1
|
Toyota K. Crustacean endocrinology: Sexual differentiation and potential application for aquaculture. Gen Comp Endocrinol 2024; 356:114578. [PMID: 38971237 DOI: 10.1016/j.ygcen.2024.114578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
Crustaceans, which represent a significant subset of arthropods, are classified into three major classes: Ostracoda, Malacostraca, and Branchiopoda. Among them, sex manipulation in decapod species from the Malacostraca class has been extensively researched for aquaculture purposes and to study reproductive physiology and sexual plasticity. Some decapods exhibit sexual dimorphism that influences their biological and economic value. Monosex culture, in which only one sex is cultivated, increases production yields while reducing the risk of invasiveness, as genetic leakage into natural waters is less likely to occur. Differences in yield are also observed when cultivating different sexes, with all-male cultures of Macrobrachium rosenbergii being more profitable than both mixed and all-female cultures. Research on decapod sexual differentiation has led to a better understanding of sex determination and sexual differentiation processes in arthropods. Similar to most mammals and other vertebrate classes, Malacostraca crustaceans, including decapods, exhibit a cell-non-autonomous mode of sexual development. Genetic factors (e.g., sex chromosomes) and endocrine factors (e.g., insulin-like androgenic gland factor and crustacean female sex hormone) play pivotal roles in the development of sexually dimorphic traits. This review synthesizes the existing understanding of sex determination mechanisms and the role of sex hormones in decapod species. Additionally, it provides an overview of the methyl farnesoate, which has been suggested to be involved in male sex differentiation in some crab species, as well as the phenomenon of male-to-female sex reversal in host decapods caused by parasitic crustaceans.
Collapse
Affiliation(s)
- Kenji Toyota
- Department of Bioresource Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima, Hiroshima 739-8528, Japan; Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan; Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| |
Collapse
|
2
|
Glaviano F, Esposito R, Somma E, Sagi A, Aflalo ED, Costantini M, Zupo V. Molecular Approaches Detect Early Signals of Programmed Cell Death in Hippolyte inermis Leach. Curr Issues Mol Biol 2024; 46:6169-6185. [PMID: 38921039 PMCID: PMC11202572 DOI: 10.3390/cimb46060368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
The protandric shrimp Hippolyte inermis is the only known marine invertebrate whose sex determination is strongly influenced by the composition of its food. In H. inermis, a sex reversal is triggered by the ingestion of diatoms of the genus Cocconeis associated with leaves of the seagrass Posidonia oceanica. These diatoms contain compounds that promote programmed cell death (PCD) in H. inermis and also in human cancer cells. Transcriptomic analyses suggested that ferroptosis is the primary trigger of the shrimp's sex reversal, leading to the rapid destruction of the androgen gland (AG) followed by a chain of apoptotic events transforming the testes into ovaries. Here, we propose a molecular approach to detect the effects of compounds stimulating the PCD. An RNA extraction method, suitable for young shrimp post-larvae (five days after metamorphosis; PL5 stage), was established. In addition, six genes involved in apoptosis, four involved in ferroptosis, and seven involved in the AG switch were mined from the transcriptome, and their expression levels were followed using real-time qPCR in PL5 fed on Cocconeis spp., compared to PL5 fed on a basic control feed. Our molecular approach, which detected early signals of sex reversal, represents a powerful instrument for investigating physiological progression and patterns of PCD in marine invertebrates. It exemplifies the physiological changes that may start a few days after the settlement of post-larvae and determine the life destiny of an individual.
Collapse
Affiliation(s)
- Francesca Glaviano
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, 80077 Ischia, Italy; (F.G.); (E.S.)
| | - Roberta Esposito
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton n. 55, 80133 Naples, Italy;
| | - Emanuele Somma
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, 80077 Ischia, Italy; (F.G.); (E.S.)
- Department of Life Science, University of Trieste, Via L. Giorgieri, 10, 34127 Trieste, Italy
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel; (A.S.); (E.D.A.)
| | - Eliahu D. Aflalo
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel; (A.S.); (E.D.A.)
- Department of Life Sciences, Achva Academic College, Arugot 7980400, Israel
| | - Maria Costantini
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton n. 55, 80133 Naples, Italy;
| | - Valerio Zupo
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, 80077 Ischia, Italy; (F.G.); (E.S.)
