1
|
Qian Y, Liu Y, Wang T, Wang S, Chen J, Li F, Zhang M, Hu X, Wang J, Li Y, James A, Hou R, Cai K. Effects of Cryptorchidism on the Semen Quality of Giant Pandas from the Perspective of Seminal Plasma Proteomics. Genes (Basel) 2024; 15:1288. [PMID: 39457412 PMCID: PMC11507308 DOI: 10.3390/genes15101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Giant pandas are an endangered species with low reproductive rates. Cryptorchidism, which can negatively affect reproduction, is also often found in pandas. Seminal plasma plays a crucial role in sperm-environment interactions, and its properties are closely linked to conception potential in both natural and assisted reproduction. The research sought to identify seminal fluid protein content variations between normal and cryptorchid giant pandas. Methods: Using a label-free MS-based method, the semen proteomes of one panda with cryptorchidism and three normal pandas were studied, and the identified proteins were compared and functionally analyzed. Results: Mass spectrometry identified 2059 seminal plasma proteins, with 361 differentially expressed proteins (DEPs). Gene ontology (GO) analysis revealed that these DEPs are mainly involved in the phosphate-containing compound metabolic, hydrolase activity, and kinase activity areas (p ≤ 0.05). The KEGG functional enrichment analysis revealed that the top 20 pathways were notably concentrated in the adipocyte lipolysis and insulin metabolism pathway, with a significance level of p ≤ 0.05. Further analysis through a protein-protein interaction (PPI) network identified nine key proteins that may play crucial roles, including D2GXH8 (hexokinase Fragment), D2HSQ6 (protein tyrosine phosphatase), and G1LHZ6 (Calmodulin 2). Conclusions: We suspect that the high abundance of D2HSQ6 in cryptorchid individuals is associated with metabolic pathways, especially the insulin signal pathway, as a typical proteomic feature related to its pathological features. These findings offer insight into the ex situ breeding conditions of this threatened species.
Collapse
Affiliation(s)
- Yicheng Qian
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China; (Y.Q.); (T.W.)
| | - Yuliang Liu
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Tao Wang
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China; (Y.Q.); (T.W.)
| | - Shenfei Wang
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Jiasong Chen
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Feiping Li
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Mengshi Zhang
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Xianbiao Hu
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Juan Wang
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Yan Li
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Ayala James
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Kailai Cai
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| |
Collapse
|
2
|
Fathy Megahed N, Abdel-Kafy ESM, El-Kassas S, Sobhy HM, Hekal SHA, Alagawany M, Manaa EA. Association of insulin receptor substrate 1 ( IRS-1) gene polymorphism with growth and litter-related traits in NMER rabbits. Anim Biotechnol 2023; 34:3749-3756. [PMID: 37310292 DOI: 10.1080/10495398.2023.2219705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study investigated the associations between the c.189G > T polymorphism of the insulin receptor substrate-1 (IRS-1) gene and the growth and litter size-related traits in the Native rabbit in Middle Egypt (NMER). One hundred sixty-two NMER rabbits were genotyped by RFLP-PCR using Sau3AI restriction enzyme and the associations of the reported genotypes with body weights at 5th, 6th, 8th, 10th, and 12th week old, body gain, and daily gain plus, the litter size-related traits were determined. Additionally, the genotypic and allelic frequencies, the effective (Ne) and observed (NA) numbers of alleles, observed (Ho) and expected (He) heterozygosity, Hardy-Weinberg equilibrium (HWE), and the decrease in heterozygosity because of inbreeding (FIS) were calculated. Three genotypes; GG, GT, and TT with 0.65, 0.33, and 0.02 frequencies, respectively which fit HWE were reported. These genotypes displayed a marked low FIS value. Significant associations of the genotypes with the body weights, and gains, except at the 5th week old determined with superiority of the GT genotype compared with the other genotypes. All reported litter size-related traits significantly varied among different genotypes. In summary, the c.189G > T SNP of the IRS-1 gene is an effective genetic marker to improve growth performance and litter size traits of the NMER rabbits.
