do not capture the complexity of species-specific responses and cannot be easily measured in large, fully aquatic marine mammals. Alternatively, expression of stress-responsive genes in hormone target tissues such as blubber, the specialized subcutaneous adipose tissue that can be manually or remotely sampled from many marine mammals, may be a more informative and sensitive indicator of recent (within 24 h) exposure to stressors. We previously identified genes that were upregulated in the inner blubber of juvenile northern elephant seals during experimental stimulation of the hypothalamic-pituitary-adrenal axis. In this study, we measured baseline expression levels of a subset of these genes in inner blubber of unmanipulated juvenile elephant seals of varying physiological states and correlated them with other stress markers (body condition index, corticosteroid and thyroid hormone levels). Expression of 10 genes, including those associated with lipid metabolism (ACSL1, HMGCS2, CDO1), redox homeostasis (GPX3), adipokine signaling (ADIPOQ), lipid droplet formation (PLIN1, CIDEA) and adipogenesis (DKK1, AZGP1, TGFBI), was described by three principal components and was associated with cortisol and thyroid hormone levels. Significantly, baseline gene expression levels were predictive of circulating hormone levels, suggesting that these markers may be potential indicators of exposure to stressors in marine mammal species that are inaccessible for blood sampling. A similar approach may be used to identify species-specific stress markers in other tissues that can be sampled by remote biopsy dart from free-ranging marine mammals, such as outer blubber and skin.
Collapse
Affiliation(s)
- Laura Pujade Busqueta
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Daniel E Crocker
- Biology Department, Sonoma State University, Rohnert Park, CA 94928, USA
| | | | - Molly C McCormley
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Jared S Deyarmin
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | | | - Jane I Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
- National Marine Mammal Foundation, San Diego, CA 92106, USA
| |
Collapse
|
21
|
Magnadóttir B, Uysal-Onganer P, Kraev I, Svansson V, Hayes P, Lange S. Deiminated proteins and extracellular vesicles - Novel serum biomarkers in whales and orca. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 34:100676. [PMID: 32114311 DOI: 10.1016/j.cbd.2020.100676] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/16/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
Peptidylarginine deiminases (PADs) are a family of phylogenetically conserved calcium-dependent enzymes which cause post-translational protein deimination. This can result in neoepitope generation, affect gene regulation and allow for protein moonlighting via functional and structural changes in target proteins. Extracellular vesicles (EVs) carry cargo proteins and genetic material and are released from cells as part of cellular communication. EVs are found in most body fluids where they can be useful biomarkers for assessment of health status. Here, serum-derived EVs were profiled, and post-translationally deiminated proteins and EV-related microRNAs are described in 5 ceataceans: minke whale, fin whale, humpback whale, Cuvier's beaked whale and orca. EV-serum profiles were assessed by transmission electron microscopy and nanoparticle tracking analysis. EV profiles varied between the 5 species and were identified to contain deiminated proteins and selected key inflammatory and metabolic microRNAs. A range of proteins, critical for immune responses and metabolism were identified to be deiminated in cetacean sera, with some shared KEGG pathways of deiminated proteins relating to immunity and physiology, while some KEGG pathways were species-specific. This is the first study to characterise and profile EVs and to report deiminated proteins and putative effects of protein-protein interaction networks via such post-translationald deimination in cetaceans, revealing key immune and metabolic factors to undergo this post-translational modification. Deiminated proteins and EVs profiles may possibly be developed as new biomarkers for assessing health status of sea mammals.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK.