| |
Collapse
|
3
|
Wang T, Bachvaroff T, Chung JS. Identifying the genes involved in the egg-carrying ovigerous hair development of the female blue crab Callinectes sapidus: transcriptomic and genomic expression analyses. BMC Genomics 2023; 24:764. [PMID: 38082257 PMCID: PMC10712104 DOI: 10.1186/s12864-023-09862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Crustacean female sex hormone (CFSH) controls gradually developing adult female-specific morphological features essential for mating and brood care. Specifically, ovigerous hairs are developed during the prepuberty molt cycle of the blue crab Callinectes sapidus that are essential for carrying the eggs until they finish development. Reduced CFSH transcripts by CFSH-dsRNA injections result in fewer and shorter ovigerous hairs than the control. This study aimed to identify the specific genes responsible for ovigerous hair formation using transcriptomic, genomic and expression analyses of the ovigerous setae at three stages: prepuberty at early (OE) and late premolt (OL), and adult (AO) stages. RESULTS The de novo Trinity assembly on filtered sequence reads produced 96,684 Trinity genes and 124,128 transcripts with an N50 of 1,615 bp. About 27.3% of the assembled Trinity genes are annotated to the public protein sequence databases (i.e., NR, Swiss-Prot, COG, KEGG, and GO databases). The OE vs. OL, OL vs. AO, and OE vs. AO comparisons resulted in 6,547, 7,793, and 7,481 differentially expressed genes, respectively, at a log2-fold difference. Specifically, the genes involved in the Wnt signaling and cell cycle pathways are positively associated with ovigerous hair development. Moreover, the transcripts of ten cuticle protein genes containing chitin-binding domains are most significantly changed by transcriptomic analysis and RT-qPCR assays, which shows a molt-stage specific, down-up-down mode across the OE-OL-AO stages. Furthermore, the expression of the cuticle genes with the chitin-binding domain, Rebers and Riddiford domain (RR)-1 appears at early premolt, followed by RR-2 at late premolt stage. Mapping these 10 cuticle protein sequences to the C. sapidus genome reveals that two scaffolds with a 549.5Kb region and 35 with a 1.19 Mb region harbor 21 RR1 and 20 RR2 cuticle protein genes, respectively. With these findings, a putative mode of CFSH action in decapod crustaceans is proposed. CONCLUSIONS The present study describes a first step in understanding the mechanism underlying ovigerous hair formation in C. sapidus at the molecular level. Overall, demonstrating the first transcriptome analysis of crustacean ovigerous setae, our results may facilitate future studies into the decapod female reproduction belonging to the suborder Pleocyemata.
Collapse
Affiliation(s)
- Tao Wang
- Department of Marine Biotechnology & Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, 21202, USA
| | - Tsvetan Bachvaroff
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, 21202, USA
| | - J Sook Chung
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, 21202, USA.
| |
Collapse
|
4
|
Toyota K, Mekuchi M, Akashi H, Miyagawa S, Ohira T. Sexual dimorphic eyestalk transcriptome of kuruma prawn Marsupenaeus japonicus. Gene 2023; 885:147700. [PMID: 37572801 DOI: 10.1016/j.gene.2023.147700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/22/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
Kuruma prawn (Marsupenaeus japonicus) is a benthic decapod crustacean that is widely distributed in the Indo-West Pacific region. It is one of the most important fishery resources in Japan, but its annual catches have declined sharply since the 1990s. To increase stocks, various approaches such as seed production and aquaculture were attempted. Since the demand for important fishery species, including kuruma prawn, is expected to increase worldwide in the future, there is a need to develop new technologies that will make aquaculture more efficient. Historically, the eyestalk endocrine organ is known to consist of the X-organ and sinus gland (XO/SG) complex that synthesizes and secrets various neuropeptide hormones that regulate growth, molt, sexual maturation, reproduction, and changes in body color. In the current study, eyestalk-derived neuropeptides were identified in the transcriptome. In addition, most orthologs of sex-determination genes were expressed in eyestalks. We identified two doublesex genes (MjapDsx1 and MjapDsx2) and found that MjapDsx1 showed male-biased expression in the eyestalk ganglion with no sex-specific splicing, unlike insect species. Therefore, this study will provide an opportunity to advance the research of neuropeptides and sex determination in the kuruma prawn.
Collapse
Affiliation(s)
- Kenji Toyota
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Ishikawa 927-0553, Japan; Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan; Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan.
| | - Miyuki Mekuchi
- Yokohama Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, 2-12-4 Hukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan
| | - Hiroshi Akashi
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan; Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Tsuyoshi Ohira
- Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan.
