1
|
Harafuji N, Yang C, Wu M, Thiruvengadam G, Gordish-Dressman H, Thompson RG, Bell PD, Rosenberg AZ, Dafinger C, Liebau MC, Bebok Z, Caldovic L, Guay-Woodford LM. Differential regulation of MYC expression by PKHD1/Pkhd1 in human and mouse kidneys: phenotypic implications for recessive polycystic kidney disease. Front Cell Dev Biol 2023; 11:1270980. [PMID: 38125876 PMCID: PMC10731465 DOI: 10.3389/fcell.2023.1270980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD; MIM#263200) is a severe, hereditary, hepato-renal fibrocystic disorder that leads to early childhood morbidity and mortality. Typical forms of ARPKD are caused by pathogenic variants in the PKHD1 gene, which encodes the fibrocystin/polyductin (FPC) protein. MYC overexpression has been proposed as a driver of renal cystogenesis, but little is known about MYC expression in recessive PKD. In the current study, we provide the first evidence that MYC is overexpressed in kidneys from ARPKD patients and confirm that MYC is upregulated in cystic kidneys from cpk mutant mice. In contrast, renal MYC expression levels were not altered in several Pkhd1 mutant mice that lack a significant cystic kidney phenotype. We leveraged previous observations that the carboxy-terminus of mouse FPC (FPC-CTD) is proteolytically cleaved through Notch-like processing, translocates to the nucleus, and binds to double stranded DNA, to examine whether the FPC-CTD plays a role in regulating MYC/Myc transcription. Using immunofluorescence, reporter gene assays, and ChIP, we demonstrate that both human and mouse FPC-CTD can localize to the nucleus, bind to the MYC/Myc P1 promoter, and activate MYC/Myc expression. Interestingly, we observed species-specific differences in FPC-CTD intracellular trafficking. Furthermore, our informatic analyses revealed limited sequence identity of FPC-CTD across vertebrate phyla and database queries identified temporal differences in PKHD1/Pkhd1 and CYS1/Cys1 expression patterns in mouse and human kidneys. Given that cystin, the Cys1 gene product, is a negative regulator of Myc transcription, these temporal differences in gene expression could contribute to the relative renoprotection from cystogenesis in Pkhd1-deficient mice. Taken together, our findings provide new mechanistic insights into differential mFPC-CTD and hFPC-CTD regulation of MYC expression in renal epithelial cells, which may illuminate the basis for the phenotypic disparities between human patients with PKHD1 pathogenic variants and Pkhd1-mutant mice.
Collapse
Affiliation(s)
- Naoe Harafuji
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
| | - Chaozhe Yang
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
| | - Maoqing Wu
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
| | - Girija Thiruvengadam
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
| | | | - R. Griffin Thompson
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - P. Darwin Bell
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Claudia Dafinger
- Department of Pediatrics and Center for Molecular Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Max C. Liebau
- Department of Pediatrics, Center for Family Health, Center for Rare Diseases and Center for Molecular Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Zsuzsanna Bebok
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, United States
- Department of Genomics and Precision Medicine, School of Medical and Health Sciences, The George Washington University, Washington, DC, United States
| | - Lisa M. Guay-Woodford
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, United States
| |
Collapse
|
2
|
Indumathi K, Bhavani G, Sudha K, Srinivasaraman G, Manjunathan R. Polyvisceral polycystic disease: a case study and review. CEN Case Rep 2021; 10:448-452. [PMID: 33661510 DOI: 10.1007/s13730-021-00582-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/12/2021] [Indexed: 11/26/2022] Open
Abstract
Polycystic kidney disease (PKD) occurs in one per 20,000 births. Presence of cysts in other organs like adrenal, liver and bladder is even rarer. On reviewing the literature, there is evidence of PKD occurring in conjunction with polycystic liver disease but cysts in multiple viscera are, so far, not reported. A fetal autopsy of a 36-week fetus showed the presence of multiple cysts in the kidney, liver, adrenal and bladder. Further histopathology reports confirmed the diagnosis of polycystic kidney disease. The history of a previous intrauterine death, of another child at 28-week gestation, suggests the presence of familial type. Serial prenatal ultrasonogram did not detect the abnormalities, emphasizing the important role of fetal autopsy in a case with an incomplete obstetric history. The diagnosis of a fetal abnormality aids to counselling the parents to be aware of possible recurrences in new pregnancies.
