1
|
Suzuki M, Funasaka N, Yoshimura K, Inamori D, Watanabe Y, Ozaki M, Hosono M, Shindo H, Kawamura K, Tatsukawa T, Yoshioka M. Comprehensive expression analysis of hormone-like substances in the subcutaneous adipose tissue of the common bottlenose dolphin Tursiops truncatus. Sci Rep 2024; 14:12515. [PMID: 38822022 PMCID: PMC11143283 DOI: 10.1038/s41598-024-63018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/23/2024] [Indexed: 06/02/2024] Open
Abstract
Marine mammals possess a specific subcutaneous fat layer called blubber that not only insulates and stores energy but also secretes bioactive substances. However, our understanding of its role as a secretory organ in cetaceans is incomplete. To exhaustively explore the hormone-like substances produced in dolphin subcutaneous adipose tissue, we performed seasonal blubber biopsies from captive female common bottlenose dolphins (Tursiops truncatus; N = 8, n = 32) and analyzed gene expression via transcriptomics. Analysis of 186 hormone-like substances revealed the expression of 58 substances involved in regulating energy metabolism, tissue growth/differentiation, vascular regulation, immunity, and ion/mineral homeostasis. Adiponectin was the most abundantly expressed gene, followed by angiopoietin protein like 4 and insulin-like growth factor 2. To investigate the endocrine/secretory responses of subcutaneous adipose tissue to the surrounding temperature, we subsequently compared the mean expression levels of the genes during the colder and warmer seasons. In the colder season, molecules associated with appetite suppression, vasodilation, and tissue proliferation were relatively highly expressed. In contrast, warmer seasons enhanced the expression of substances involved in tissue remodeling, immunity, metabolism, and vasoconstriction. These findings suggest that dolphin blubber may function as an active secretory organ involved in the regulation of metabolism, appetite, and tissue reorganization in response to changes in the surrounding environment, providing a basis for elucidating the function of hormone-like substances in group-specific evolved subcutaneous adipose tissue.
Collapse
Affiliation(s)
- Miwa Suzuki
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| | - Noriko Funasaka
- Cetacean Research Center, Graduate School of Bioresources, Mie University, Tsu, Mie, 514-8507, Japan
| | - Kazuma Yoshimura
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Daiki Inamori
- Taiji Whale Museum, Higashimuro, Wakayama, 649-5171, Japan
| | - Yurie Watanabe
- Taiji Whale Museum, Higashimuro, Wakayama, 649-5171, Japan
| | - Miki Ozaki
- Adventure World, Nishimuro, Wakayama, 649-2201, Japan
| | | | - Hideaki Shindo
- Shimonoseki Marine Science Museum, Shimonoseki, Yamaguchi, 750-0036, Japan
| | - Keiko Kawamura
- Shimonoseki Marine Science Museum, Shimonoseki, Yamaguchi, 750-0036, Japan
| | | | - Motoi Yoshioka
- Cetacean Research Center, Graduate School of Bioresources, Mie University, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
2
|
Northey AD, Holser RR, Shipway GT, Costa DP, Crocker DE. Adrenal response to ACTH challenge alters thyroid and immune function and varies with body reserves in molting adult female northern elephant seals. Am J Physiol Regul Integr Comp Physiol 2023; 325:R1-R12. [PMID: 37125769 PMCID: PMC10259847 DOI: 10.1152/ajpregu.00277.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/24/2023] [Accepted: 04/23/2023] [Indexed: 05/02/2023]
Abstract
Intrinsic stressors associated with life-history stages may alter the responsiveness of the hypothalamic-pituitary-adrenal axis and responses to extrinsic stressors. We administered adrenocorticotropic hormone (ACTH) to 24 free-ranging adult female northern elephant seals (NESs) at two life-history stages: early and late in their molting period and measured a suite of endocrine, immune, and metabolite responses. Our objective was to evaluate the impact of extended, high-energy fasting on adrenal responsiveness. Animals were blood sampled every 30 min for 120 min post-ACTH injection, then blood was sampled 24 h later. In response to ACTH injection, cortisol levels increased 8- to 10-fold and remained highly elevated compared with baseline at 24 h. Aldosterone levels increased 6- to 9-fold before returning to baseline at 24 h. The magnitude of cortisol and aldosterone release were strongly associated, and both were greater after extended fasting. We observed an inverse relationship between fat mass and the magnitude of cortisol and aldosterone responses, suggesting that body reserves influenced adrenal responsiveness. Sustained elevation in cortisol was associated with alterations in thyroid hormones; both tT3 and tT4 concentrations were suppressed at 24 h, while rT3 increased. Immune cytokine IL-1β was also suppressed after 24 h of cortisol elevation, and numerous acute and sustained impacts on substrate metabolism were evident. Our data suggest that female NESs are more sensitive to stress after the molt fast and that acute stress events can have important impacts on metabolism and immune function. These findings highlight the importance of considering life-history context when assessing the impacts of anthropogenic stressors on wildlife.