| |
Collapse
|
5
|
Wang Y, Liu A, Huang Y, Lu L, Guo S, Ye H. Role of crustacean female sex hormone in regulating immune response in the mud crab, Scylla paramamosain. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109094. [PMID: 37774904 DOI: 10.1016/j.fsi.2023.109094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 10/01/2023]
Abstract
Crustacean female sex hormone (CFSH) is responsible for sexual differentiation in crustaceans. The CFSH exhibited an interleukin-17 domain homologous to vertebrate IL-17, a family of inflammatory cytokines that play vital roles in immune defense. However, the immunoregulation of CFSH in crustaceans is a mystery. Therefore, this study aimed to investigate the immune regulatory roles of CFSH and CFSHR in the mud crab Scylla paramamosain. This study's immunofluorescence result revealed that Sp-CFSHR was highly expressed in granulocytes and semi-granulocytes but had moderate expression in hyalinocytes. The expression level of Sp-CFSH transcript in eyestalk ganglia and Sp-CFSHR in hemocytes were significantly up-regulated by the Poly (I:C) stimulation but significantly down-regulated in response to the lipopolysaccharide (LPS) stimulation. In our study, in vitro experiment exhibited that the nuclear transcription factors NF-κB signaling molecules (Sp-Dorsal and Sp-Relish), Sp-STAT, apoptosis-related gene Sp-IAP, and phagocytosis related gene (Sp-Rab5) expressions were significantly increased in hemocytes by recombinant CFSH (rCFSH) in vitro, but the pro-inflammatory cytokine gene (Sp-IL-16) expression was significantly suppressed. Finally, the rCFSH injection significantly up-regulated Sp-Dorsal, Sp-Relish, Sp-IAP, Sp-Caspase, Sp-ALF2, and C-type lectin (Sp-CTL-B) expressions in hemocytes as well as enhanced the bacterial clearance of the mud crab. In conclusion, our results suggested that CFSH may be a counterpart of vertebrate IL-17 in crustaceans that can enhance innate immunity to defense against Vibrionaceae infection via the NF-κB and/or JAK-STAT signaling pathways. This study provides the first evidence that CFSH is involved in the immunoregulation in crustaceans and enriches the insight of neuroendocrine-immune regulatory system, which providing new ideas for disease prevention in the mud crab industry.
Collapse
Affiliation(s)
- Yanan Wang
- College of Fisheries, Jimei University, Xiamen, 361021, China
| | - An Liu
- College of Fisheries, Jimei University, Xiamen, 361021, China
| | - Yuzhen Huang
- College of Fisheries, Jimei University, Xiamen, 361021, China
| | - Li Lu
- College of Fisheries, Jimei University, Xiamen, 361021, China
| | - Songlin Guo
- College of Fisheries, Jimei University, Xiamen, 361021, China.
| | - Haihui Ye
- College of Fisheries, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
6
|
Liu F, Huang L, Liu A, Jiang Q, Huang H, Ye H. Identification of a Putative CFSH Receptor Inhibiting IAG Expression in Crabs. Int J Mol Sci 2023; 24:12240. [PMID: 37569617 PMCID: PMC10418988 DOI: 10.3390/ijms241512240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
The crustacean female sex hormone (CFSH) is a neurohormone peculiar to crustaceans that plays a vital role in sexual differentiation. This includes the preservation and establishment of secondary female sexual traits, as well as the inhibition of insulin-like androgenic gland factor (IAG) expression in the androgenic gland (AG). There have been no reports of CFSH receptors in crustaceans up to this point. In this study, we identified a candidate CFSH receptor from the mud crab Scylla paramamosain (named Sp-SEFIR) via protein interaction experiments and biological function experiments. Results of GST pull-down assays indicated that Sp-SEFIR could combine with Sp-CFSH. Findings of in vitro and in vivo interference investigations exhibited that knockdown of Sp-SEFIR could significantly induce Sp-IAG and Sp-STAT expression in the AG. In brief, Sp-SEFIR is a potential CFSH receptor in S. paramamosain, and Sp-CFSH controls Sp-IAG production through the CFSH-SEFIR-STAT-IAG axis.
Collapse
Affiliation(s)
- Fang Liu
- Fisheries College, Jimei University, Xiamen 361021, China; (F.L.); (A.L.)
| | - Lin Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (L.H.); (Q.J.); (H.H.)
| | - An Liu
- Fisheries College, Jimei University, Xiamen 361021, China; (F.L.); (A.L.)
| | - Qingling Jiang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (L.H.); (Q.J.); (H.H.)
| | - Huiyang Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (L.H.); (Q.J.); (H.H.)
| | - Haihui Ye
- Fisheries College, Jimei University, Xiamen 361021, China; (F.L.); (A.L.)