Collapse
Affiliation(s)
- K Indumathi
- Department of Pathology, Anderson Labs and Diagnostics, Chennai, Tamil Nadu, 600084, India.
| | - G Bhavani
- Department of Pathology, Anderson Labs and Diagnostics, Chennai, Tamil Nadu, 600084, India
| | - K Sudha
- Department of Radiology, Anderson Labs and Diagnostics, Chennai, Tamil Nadu, 600084, India
| | - G Srinivasaraman
- Department of Radiology, Anderson Labs and Diagnostics, Chennai, Tamil Nadu, 600084, India
| | - R Manjunathan
- Department of Pathology, Anderson Labs and Diagnostics, Chennai, Tamil Nadu, 600084, India
| |
Collapse
|
3
|
Nechama M, Makayes Y, Resnick E, Meir K, Volovelsky O. Rapamycin and dexamethasone during pregnancy prevent tuberous sclerosis complex-associated cystic kidney disease. JCI Insight 2020; 5:136857. [PMID: 32484794 DOI: 10.1172/jci.insight.136857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022] Open
Abstract
Chronic kidney disease is the main cause of mortality in patients with tuberous sclerosis complex (TSC) disease. The mechanisms underlying TSC cystic kidney disease remain unclear, with no available interventions to prevent cyst formation. Using targeted deletion of TSC1 in nephron progenitor cells, we showed that cysts in TSC1-null embryonic kidneys originate from injured proximal tubular cells with high mTOR complex 1 activity. Injection of rapamycin to pregnant mice inhibited the mTOR pathway and tubular cell proliferation in kidneys of TSC1-null offspring. Rapamycin also prevented renal cystogenesis and prolonged the life span of TSC newborns. Gene expression analysis of proximal tubule cells identified sets of genes and pathways that were modified secondary to TSC1 deletion and rescued by rapamycin administration during nephrogenesis. Inflammation with mononuclear infiltration was observed in the cystic areas of TSC1-null kidneys. Dexamethasone administration during pregnancy decreased cyst formation by not only inhibiting the inflammatory response, but also interfering with the mTORC1 pathway. These results reveal mechanisms of cystogenesis in TSC disease and suggest interventions before birth to ameliorate cystic disease in offspring.
Collapse
Affiliation(s)
| | | | | | - Karen Meir
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | |
Collapse
|
4
|
Pathway identification through transcriptome analysis. Cell Signal 2020; 74:109701. [PMID: 32649993 DOI: 10.1016/j.cellsig.2020.109701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/18/2022]
Abstract
Systems-based, agnostic approaches focusing on transcriptomics data have been employed to understand the pathogenesis of polycystic kidney diseases (PKD). While multiple signaling pathways, including Wnt, mTOR and G-protein-coupled receptors, have been implicated in late stages of disease, there were few insights into the transcriptional cascade immediately downstream of Pkd1 inactivation. One of the consistent findings has been transcriptional evidence of dysregulated metabolic and cytoskeleton remodeling pathways. Recent technical developments, including bulk and single-cell RNA sequencing technologies and spatial transcriptomics, offer new angles to investigate PKD. In this article, we review what has been learned based on transcriptional approaches and consider future opportunities.
Collapse
|
5
|
Dwivedi N, Tao S, Jamadar A, Sinha S, Howard C, Wallace DP, Fields TA, Leask A, Calvet JP, Rao R. Epithelial Vasopressin Type-2 Receptors Regulate Myofibroblasts by a YAP-CCN2-Dependent Mechanism in Polycystic Kidney Disease. J Am Soc Nephrol 2020; 31:1697-1710. [PMID: 32554753 DOI: 10.1681/asn.2020020190] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Fibrosis is a major cause of loss of renal function in autosomal dominant polycystic kidney disease (ADPKD). In this study, we examined whether vasopressin type-2 receptor (V2R) activity in cystic epithelial cells can stimulate interstitial myofibroblasts and fibrosis in ADPKD kidneys. METHODS We treated Pkd1 gene knockout (Pkd1KO) mice with dDAVP, a V2R agonist, for 3 days and evaluated the effect on myofibroblast deposition of extracellular matrix (ECM). We also analyzed the effects of conditioned media from primary cultures of human ADPKD cystic epithelial cells on myofibroblast activation. Because secretion of the profibrotic connective tissue growth factor (CCN2) increased significantly in dDAVP-treated Pkd1KO mouse kidneys, we examined its role in V2R-dependent fibrosis in ADPKD as well as that of yes-associated protein (YAP). RESULTS V2R stimulation using dDAVP increased the renal interstitial myofibroblast population and ECM deposition. Similarly, conditioned media from human ADPKD cystic epithelial cells increased myofibroblast activation in vitro, suggesting a paracrine mechanism. Renal collecting duct-specific gene deletion of CCN2 significantly reduced cyst growth and myofibroblasts in Pkd1KO mouse kidneys. We found that YAP regulates CCN2, and YAP inhibition or gene deletion reduces renal fibrosis in Pkd1KO mouse kidneys. Importantly, YAP inactivation blocks the dDAVP-induced increase in myofibroblasts in Pkd1KO kidneys. Further in vitro studies showed that V2R regulates YAP by an ERK1/2-dependent mechanism in human ADPKD cystic epithelial cells. CONCLUSIONS Our results demonstrate a novel mechanism by which cystic epithelial cells stimulate myofibroblasts in the pericystic microenvironment, leading to fibrosis in ADPKD. The V2R-YAP-CCN2 cell signaling pathway may present a potential therapeutic target for fibrosis in ADPKD.