Collapse
Affiliation(s)
- Naglaa Fathy Megahed
- Agricultural Research Center (ARC), Animal Production Research Institute (APRI), Giza, Egypt
| | - El-Sayed M Abdel-Kafy
- Agricultural Research Center (ARC), Animal Production Research Institute (APRI), Giza, Egypt
| | - Seham El-Kassas
- Animal, Poultry and Fish Breeding and Production, Department of Animal Wealth Development, Kafrelsheikh University, Egypt
| | - Hassan Mohamed Sobhy
- Department of Natural Resources faculty of African postgraduate studies, Cairo university, Giza, Egypt
| | | | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Eman A Manaa
- Animal and Poultry Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qalyubia, Egypt
| |
Collapse
|
3
|
Wang Z, Wang M, Tu S, Tuo P, Xie X, Zhu D. Identification of Two Insulin Receptors from the Swimming Crab Portunus trituberculatus: Molecular Characterization, Expression Analysis, and Interactions with Insulin-Like Androgenic Gland Hormone. THE BIOLOGICAL BULLETIN 2023; 245:68-76. [PMID: 38976851 DOI: 10.1086/731055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
AbstractThe insulin-like androgenic gland hormone is a crucial sexual regulator that is involved in the masculine sexual differentiation of crustaceans. As an insulin-like peptide, the insulin-like androgenic gland hormone has been proposed to act through the insulin receptor-mediated pathway. The present study cloned and characterized two insulin receptors (PtIR1 and PtIR2) from the swimming crab Portunus trituberculatus hallmarked with a conserved intracellular tyrosine kinase catalytic domain and several other typical insulin receptor domains in their deduced amino acid sequences. Both insulin receptors were predominately expressed in the testis and the insulin-like androgenic gland hormone-producing organ androgenic gland. Their testicular expression during the annual cycle suggested that they may play critical roles in spermatogenesis. By using the protein colocalization analysis in HEK293 cells, interactions of PtIAG with the two PtIRs were further confirmed. In addition, the insulin receptor antagonist was found to attenuate the stimulatory effects of androgenic gland homogenate on the phosphorylated MAPK levels in testis explants, suggesting that the insulin receptor-dependent MAPK pathway may be essential for insulin-like androgenic gland hormone functions.
Collapse
|
4
|
Martyniuk CJ, Luna M, Paluzzi JPV. Virtual special issue of the sixth biennial meeting of the North American Society for Comparative Endocrinology (Sociedad Norteamericana de Endocrinología comparada; Societé Nord-Americaine d'Endocrinologie Comparée). Gen Comp Endocrinol 2023; 342:114341. [PMID: 37423543 DOI: 10.1016/j.ygcen.2023.114341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Affiliation(s)
- Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 2187 Mowry Rd. Bldg 471, Gainesville, FL, USA.
| | - Maricela Luna
- Instituto de Neurobiología, Campus UNAM Juriquilla, Blvd. Juriquilla no, 3001 CP. 76230, Juriquilla, Querétaro, Mexico
| | - Jean-Paul V Paluzzi
- Department of Biology, Faculty of Science, York University, 4700 Keele Street, Toronto, ON, Canada
| |
Collapse
|
5
|
Arioglu-Inan E, Kayki-Mutlu G. Sex Differences in Glucose Homeostasis. Handb Exp Pharmacol 2023; 282:219-239. [PMID: 37439847 DOI: 10.1007/164_2023_664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Sexual dimorphism has been demonstrated to have an effect on various physiological functions. In this regard, researchers have investigated its impact on glucose homeostasis in both preclinical and clinical studies. Sex differences mainly arise from physiological factors such as sex hormones, body fat and muscle distribution, and sex chromosomes. The sexual dimorphism has also been studied in the context of diabetes. Reflecting the prevalence of the disease among the population, studies focusing on the sex difference in type 1 diabetes (T1D) are not common as the ones in type 2 diabetes (T2D). T1D is reported as the only major specific autoimmune disease that exhibits a male predominance. Clinical studies have demonstrated that impaired fasting glucose is more frequent in men whereas women more commonly exhibit impaired glucose tolerance. Understanding the sex difference in glucose homeostasis becomes more attractive when focusing on the findings that highlight sexual dimorphism on the efficacy or adverse effect profile of antidiabetic medications. Thus, in this chapter, we aimed to discuss the impact of sex on the glucose homeostasis both in health and in diabetes.
Collapse
Affiliation(s)
- Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
| | - Gizem Kayki-Mutlu
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|