| | - Vilhjálmur Svansson
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland
| | - Polly Hayes
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|
22
|
Lemos LS, Olsen A, Smith A, Chandler TE, Larson S, Hunt K, Torres LG. Assessment of fecal steroid and thyroid hormone metabolites in eastern North Pacific gray whales. CONSERVATION PHYSIOLOGY 2020; 8:coaa110. [PMID: 33304590 PMCID: PMC7720082 DOI: 10.1093/conphys/coaa110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/22/2020] [Accepted: 12/03/2020] [Indexed: 05/08/2023]
Abstract
Baleen whale fecal samples have high potential for endocrine monitoring, which can be used as a non-invasive tool to identify the physiological response to disturbance events and describe population health and vital rates. In this study, we used commercial enzyme-linked immunosorbent assays to validate and quantify fecal steroid (progestins, androgens and glucocorticoids) and thyroid hormone metabolite concentrations in eastern North Pacific gray whales (Eschrichtius robustus) along the Oregon coast, USA, from May to October of 2016-2018. Higher mean progestin metabolite concentrations were observed in postweaning females, followed by pregnant females. Mean androgen, glucocorticoid and thyroid metabolites were higher in mature males. Progestin, glucocorticoids and thyroid fecal metabolites varied significantly by year, with positive correlations between progestin and androgen, and between glucocorticoid and thyroid metabolites. We also present two case studies of a documented injured whale and a mature male displaying reproductive competitive behavior, which provide reference points for physiologically stressed individuals and adult breeding males, respectively. Our methods and findings advance the knowledge of baleen whale physiology, can help guide future research on whale physiology and can inform population management and conservation efforts regarding minimizing the impact of anthropogenic stressors on whales.
Collapse
Affiliation(s)
- Leila S Lemos
- Fisheries and Wildlife Department, Marine Mammal Institute, Oregon State University, 2030 SE Marine Science Dr, Newport, OR 97365, USA
- Corresponding author: Fisheries and Wildlife Department, Marine Mammal Institute, Oregon State University, 2030 SE Marine Science Dr, Newport, OR 97365, USA. Tel: +1 (971) 3409610.
| | - Amy Olsen
- Conservation Programs and Partnerships, Seattle Aquarium, 1483 Alaskan Way, Seattle, WA 98101, USA
| | - Angela Smith
- Conservation Programs and Partnerships, Seattle Aquarium, 1483 Alaskan Way, Seattle, WA 98101, USA
| | - Todd E Chandler
- Fisheries and Wildlife Department, Marine Mammal Institute, Oregon State University, 2030 SE Marine Science Dr, Newport, OR 97365, USA
| | - Shawn Larson
- Conservation Programs and Partnerships, Seattle Aquarium, 1483 Alaskan Way, Seattle, WA 98101, USA
| | - Kathleen Hunt
- Smithsonian-Mason School of Conservation, 1500 Remount Road, Front Royal, VA 22630, USA
| | - Leigh G Torres
- Fisheries and Wildlife Department, Marine Mammal Institute, Oregon State University, 2030 SE Marine Science Dr, Newport, OR 97365, USA
| |
Collapse
|
23
|
Hammond TT, Vo M, Burton CT, Surber LL, Lacey EA, Smith JE. Physiological and behavioral responses to anthropogenic stressors in a human-tolerant mammal. J Mammal 2019. [DOI: 10.1093/jmammal/gyz134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Abstract
As humans continue to alter natural habitats, many wild animals are facing novel suites of environmental stimuli. These changes, including increased human–wildlife interactions, may exert sublethal impacts on wildlife such as alterations in stress physiology and behavior. California ground squirrels (Otospermophilus beecheyi) occur in human-modified as well as more pristine environments, where they face a variety of anthropogenic and naturally occurring threats. This makes this species a valuable model for examining the effects of diverse challenges on the physiology and behavior of free-living mammals. To explore potential sublethal effects of habitat modification on O. beecheyi, we compared body masses, behaviors, and fecal glucocorticoid metabolite (FGM) levels for free-living squirrels in human-disturbed versus undisturbed habitats. Prior to these analyses, we validated the use of FGMs in this species by exposing captive O. beecheyi to pharmacological and handling challenges; both challenges produced significant increases in FGMs in the study animals. While FGM responses were repeatable within captive individuals, responses by free-living animals were more variable, perhaps reflecting a greater range of life-history traits and environmental conditions within natural populations of squirrels. Animals from our human-disturbed study site had significantly higher FGMs, significantly lower body masses, and were significantly less behaviorally reactive to humans than those from our more pristine study site. Thus, despite frequent exposure of California ground squirrels to human impacts, anthropogenic stressors appear to influence stress physiology and other phenotypic traits in this species. These findings suggest that even human-tolerant mammalian species may experience important sublethal consequences due to human modifications of natural habitats.
Collapse
Affiliation(s)
- Talisin T Hammond
- San Diego Zoo Institute for Conservation Research, Escondido, CA, USA
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA
| | - Minnie Vo
- Biology Department, Mills College, Oakland, CA, USA
| | | | | | - Eileen A Lacey
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA
| | | |
Collapse
|