Collapse
Affiliation(s)
- Nidhi Dwivedi
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.,Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Shixin Tao
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.,Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Abeda Jamadar
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.,Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Sonali Sinha
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.,Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Christianna Howard
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.,Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Darren P Wallace
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.,Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Timothy A Fields
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Andrew Leask
- School of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - James P Calvet
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Reena Rao
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas .,Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
6
|
Parrot C, Kurbegovic A, Yao G, Couillard M, Côté O, Trudel M. c-Myc is a regulator of the PKD1 gene and PC1-induced pathogenesis. Hum Mol Genet 2020; 28:751-763. [PMID: 30388220 DOI: 10.1093/hmg/ddy379] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/28/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is among the most common monogenic disorders mainly associated with PKD1/PC1 mutations. We show herein that renal regulation in Pc1 dosage-reduced and -increased mouse models converge toward stimulation of c-Myc expression along with β-catenin, delineating c-Myc as a key Pkd1 node in cystogenesis. Enhanced renal c-Myc-induced ADPKD in SBM transgenic mice lead conversely to striking upregulation of Pkd1/Pc1 expression and β-catenin activation, lending credence for reciprocal crosstalk between c-Myc and Pc1. In adult SBM kidneys, c-Myc is strongly enriched on Pkd1 promoter with RNA pol II, consistent with Pkd1 upregulation during cystogenesis. Similar c-Myc direct binding at birth uncovers an equivalent role on Pkd1 regulation during renal developmental program. Concurrent with enriched c-Myc binding, recruitment of active chromatin modifying co-factors by c-Myc at the Pkd1 regulatory region probably opens chromatin to stimulate transcription. A similar transcriptional activation by c-Myc is also likely operant on endogenous human PKD1 gene from our transactivation analysis in response to human c-MYC upregulation. Genetic ablation of c-Myc in Pc1-reduced and -increased mouse models significantly attenuates cyst growth, proliferation and PKD progression. Our study determined a dual role for c-Myc, as a major contributor in Pc1-induced cystogenesis and in a feed-forward regulatory Pkd1-c-Myc loop mechanism that may also prevail in human ADPKD.
Collapse
Affiliation(s)
- Camila Parrot
- Institut de recherches cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine de L'Université de Montréal, Montreal, Québec, Canada
| | - Almira Kurbegovic
- Institut de recherches cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine de L'Université de Montréal, Montreal, Québec, Canada
| | - Guanhan Yao
- Institut de recherches cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine de L'Université de Montréal, Montreal, Québec, Canada
| | - Martin Couillard
- Institut de recherches cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine de L'Université de Montréal, Montreal, Québec, Canada
| | - Olivier Côté
- Institut de recherches cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine de L'Université de Montréal, Montreal, Québec, Canada
| | - Marie Trudel
- Institut de recherches cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine de L'Université de Montréal, Montreal, Québec, Canada
| |
Collapse
|
7
|
Kurbegovic A, Trudel M. The master regulators Myc and p53 cellular signaling and functions in polycystic kidney disease. Cell Signal 2020; 71:109594. [PMID: 32145315 DOI: 10.1016/j.cellsig.2020.109594] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 01/08/2023]
Abstract
The transcription factors Myc and p53 associated with oncogenesis play determinant roles in a human genetic disorder, autosomal dominant polycystic kidney disease (ADPKD), that was coined early in ADPKD etiology a «neoplasia in disguise ». These factors are interdependent master cell regulators of major biological processes including proliferation, apoptosis, cell growth, metabolism, inflammation, fibrosis and differentiation that are all modulated in ADPKD. Myc and p53 proteins evolved to respond and carry out overlapping functions via opposing mechanisms of action. Studies in human ADPKD kidneys, caused by mutations in the PKD1 or PKD2 genes, reveal reduced p53 expression and high expression of Myc in the cystic tubular epithelium. Myc and p53 via direct interaction act respectively, as transcriptional activator and repressor of PKD1 gene expression, consistent with increased renal PKD1 levels in ADPKD. Mouse models generated by Pkd1 and Pkd2 gene dosage dysregulation reproduce renal cystogenesis with activation of Myc expression and numerous signaling pathways, strikingly similar to those determined in human ADPKD. In fact, upregulation of renal Myc expression is also detected in virtually all non-orthologous animal models of PKD. A definitive causal connection of Myc with cystogenesis was established by renal overexpression of Myc in transgenic mice that phenocopies human ADPKD. The network of activated signaling pathways in human and mouse cystogenesis individually or in combination can target Myc as a central node of PKD pathogenesis. One or many of the multiple functions of Myc upon activation can play a role in every phases of ADPKD development and lend credence to the notion of "Myc addiction" for cystogenesis. We propose that the residual p53 levels are conducive to an ADPKD biological program without cancerogenesis while a "p53 dependent annihilation" mechanism would be permissive to oncogenesis. Of major importance, Myc ablation in orthologous mouse models or direct inhibition in non-orthologous mouse model significantly delays cystogenesis consistent with pharmacologic or genetic inhibition of Myc upstream regulator or downstream targets in the mouse. Together, these studies on PKD proteins upon dysregulation not only converged on Myc as a focal point but also attribute to Myc upregulation a causal and « driver » role in pathogenesis. This review will present and discuss our current knowledge on Myc and p53, focused on PKD mouse models and ADPKD.