| |
Collapse
|
7
|
Toyota K, Yamamoto T, Mori T, Mekuchi M, Miyagawa S, Ihara M, Shigenobu S, Ohira T. Eyestalk transcriptome and methyl farnesoate titers provide insight into the physiological changes in the male snow crab, Chionoecetes opilio, after its terminal molt. Sci Rep 2023; 13:7204. [PMID: 37137964 PMCID: PMC10156855 DOI: 10.1038/s41598-023-34159-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023] Open
Abstract
The snow crab, Chionoecetes opilio, is a giant deep-sea brachyuran. While several decapod crustaceans generally continue to molt and grow throughout their lifetime, the snow crab has a fixed number of molts. Adolescent males continue to molt proportionately to their previous size until the terminal molt at which time an allometric increase in chela size occurs and an alteration of behavioral activities occurs, ensuring breeding success. In this study, we investigated the circulating concentrations of methyl farnesoate (an innate juvenile hormone in decapods) (MF) before or after the terminal molt in males. We then conducted eyestalk RNAseq to obtain molecular insight into the regulation of physiological changes after the terminal molt. Our analyses revealed an increase in MF titers after the terminal molt. This MF surge may be caused by suppression of the genes that encode MF-degrading enzymes and mandibular organ-inhibiting hormone that negatively regulates MF biosynthesis. Moreover, our data suggests that behavioral changes after the terminal molt may be driven by the activation of biogenic amine-related pathways. These results are important not only for elucidating the physiological functions of MFs in decapod crustaceans, which are still largely unknown, but also for understanding the reproductive biology of the snow crab.
Collapse
Affiliation(s)
- Kenji Toyota
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Ishikawa, 927-0553, Japan.
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
- Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa, 259-1293, Japan.
| | - Takeo Yamamoto
- Miyazu Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 1721 Odasyukuno, Miyazu, Kyoto, 626-0052, Japan
| | - Tomoko Mori
- Trans-Omics Facility, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Miyuki Mekuchi
- Yokohama Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, 2-12-4 Hukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Masaru Ihara
- Faculty of Agriculture and Marine Science, Kochi University, 200 Monobe-Otsu, Nankoku, Kochi, 783-8502, Japan
| | - Shuji Shigenobu
- Trans-Omics Facility, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Tsuyoshi Ohira
- Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa, 259-1293, Japan.
| |
Collapse
|
8
|
Liu F, Liu A, Zhu Z, Wang Y, Ye H. Crustacean female sex hormone: More than a female phenotypes-related hormone in a protandric simultaneous hermaphroditism shrimp. Int J Biol Macromol 2023; 238:124181. [PMID: 36965556 DOI: 10.1016/j.ijbiomac.2023.124181] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
Crustacean female sex hormone (CFSH) is believed to regulate the development of female-related phenotypes in crustaceans. However, its role in gonadal development has been understudied. This study identified a CFSH gene, Lvit-CFSH1b, in the peppermint shrimp Lysmata vittata, a protandric simultaneous hermaphroditism (PSH) species. Lvit-CFSH1b is only expressed in the eyestalk ganglion. qRT-PCR showed that the expression level of Lvit-CFSH1b significantly increased with the gonad development from stage I to III (male phase) and decreased at stage IV (euhermaphrodite phase). Gene knockdown of Lvit-CFSH1b resulted in retardation of female phenotypes and stimulated the development of male phenotypes. At the same time, ovarian development was inhibited, and spermatogenesis was promoted. In addition, injection of rCFSH1b increased ovarian expression of vitellogenin (Lvit-Vg) and hepatopancreas expression of vitellogenin receptor (Lvit-VgR), while suppressing the expressions of insulin-like androgenic gland hormones (Lvit-IAG1 and Lvit-IAG2) in androgenic glands. The addition of rCFSH1b induced the in vitro expression of Lvit-Vg in ovarian and Lvit-VgR in hepatopancreas explants. In conclusion, this study provides convincing evidence that CFSH expedites the feminization process and impedes masculinization by inhibiting IAG in hermaphroditic crustaceans.
Collapse
Affiliation(s)
- Fang Liu
- Fisheries College, Jimei University, Xiamen 361021, People's Republic of China
| | - An Liu
- Fisheries College, Jimei University, Xiamen 361021, People's Republic of China
| | - Zhihuang Zhu
- Fisheries Research Institute of Fujian, Xiamen 361013, People's Republic of China
| | - Yilei Wang
- Fisheries College, Jimei University, Xiamen 361021, People's Republic of China.
| | - Haihui Ye
- Fisheries College, Jimei University, Xiamen 361021, People's Republic of China.
| |
Collapse
|
9
|
Wang M, Xu R, Tu S, Yu Q, Xie X, Zhu D. Putative Role of CFSH in the Eyestalk-AG-Testicular Endocrine Axis of the Swimming Crab Portunus trituberculatus. Animals (Basel) 2023; 13:ani13040690. [PMID: 36830477 PMCID: PMC9952137 DOI: 10.3390/ani13040690] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
It has been shown in recent studies that the crustacean female sex hormone (CFSH) plays a crucial role in the development of secondary sexual characteristics in Decapoda crustaceans. However, research on the function of CFSH in the eyestalk-AG-testicular endocrine axis has been inadequate. We cloned and identified a homolog of CFSH, PtCFSH, in this study. RT-PCR showed that PtCFSH was mainly expressed in the eyestalk. A long-term injection of dsPtCFSH and recombinant PtCFSH (rPtCFSH) in vivo showed opposite effects on spermatogenesis-related gene expression and histological features in the testis of P. trituberculatus, and was accompanied by changes in AG morphological characteristics and PtIAG expression. In addition, the phosphorylated-MAPK levels and the expression of several IIS pathway genes in the testis was changed accordingly in two treatments, suggesting that PtCFSH may regulate the testicular development via IAG. The hypothesis was further validated by a mixed injection of both dsPtCFSH and dsPtIAG in vivo. The following in vitro studies confirmed the negatively effects of PtCFSH on AG, and revealed that the PtCFSH can also act directly on the testis. Treatment with rPtCFSH reduced the cAMP and cGMP levels as well as the nitric oxide synthetase activity. These findings provide vital clues to the mechanisms of CFSH action in both the eyestalk-AG-testis endocrinal axis and its direct effects on the testis.