Collapse
Affiliation(s)
- Allison D Northey
- Department of Biology, Sonoma State University, Rohnert Park, California, United States
| | - Rachel R Holser
- Department of Ecology and Evolutionary Biology, Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, California, United States
| | - Garrett T Shipway
- Department of Biology, Sonoma State University, Rohnert Park, California, United States
| | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, California, United States
| | - Daniel E Crocker
- Department of Biology, Sonoma State University, Rohnert Park, California, United States
| |
Collapse
|
3
|
Khudyakov JI, Holser RR, Vierra CA, Ly ST, Niel TK, Hasan BM, Crocker DE, Costa DP. Changes in apolipoprotein abundance dominate proteome responses to prolonged fasting in elephant seals. J Exp Biol 2022; 225:274459. [DOI: 10.1242/jeb.243572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/27/2022] [Indexed: 01/10/2023]
Abstract
ABSTRACT
Unlike many animals that reduce activity during fasting, northern elephant seals (NES) undergo prolonged fasting during energy-intensive life-history stages such as reproduction and molting, fueling fasting energy needs by mobilizing fat stores accrued during foraging. NES display several unique metabolic features such as high fasting metabolic rates, elevated blood lipid and high-density lipoprotein (HDL) cholesterol levels, efficient protein sparing and resistance to oxidative stress during fasting. However, the cellular mechanisms that regulate these adaptations are still not fully understood. To examine how metabolic coordination is achieved during prolonged fasting, we profiled changes in blubber, skeletal muscle and plasma proteomes of adult female NES over a 5 week fast associated with molting. We found that while blubber and muscle proteomes were remarkably stable over fasting, over 50 proteins changed in abundance in plasma, including those associated with lipid storage, mobilization, oxidation and transport. Apolipoproteins dominated the blubber, plasma and muscle proteome responses to fasting. APOA4, APOE and APOC3, which are associated with lipogenesis and triglyceride accumulation, decreased, while APOA1, APOA2 and APOM, which are associated with lipid mobilization and HDL function, increased over fasting. Our findings suggest that changes in apolipoprotein composition may underlie the maintenance of high HDL levels and, together with adipokines and hepatokines that facilitate lipid catabolism, may mediate the metabolic transitions between feeding and fasting in NES. Many of these proteins have not been previously studied in this species and provide intriguing hypotheses about metabolic regulation during prolonged fasting in mammals.
Collapse
Affiliation(s)
- Jane I. Khudyakov
- Biological Sciences Department, University of the Pacific, Stockton, CA 95211, USA
| | - Rachel R. Holser
- Institute of Marine Sciences, University of California, Santa Cruz, CA 95064, USA
| | - Craig A. Vierra
- Biological Sciences Department, University of the Pacific, Stockton, CA 95211, USA
| | - Serena T. Ly
- Biological Sciences Department, University of the Pacific, Stockton, CA 95211, USA
| | - Theron K. Niel
- Biological Sciences Department, University of the Pacific, Stockton, CA 95211, USA
| | - Basma M. Hasan
- Biological Sciences Department, University of the Pacific, Stockton, CA 95211, USA
| | - Daniel E. Crocker
- Department of Biology, Sonoma State University, Rohnert Park, CA 94928, USA
| | - Daniel P. Costa
- Institute of Marine Sciences, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|