Collapse
Affiliation(s)
- Almira Kurbegovic
- Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Marie Trudel
- Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
8
|
Kiseleva AA, Golemis EA. Informatics-guided drug repurposing for Autosomal Dominant Polycystic Kidney Disease (ADPKD). EBioMedicine 2020; 52:102628. [PMID: 31981981 PMCID: PMC6976921 DOI: 10.1016/j.ebiom.2020.102628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/02/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Anna A Kiseleva
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19111, United States; Kazan Federal University, 420000 Kazan, Russian Federation
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19111, United States.
| |
Collapse
|
9
|
Identification of ADPKD-Related Genes and Pathways in Cells Overexpressing PKD2. Genes (Basel) 2020; 11:genes11020122. [PMID: 31979107 PMCID: PMC7074416 DOI: 10.3390/genes11020122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 11/17/2022] Open
Abstract
Consistent with the gene dosage effect hypothesis, renal cysts can arise in transgenic murine models overexpressing either PKD1 or PKD2, which are causal genes for autosomal dominant polycystic kidney disease (ADPKD). To determine whether PKD gene overexpression is a universal mechanism driving cystogenesis or is merely restricted to rodents, other animal models are required. Previously, we failed to observe any renal cysts in a transgenic porcine model of PKD2 overexpression partially due to epigenetic silencing of the transgene. Thus, to explore the feasibility of porcine models and identify potential genes/pathways affected in ADPKD, LLC-PK1 cells with high PKD2 expression were generated. mRNA sequencing (RNA-seq) was performed, and MYC, IER3, and ADM were found to be upregulated genes common to the different PKD2 overexpression cell models. MYC is a well-characterized factor contributing to cystogenesis, and ADM is a biomarker for chronic kidney disease. Thus, these genes might be indicators of disease progression. Additionally, some ADPKD-associated pathways, e.g., the mitogen-activated protein kinase (MAPK) pathway, were enriched in the cells. Moreover, gene ontology (GO) analysis demonstrated that proliferation, apoptosis, and cell cycle regulation, which are hallmarks of ADPKD, were altered. Therefore, our experiment identified some biomarkers or indicators of ADPKD, indicating that high PKD2 expression would likely drive cystogenesis in future porcine models.
Collapse
|
10
|
Nowak KL, Edelstein CL. Apoptosis and autophagy in polycystic kidney disease (PKD). Cell Signal 2019; 68:109518. [PMID: 31881325 DOI: 10.1016/j.cellsig.2019.109518] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 02/08/2023]
Abstract
Apoptosis in the cystic epithelium is observed in most rodent models of polycystic kidney disease (PKD) and in human autosomal dominant PKD (ADPKD). Apoptosis inhibition decreases cyst growth, whereas induction of apoptosis in the kidney of Bcl-2 deficient mice increases proliferation of the tubular epithelium and subsequent cyst formation. However, alternative evidence indicates that both induction of apoptosis as well as increased overall rates of apoptosis are associated with decreased cyst growth. Autophagic flux is suppressed in cell, zebra fish and mouse models of PKD and suppressed autophagy is known to be associated with increased apoptosis. There may be a link between apoptosis and autophagy in PKD. The mammalian target of rapamycin (mTOR), B-cell lymphoma 2 (Bcl-2) and caspase pathways that are known to be dysregulated in PKD, are also known to regulate both autophagy and apoptosis. Induction of autophagy in cell and zebrafish models of PKD results in suppression of apoptosis and reduced cyst growth supporting the hypothesis autophagy induction may have a therapeutic role in decreasing cyst growth, perhaps by decreasing apoptosis and proliferation in PKD. Future research is needed to evaluate the effects of direct autophagy inducers on apoptosis in rodent PKD models, as well as the cause and effect relationship between autophagy, apoptosis and cyst growth in PKD.