Collapse
Affiliation(s)
| | | | | | | | - Xi Xie
- Correspondence: (X.X.); (D.Z.)
| | | |
Collapse
|
10
|
Zhu D, Feng T, Mo N, Han R, Lu W, Shao S, Cui Z. New insights for the regulatory feedback loop between type 1 crustacean female sex hormone ( CFSH-1) and insulin-like androgenic gland hormone ( IAG) in the Chinese mitten crab ( Eriocheir sinensis). Front Physiol 2022; 13:1054773. [PMID: 36388120 PMCID: PMC9662296 DOI: 10.3389/fphys.2022.1054773] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 08/13/2023] Open
Abstract
To clarify the hormone control on sex determination and differentiation, we studied the Chinese mitten crab, Eriocheir sinensis (Henri Milne Edwards, 1854), a species with importantly economic and ecological significance. The crustacean female sex hormone (CFSH) and the insulin-like androgenic gland hormone (IAG) have been found to be related to the sex determination and/or differentiation. CFSH-1 of E. sinensis (EsCFSH-1) encoded a 227 amino-acid protein including a signal peptide, a CFSH-precursor-related peptide, and a mature CFSH peptide. Normally, EsCFSH-1 was highly expressed in the eyestalk ganglion of adult female crabs, while the expression was declined in the intersex crabs (genetic females). The intersex crabs had the androgenic glands, and the expression level of EsIAG was close to that of male crabs. During the embryogenesis and larval development, the changes of EsCFSH-1 and EsIAG genes expression in male and female individuals were shown after the zoea IV stage. Next, we confirmed the existence of the regulatory feedback loop between EsCFSH-1 and EsIAG by RNA interference experiment. The feminization function of EsCFSH-1 was further verified by examining the morphological change of external reproductive organs after EsCFSH-1 knockdown. The findings of this study reveal that the regulatory interplay between CFSH and IAG might play a pivotal role in the process of sex determination and/or differentiation in decapod crustaceans.
Collapse
Affiliation(s)
- Dandan Zhu
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Tianyi Feng
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Nan Mo
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Rui Han
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Wentao Lu
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Shucheng Shao
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
11
|
Comparative Transcriptomics of Gonads Reveals the Molecular Mechanisms Underlying Gonadal Development in Giant Freshwater Prawns (Macrobrachium rosenbergii). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10060737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The giant freshwater prawn, Macrobrachium rosenbergii, is a prawn that has economic significance throughout the world. It exhibits sex-related growth dimorphism, whereby the males grow significantly more rapidly than the females. Therefore, a study on the molecular regulatory mechanism, which underlies the sexual differentiation of M. rosenbergii, is of both scientific and commercial importance. However, a scarcity of genomic and transcriptomic resources severely limits our knowledge of the sexual differentiation mechanisms in M. rosenbergii. Here, transcriptome sequencing of several gonadic samples of males and females in M. rosenbergii was performed to investigate the molecular basis underlying gonadal development. Our results showed that 2149 unigenes presented as differentially expressed genes (DEGs) in the ovaries of females compared to the testes of males, which contained 484 down-regulated and 1665 up-regulated genes. Enrichment analysis of DEGs revealed many of these genes to be related to sexual differentiation and gonadal development. From our transcriptome analyses, and as confirmed by quantitative real-time PCR, male-related genes (Mrr, MRPINK, IR, IAGBP, TESK1, and dsx) in the testes were significantly up-regulated, and female-related genes (ERR, Sxl3, cyclinB, Dmrt99B, PPP2A, and ADCY9) in the ovaries were also significantly up-regulated. This indicates the potential role these genes play in the gonadal development of M. rosenbergii. Furthermore, multiple signal transduction pathways relating to gonadal maturation and spermatogenesis, including MAPK, were identified herein. Our data also supports previous ideas that IAG and IAGBP-IR signaling schemes could help in the regulation of testis’ development in M. rosenbergii and the ERR gene could regulate ovarian development by affecting the expression of cyclinB, PPP2A, and ADCY9. The data from this study provides incredibly usefully genomic resources for future research on the sexual differentiation and practical aquaculture of M. rosenbergii.