Collapse
Affiliation(s)
- Kristen L Nowak
- Division of Renal Diseases and Hypertension, Univ. of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Charles L Edelstein
- Division of Renal Diseases and Hypertension, Univ. of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
11
|
Liu D, Huo Y, Chen S, Xu D, Yang B, Xue C, Fu L, Bu L, Song S, Mei C. Identification of Key Genes and Candidated Pathways in Human Autosomal Dominant Polycystic Kidney Disease by Bioinformatics Analysis. Kidney Blood Press Res 2019; 44:533-552. [DOI: 10.1159/000500458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/04/2019] [Indexed: 11/19/2022] Open
Abstract
Background/Aims: Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic form of kidney disease. High-throughput microarray analysis has been applied for elucidating key genes and pathways associated with ADPKD. Most genetic profiling data from ADPKD patients have been uploaded to public databases but not thoroughly analyzed. This study integrated 2 human microarray profile datasets to elucidate the potential pathways and protein-protein interactions (PPIs) involved in ADPKD via bioinformatics analysis in order to identify possible therapeutic targets. Methods: The kidney tissue microarray data of ADPKD patients and normal individuals were searched and obtained from NCBI Gene Expression Omnibus. Differentially expressed genes (DEGs) were identified, and enriched pathways and central node genes were elucidated using related websites and software according to bioinformatics analysis protocols. Seven DEGs were validated between polycystic kidney disease and control kidney samples by quantitative real-time polymerase chain reaction. Results: Two original human microarray datasets, GSE7869 and GSE35831, were integrated and thoroughly analyzed. In total, 6,422 and 1,152 DEGs were extracted from GSE7869 and GSE35831, respectively, and of these, 561 DEGs were consistent between the databases (291 upregulated genes and 270 downregulated genes). From 421 nodes, 34 central node genes were obtained from a PPI network complex of DEGs. Two significant modules were selected from the PPI network complex by using Cytotype MCODE. Most of the identified genes are involved in protein binding, extracellular region or space, platelet degranulation, mitochondrion, and metabolic pathways. Conclusions: The DEGs and related enriched pathways in ADPKD identified through this integrated bioinformatics analysis provide insights into the molecular mechanisms of ADPKD and potential therapeutic strategies. Specifically, abnormal decorin expression in different stages of ADPKD may represent a new therapeutic target in ADPKD, and regulation of metabolism and mitochondrial function in ADPKD may become a focus of future research.
Collapse
|
12
|
Shigeta M, Kanazawa H, Yokoyama T. Tubular cell loss in early inv/nphp2 mutant kidneys represents a possible homeostatic mechanism in cortical tubular formation. PLoS One 2018; 13:e0198580. [PMID: 29889867 PMCID: PMC5995398 DOI: 10.1371/journal.pone.0198580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/22/2018] [Indexed: 11/25/2022] Open
Abstract
Inversion of embryonic turning (inv) cystic mice develop multiple renal cysts and are a model for type II nephronophthisis (NPHP2). The defect of planar cell polarity (PCP) by oriented cell division was proposed as the underlying cellular phenotype, while abnormal cell proliferation and apoptosis occur in some polycystic kidney disease models. However, how these cystogenic phenotypes are linked and what is most critical for cystogenesis remain largely unknown. In particular, in early cortical cytogenesis in the inv mutant cystic model, it remains uncertain whether the increased proliferation index results from changes in cell cycle length or cell fate determination. To address tubular cell kinetics, doubling time and total number of tubular cells, as well as amount of genomic DNA (gDNA), were measured in mutant and normal control kidneys. Despite a significantly higher bromodeoxyuridine (BrdU)-proliferation index in the mutant, total tubular cell number and doubling time were unaffected. Unexpectedly, the mutant had tubular cell loss, characterized by a temporal decrease in tubular cells incorporating 5-ethynyl-2´-deoxyuridine (EdU) and significantly increased nuclear debris. Based on current data we established a new multi-population shift model in postnatal renal development, indicating that a few restricted tubular cell populations contribute to cortical tubular formation. As in the inv mutant phenotype, the model simulation revealed a large population of tubular cells with rapid cell cycling and tubular cell loss. The proposed cellular kinetics suggest not only the underlying mechanism of the inv mutant phenotype but also a possible renal homeostatic mechanism for tubule formation.