Collapse
|
12
|
Zheng J, Chen L, Jia Y, Chi M, Li F, Cheng S, Liu S, Liu Y, Gu Z. Genomic structure, expression, and functional characterization of the Fem-1 gene family in the redclaw crayfish, Cherax quadricarinatus. Gen Comp Endocrinol 2022; 316:113961. [PMID: 34861280 DOI: 10.1016/j.ygcen.2021.113961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/07/2021] [Accepted: 11/28/2021] [Indexed: 11/22/2022]
Abstract
The Fem-1 (Feminization-1) gene, encoding an intracellular protein with conserved ankyrin repeat motifs, has been proven to play a key role in sex differentiation in Caenorhabditis elegans. In the present study, three members of the Fem-1 gene family (designating Fem-1A, Fem-1B, and Fem-1C, respectively) were cloned and characterized in the redclaw crayfish, Cherax quadricarinatus. Sequence analysis showed that all three Fem-1 genes contained the highly conserved ankyrin repeat motifs with variant repeat numbers, which shared similarity with other reported crustaceans. In addition, a phylogenetic tree revealed that the Fem-1 proteins from C. quadricarinatus were clustered with the crustacean Fem-1 homologs, and had the closest evolutionary relationship with Eriocheir sinensis. Quantitative real-time PCR (qRT-PCR) results demonstrated that Fem-1B exhibited a significant higher expression abundance in the ovary than in other tissues. In addition, a regular mRNA expression pattern of the Fem-1B gene appeared in the reproductive cycle of ovarian development. Furthermore, RNA interference experiments were employed to investigate the role of Fem-1B in ovarian development. Moreover, knockdown of Fem-1B by RNAi decreased the expression of VTG in the ovaries and hepatopancreas. In summary, this study pointed out that Fem-1B was involved in the sex differentiation process through regulating VTG expression in C. quadricarinatus, and provided new insights into the role of Fem-1B in ovary development.
Collapse
Affiliation(s)
- Jianbo Zheng
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Leran Chen
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yongyi Jia
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Meili Chi
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Fei Li
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Shun Cheng
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Shili Liu
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Yinuo Liu
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Zhimin Gu
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
13
|
Liu F, Shi W, Ye H, Zeng C, Zhu Z. Insulin-like androgenic gland hormone 1 (IAG1) regulates sexual differentiation in a hermaphrodite shrimp through feedback to neuroendocrine factors. Gen Comp Endocrinol 2021; 303:113706. [PMID: 33359802 DOI: 10.1016/j.ygcen.2020.113706] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
Insulin-like androgenic gland hormone (IAG) is regarded as a key sexual differentiation regulator in gonochoristic crustaceans. However, until now the knowledge concerning its functions in hermaphroditic crustaceans is scanty. Herein, we investigated the function of IAG (Lvit-IAG1) in peppermint shrimp Lysmata vittata, a species that possesses protandric simultaneous hermaphroditism (PSH) reproductive system, which is rare among crustaceans. Lvit-IAG1 was exclusively expressed in the androgenic gland. The qRT-PCR demonstrated that its mRNA expression level was relatively high at the functional male phase but decreased sharply in the subsequent euhermaphrodite phase. Both the short-term and long-term silencing experiments showed that Lvit-IAG1 negatively regulated both the gonad-inhibiting hormone (Lvit-GIH) and crustacean female sex hormone (Lvit-CFSH) expressions in the eyestalk ganglion. Besides, Lvit-IAG1 gene knockdown induced a retarded development of the appendices masculinae (AM) and male gonopores while suppressing the germ cells at the primary spermatocyte stage. Also, Lvit-IAG1 gene silencing hindered ovarian development. This in turn led to small vitellogenic oocytes and decreased expression of vitellogenin and vitellogenin receptor genes in hepatopancreas and ovarian region, respectively. Generally, this study's findings imply that Lvit-IAG1 modulated the male sexual differentiation in PSH species L. vittata, and exhibited negative feedback on Lvit-GIH and Lvit-CFSH genes expression in the species' eyestalk ganglion.
Collapse
Affiliation(s)
- Fang Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Wenyuan Shi
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Haihui Ye
- College of Fisheries, Jimei University, Xiamen 361021, People's Republic of China.
| | - Chaoshu Zeng
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Zhihuang Zhu
- Fisheries Research Institute of Fujian, Xiamen 361013, People's Republic of China
| |
Collapse
|
14
|
Toyota K, Miyakawa H, Hiruta C, Sato T, Katayama H, Ohira T, Iguchi T. Sex Determination and Differentiation in Decapod and Cladoceran Crustaceans: An Overview of Endocrine Regulation. Genes (Basel) 2021; 12:genes12020305. [PMID: 33669984 PMCID: PMC7924870 DOI: 10.3390/genes12020305] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Mechanisms underlying sex determination and differentiation in animals are known to encompass a diverse array of molecular clues. Recent innovations in high-throughput sequencing and mass spectrometry technologies have been widely applied in non-model organisms without reference genomes. Crustaceans are no exception. They are particularly diverse among the Arthropoda and contain a wide variety of commercially important fishery species such as shrimps, lobsters and crabs (Order Decapoda), and keystone species of aquatic ecosystems such as water fleas (Order Branchiopoda). In terms of decapod sex determination and differentiation, previous approaches have attempted to elucidate their molecular components, to establish mono-sex breeding technology. Here, we overview reports describing the physiological functions of sex hormones regulating masculinization and feminization, and gene discovery by transcriptomics in decapod species. Moreover, this review summarizes the recent progresses of studies on the juvenile hormone-driven sex determination system of the branchiopod genus Daphnia, and then compares sex determination and endocrine systems between decapods and branchiopods. This review provides not only substantial insights for aquaculture research, but also the opportunity to re-organize the current and future trends of this field.
Collapse
Affiliation(s)
- Kenji Toyota
- Marine Biological Station, Sado Center for Ecological Sustainability, Niigata University, Sado, Niigata 952-2135, Japan
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka, Kanagawa 259-1293, Japan;
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
- Correspondence: (K.T.); (T.S.); (T.I.)
| | - Hitoshi Miyakawa
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan;
| | - Chizue Hiruta
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan;
| | - Tomomi Sato
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan
- Correspondence: (K.T.); (T.S.); (T.I.)
| | - Hidekazu Katayama
- Department of Applied Biochemistry, School of Engineering, Tokai University, Kanagawa 259-1292, Japan;
| | - Tsuyoshi Ohira
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka, Kanagawa 259-1293, Japan;
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan
- Correspondence: (K.T.); (T.S.); (T.I.)
| |
Collapse
|
15
|
Transcriptional Inhibition of Sp-IAG by Crustacean Female Sex Hormone in the Mud Crab, Scylla paramamosain. Int J Mol Sci 2020; 21:ijms21155300. [PMID: 32722594 PMCID: PMC7432471 DOI: 10.3390/ijms21155300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 01/09/2023] Open
Abstract
In crustaceans, the regulation of sex differentiation is mediated by insulin-like androgenic hormone (IAG) and crustacean female sex hormone (CFSH). CFSH is reported to inhibit IAG gene (Sp-IAG) expression in the mud crab Scylla paramamosain, but the regulatory mechanism is not well understood. A 2674 bp 5′ flanking Sp-IAG contains many potential transcription factor binding sites. In this study, analysis of serially deleted 5′ flanking Sp-IAG and site-directed mutation (SDM) of transcription factor binding sites of the same gene showed that the promoter activity of reporter vectors with Sox-5-binding site, signal transducers and activators of transcription (STAT)-binding site and activator protein 1 (AP-1)-binding site were significantly higher than that of vectors without these regions, suggesting that they were involved in transcriptional regulation of Sp-IAG expression. The expression analysis of these transcription factor showed that there was no difference in the level of mRNA in Sox-5 and AP-1 in androgenic gland treated with recombinant CFSH, but expression of Sp-STAT was significantly reduced, suggesting that CFSH regulates the expression of Sp-STAT, inhibiting its function to regulate Sp-IAG. Further experiment revealed that RNAi mediated Sp-STAT gene knockdown reduced the expression of Sp-IAG. These results suggested that Sp-CFSH regulates Sp-IAG by inhibiting STAT. This is a pioneering finding on the transcriptional mechanism of IAG gene in crustaceans.
Collapse
|
16
|
Cai L, Zheng J, Jia Y, Gu Z, Liu S, Chi M, Cheng S. Molecular Characterization and Expression Profiling of Three Transformer-2 Splice Isoforms in the Redclaw Crayfish, Cherax quadricarinatus. Front Physiol 2020; 11:631. [PMID: 32733260 PMCID: PMC7363937 DOI: 10.3389/fphys.2020.00631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/18/2020] [Indexed: 12/02/2022] Open
Abstract
Sex determination/sex differentiation is determined by genetics, environmental factors, or the interactions of the two. The Transformer-2 (Tra-2) gene plays an important role in the sex determination cascade signal pathway in insects. In this study, the Tra-2 gene was isolated and characterized from the cDNA library of gonad tissues in the redclaw crayfish, Cherax quadricarinatus. Three splice variants were identified, designated as CqTra-2A, CqTra-2B, and CqTra-2C, and sequence analysis showed that they had a highly conserved RRM domain. Phylogenetic analysis was performed by the NJ method, and the results revealed that the Tra-2 protein of the redclaw crayfish was very closely related to those of Macrobrachium rosenbergii, Fenneropenaeus chinensis, and Macrobrachium nipponense. Real-time PCR analysis showed that the three isoforms were predominantly expressed in the ovary and gradually increased with embryonic development. Additionally, the expression pattern of CqTra-2 at different developmental stages was analyzed by qPCR and revealed that the phase of having a body length of 3 cm may be the key period for the sex differentiation of C. quadricarinatus. RNAi-targeting gene silencing further confirmed the function of CqTra-2 in sexual differentiation in redclaw crayfish. Our experimental data will contribute to understanding the mechanism of sex determination in crustaceans.