Collapse
Affiliation(s)
- Masaki Shigeta
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto Prefectural of Medicine, Kyoto, Japan
- * E-mail:
| | - Hirotaka Kanazawa
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto Prefectural of Medicine, Kyoto, Japan
| | - Takahiko Yokoyama
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto Prefectural of Medicine, Kyoto, Japan
| |
Collapse
|
13
|
Vareesangthip K, Vareesangthip K, Limwongse C, Reesukumal K. Role of Urinary Neutrophil Gelatinase-Associated Lipocalin for Predicting the Severity of Renal Functions in Patients With Autosomal-Dominant Polycystic Kidney Disease. Transplant Proc 2017; 49:950-954. [PMID: 28583565 DOI: 10.1016/j.transproceed.2017.03.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Autosomal-dominant polycystic kidney disease (ADPKD) has a feature of disruption of tubular integrity with increased cellular proliferation and apoptosis. There are several known tubular membrane proteins in the pathogenesis of ADPKD, and one of these proteins is the neutrophil gelatinase-associated lipocalin (NGAL). NGAL is a protein expressed on renal tubular cells of which production is markedly increased in response to harmful stimuli such as ischemia or toxicity. OBJECTIVE We aim to study whether urinary NGAL levels could be used as a marker to identify the severity of ADPKD in patients. METHODS Urinary NGAL levels were measured in 30 patients with ADPKD compared with 30 control patients who were matched by age, gender, and glomerular filtration rate (GFR). All patients with ADPKD were diagnosed by using both phenotypic and genotypic criteria, which showed that all cases of ADPKD were caused by PKD1 gene mutation. The urinary NGAL level was measured using The NGAL Test by Roche, with analytic range of 25-1000 ng/mL. RESULTS In the ADPKD group, there was significant negative correlation between urinary NGAL and GFR (Pearson r = -0.472; P = .008) and significant positive correlation between urinary NGAL and serum creatinine (Pearson r = 0.718; P < .01). Elevated urinary NGAL was increased as GFR of ADPKD patients was decreased. CONCLUSION Urinary NGAL might play role in the pathway of renal tubular damage in patients with ADPKD and might be useful in the prediction of the possibility to progress to chronic kidney disease in patients with ADPKD.
Collapse
Affiliation(s)
- K Vareesangthip
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - K Vareesangthip
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - C Limwongse
- Division of Medical Genetics, Department of Medicine Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - K Reesukumal
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
14
|
Malas TB, Formica C, Leonhard WN, Rao P, Granchi Z, Roos M, Peters DJM, 't Hoen PAC. Meta-analysis of polycystic kidney disease expression profiles defines strong involvement of injury repair processes. Am J Physiol Renal Physiol 2017; 312:F806-F817. [PMID: 28148532 DOI: 10.1152/ajprenal.00653.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/30/2017] [Accepted: 01/30/2017] [Indexed: 12/25/2022] Open
Abstract
Polycystic kidney disease (PKD) is a major cause of end-stage renal disease. The disease mechanisms are not well understood and the pathogenesis toward renal failure remains elusive. In this study, we present the first RNASeq analysis of a Pkd1-mutant mouse model in a combined meta-analysis with other published PKD expression profiles. We introduce the PKD Signature, a set of 1,515 genes that are commonly dysregulated in PKD studies. We show that the signature genes include many known and novel PKD-related genes and functions. Moreover, genes with a role in injury repair, as evidenced by expression data and/or automated literature analysis, were significantly enriched in the PKD Signature, with 35% of the PKD Signature genes being directly implicated in injury repair. NF-κB signaling, epithelial-mesenchymal transition, inflammatory response, hypoxia, and metabolism were among the most prominent injury or repair-related biological processes with a role in the PKD etiology. Novel PKD genes with a role in PKD and in injury were confirmed in another Pkd1-mutant mouse model as well as in animals treated with a nephrotoxic agent. We propose that compounds that can modulate the injury-repair response could be valuable drug candidates for PKD treatment.
Collapse
Affiliation(s)
- Tareq B Malas
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Chiara Formica
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Wouter N Leonhard
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; and
| | | | | | - Marco Roos
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; and
| |
Collapse
|
15
|
Menezes LF, Germino GG. Systems biology of polycystic kidney disease: a critical review. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 7:39-52. [PMID: 25641951 DOI: 10.1002/wsbm.1289] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 01/02/2023]
Abstract
The proliferation and diminishing costs of 'omics' approaches have finally opened the doors for small and medium laboratories to enter the 'systems biology era'. This is a welcome evolution that requires a new framework to design, interpret, and validate studies. Here, we highlight some of the challenges, contributions, and prospects of the 'cyst-ems biology' of polycystic kidney disease.