Collapse
Affiliation(s)
- Lina Cai
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Jianbo Zheng
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Yongyi Jia
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Zhimin Gu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, National Demonstration Center for Experimental Fisheries Science Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Shili Liu
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Meili Chi
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Shun Cheng
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| |
Collapse
|
17
|
Shi W, Liu F, Liu A, Huang H, Lin Q, Zeng C, Ye H. Roles of gonad-inhibiting hormone in the protandric simultaneous hermaphrodite peppermint shrimp†. Biol Reprod 2020; 103:817-827. [PMID: 32582944 DOI: 10.1093/biolre/ioaa111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/06/2020] [Accepted: 06/19/2020] [Indexed: 11/14/2022] Open
Abstract
To date, the molecular mechanisms of the unique gonadal development mode known as protandric simultaneous hermaphroditism (PSH) are unclear in crustaceans. In this study, cDNA of a gonad-inhibiting hormone (Lv-GIH1) was isolated from the PSH peppermint shrimp Lysmata vittata, and its expression was exclusively found in the eyestalk ganglion. Real-time quantitative polymerase chain reaction (qRT-PCR) revealed that the expression of Lv-GIH1 increased during gonadal development of the functional male stages but decreased significantly at subsequent simultaneous hermaphroditism stage. Further in vitro experiment showed that recombinant GIH1 protein (rGIH1) effectively inhibited Vg expression in the cultured hepatopancreas tissues while the short-term injection of GIH1-dsRNA resulted in reduced expression of Lv-GIH1 and upregulated expression of Vg in the hepatopancreas. Moreover, long-term rGIH1 injection led to significantly reduced expression of Lv-Vg, Lv-VgR, and Lv-CFSH1, subdued growth of oocytes, and feathery setae as a secondary sexual characteristic in females. Interestingly, while germ cells in testicular part were suppressed by rGIH1 injection, the expression of Lv-IAGs showed no significant difference; and long-term GIH1-dsRNA injection results were contrary to those of rGIH1 injection. Taken together, the results of this study indicate that Lv-GIH1 is involved in gonadal development and might also participate in controlling secondary sexual characteristic development in L. vittata by inhibiting Lv-CFSH1 expression.
Collapse
Affiliation(s)
- Wenyuan Shi
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Fang Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, People's Republic of China
| | - An Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Huiyang Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Qi Lin
- Fisheries Research Institute of Fujian, Xiamen, People's Republic of China
| | - Chaoshu Zeng
- College of Science & Engineering, James Cook University, Townsville, Queensland, Australia
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
18
|
Jiang Q, Lin D, Huang H, Wang G, Ye H. DNA Methylation Inhibits the Expression of CFSH in Mud Crab. Front Endocrinol (Lausanne) 2020; 11:163. [PMID: 32328029 PMCID: PMC7160318 DOI: 10.3389/fendo.2020.00163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/09/2020] [Indexed: 11/13/2022] Open
Abstract
Crustacean female sex hormone (CFSH) is a key regulator of crustacean sex differentiation. The expression of Sp-CFSH in the mud crab Scylla paramamosain showed a tissue-specific and gender-variant pattern. To explore the role of DNA methylation in Sp-CFSH expression, the 5'-flanking region of Sp-CFSH was cloned, and one CpG island containing 12 CpG sites was found. Results of sodium bisulfite sequencing and methylated DNA immunoprecipitation showed that CpG island methylation was stable in the eyestalk ganglion during ovarian development of the females, which was significantly lower than that in the muscle of the females and in the eyestalk ganglion of the males. Such results suggested that the involvement of DNA methylation in regulating Sp-CFSH expression followed an eyestalk ganglion-specific and gender-variant pattern. The analysis of CpG dinucleotide site methylation and activity of the site-directed mutation (SDM) reporter vector further demonstrated that methylation inhibited Sp-CFSH expression by blocking the binding of transcription factor Sp1. The finding suggested for the first time the involvement of CpG methylation in the regulation of Sp-CFSH expression.
Collapse
|