Collapse
Affiliation(s)
- Luis Fernando Menezes
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
16
|
Aihara M, Fujiki H, Mizuguchi H, Hattori K, Ohmoto K, Ishikawa M, Nagano K, Yamamura Y. Tolvaptan delays the onset of end-stage renal disease in a polycystic kidney disease model by suppressing increases in kidney volume and renal injury. J Pharmacol Exp Ther 2014; 349:258-67. [PMID: 24570071 DOI: 10.1124/jpet.114.213256] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Tolvaptan, a selective vasopressin V2 receptor antagonist, slows the increase in total kidney volume and the decline in kidney function in patients with the results of the Tolvaptan Efficacy and Safety in Management of Autosomal Dominant Polycystic Kidney Disease and Outcome (TEMPO) 3:4 trial. However, it was unclear which dose of tolvaptan was optimal or whether tolvaptan was able to delay progression to end-stage renal disease (ESRD). Here we examined the relationship with aquaresis and the inhibitory effect on cyst development in short-term treatment and mortality as an index of ESRD in long-term treatment with tolvaptan using DBA/2FG-pcy mice, an animal model of nephronophthisis. With short-term treatment from 5 to 15 weeks of age, tolvaptan (0.01-0.3% via diet) dose-dependently enhanced aquaresis, prevented increases in kidney weight and cyst volume, and was associated with significant reductions in kidney cAMP levels and extracellular signal-regulated kinase activity. Maximal effects of tolvaptan on aquaresis and the prevention of development of polycystic kidney disease (PKD) were obtained at 0.1%. Interestingly, tolvaptan also dose-dependently reduced urinary neutrophil gelatinase-associated lipocalin levels in correlation with the kidney volume. With long-term treatment from 5 to 29 weeks of age, tolvaptan significantly attenuated the increase in kidney volume by up to 50% and reduced urinary albumin excretion. Furthermore, tolvaptan significantly reduced the mortality rate to 20%, compared with 60% in the control group. These data indicate that tolvaptan may delay the onset of ESRD in PKD by suppressing the increases in kidney volume and renal injury, providing a promising treatment for PKD.
Collapse
Affiliation(s)
- Miki Aihara
- First Institute of New Drug Discovery (M.A., H.F., H.M., K.H., K.O., K.N.) and Laboratory of Bioenergetics Research, Tokushima Research Institute (M.I.), Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan; and Global Pharmaceutical Business, Otsuka Pharmaceutical Co., Ltd., Tokyo, Japan (Y.Y.)
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Menezes LF, Zhou F, Patterson AD, Piontek KB, Krausz KW, Gonzalez FJ, Germino GG. Network analysis of a Pkd1-mouse model of autosomal dominant polycystic kidney disease identifies HNF4α as a disease modifier. PLoS Genet 2012; 8:e1003053. [PMID: 23209428 PMCID: PMC3510057 DOI: 10.1371/journal.pgen.1003053] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 09/06/2012] [Indexed: 12/20/2022] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD; MIM ID's 173900, 601313, 613095) leads to end-stage kidney disease, caused by mutations in PKD1 or PKD2. Inactivation of Pkd1 before or after P13 in mice results in distinct early- or late-onset disease. Using a mouse model of ADPKD carrying floxed Pkd1 alleles and an inducible Cre recombinase, we intensively analyzed the relationship between renal maturation and cyst formation by applying transcriptomics and metabolomics to follow disease progression in a large number of animals induced before P10. Weighted gene co-expression network analysis suggests that Pkd1-cystogenesis does not cause developmental arrest and occurs in the context of gene networks similar to those that regulate/maintain normal kidney morphology/function. Knowledge-based Ingenuity Pathway Analysis (IPA) software identifies HNF4α as a likely network node. These results are further supported by a meta-analysis of 1,114 published gene expression arrays in Pkd1 wild-type tissues. These analyses also predict that metabolic pathways are key elements in postnatal kidney maturation and early steps of cyst formation. Consistent with these findings, urinary metabolomic studies show that Pkd1 cystic mutants have a distinct profile of excreted metabolites, with pathway analysis suggesting altered activity in several metabolic pathways. To evaluate their role in disease, metabolic networks were perturbed by inactivating Hnf4α and Pkd1. The Pkd1/Hnf4α double mutants have significantly more cystic kidneys, thus indicating that metabolic pathways could play a role in Pkd1-cystogenesis. Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most common genetic cause of polycystic kidney disease and is responsible for 4.6% of the end-stage renal disease (ESRD) cases in the United States. It is most often caused by mutation in the PKD1 gene. To understand this disease, we made a mouse model in which we could delete the Pkd1 gene and study the animal as its kidney becomes cystic. Using this model, we had previously found that the maturation status of the animal determines whether cysts form within days or within months, and we had narrowed down this switch to a two-day interval. In the current study, we used the rapid cyst-forming model to analyze the expression pattern of thousands of genes in mutant and control kidneys, and metabolites excreted in the urine. Our results identify a number of genes that may be involved in cyst formation and suggest that metabolic changes may play a role in ADPKD and could alter disease progression. These analyses also predict that metabolic pathways are key elements in normal postnatal kidney maturation.
Collapse
Affiliation(s)
- Luis F. Menezes
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Fang Zhou
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andrew D. Patterson
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Klaus B. Piontek
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kristopher W. Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gregory G. Germino
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
18
|
Yook YJ, Woo YM, Yang MH, Ko JY, Kim BH, Lee EJ, Chang ES, Lee MJ, Lee S, Park JH. Differential Expression of PKD2-Associated Genes in Autosomal Dominant Polycystic Kidney Disease. Genomics Inform 2012; 10:16-22. [PMID: 23105924 PMCID: PMC3475485 DOI: 10.5808/gi.2012.10.1.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 02/15/2012] [Accepted: 02/16/2012] [Indexed: 11/20/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by formation of multiple fluid-filled cysts that expand over time and destroy renal architecture. The proteins encoded by the PKD1 and PKD2 genes, mutations in which account for nearly all cases of ADPKD, may help guard against cystogenesis. Previously developed mouse models of PKD1 and PKD2 demonstrated an embryonic lethal phenotype and massive cyst formation in the kidney, indicating that PKD1 and PKD2 probably play important roles during normal renal tubular development. However, their precise role in development and the cellular mechanisms of cyst formation induced by PKD1 and PKD2 mutations are not fully understood. To address this question, we presently created Pkd2 knockout and PKD2 transgenic mouse embryo fibroblasts. We used a mouse oligonucleotide microarray to identify messenger RNAs whose expression was altered by the overexpression of the PKD2 or knockout of the Pkd2. The majority of identified mutations was involved in critical biological processes, such as metabolism, transcription, cell adhesion, cell cycle, and signal transduction. Herein, we confirmed differential expressions of several genes including aquaporin-1, according to different PKD2 expression levels in ADPKD mouse models, through microarray analysis. These data may be helpful in PKD2-related mechanisms of ADPKD pathogenesis.
Collapse
Affiliation(s)
- Yeon Joo Yook
- Department of Biological Science, Sookmyung Women's University, Seoul 140-742, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Natoli TA, Husson H, Rogers KA, Smith LA, Wang B, Budman Y, Bukanov NO, Ledbetter SR, Klinger KW, Leonard JP, Ibraghimov-Beskrovnaya O. Loss of GM3 synthase gene, but not sphingosine kinase 1, is protective against murine nephronophthisis-related polycystic kidney disease. Hum Mol Genet 2012; 21:3397-407. [PMID: 22563011 PMCID: PMC3392114 DOI: 10.1093/hmg/dds172] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genetic forms of polycystic kidney diseases (PKDs), including nephronophthisis, are characterized by formation of fluid-filled cysts in the kidneys and progression to end-stage renal disease. No therapies are currently available to treat cystic diseases, making it imperative to dissect molecular mechanisms in search of therapeutic targets. Accumulating evidence suggests a pathogenic role for glucosylceramide (GlcCer) in multiple forms of PKD. It is not known, however, whether other structural glycosphingolipids (GSLs) or bioactive signaling sphingolipids (SLs) modulate cystogenesis. Therefore, we set out to address the role of a specific GSL (ganglioside GM3) and signaling SL (sphingosine-1-phosphate, S1P) in PKD progression, using the jck mouse model of nephronopthisis. To define the role of GM3 accumulation in cystogenesis, we crossed jck mice with mice carrying a targeted mutation in the GM3 synthase (St3gal5) gene. GM3-deficient jck mice displayed milder PKD, revealing a pivotal role for ganglioside GM3. Mechanistic changes in regulation of the cell-cycle machinery and Akt-mTOR signaling were consistent with reduced cystogenesis. Dramatic overexpression of sphingosine kinase 1 (Sphk1) mRNA in jck kidneys suggested a pathogenic role for S1P. Surprisingly, genetic loss of Sphk1 exacerbated cystogenesis and was associated with increased levels of GlcCer and GM3. On the other hand, increasing S1P accumulation through pharmacologic inhibition of S1P lyase had no effect on the progression of cystogenesis or kidney GSL levels. Together, these data suggest that genes involved in the SL metabolism may be modifiers of cystogenesis, and suggest GM3 synthase as a new anti-cystic therapeutic target.
Collapse
Affiliation(s)
- Thomas A Natoli
- Department of Cell Biology, Genzyme Corporation, Framingham, MA 01701, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Parikh CR, Dahl NK, Chapman AB, Bost JE, Edelstein CL, Comer DM, Zeltner R, Tian X, Grantham JJ, Somlo S. Evaluation of urine biomarkers of kidney injury in polycystic kidney disease. Kidney Int 2012; 81:784-90. [PMID: 22258321 PMCID: PMC3319327 DOI: 10.1038/ki.2011.465] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Progressive disruption of renal tubular integrity in the setting of increased cellular proliferation and apoptosis is a feature of ADPKD. Here we evaluated the effect of these processes on the expression of NGAL and IL-18, markers of tubular injury, in rodent models and in the cyst fluid and urine of patients with ADPKD. Two mouse models where Pkd2 was inactivated which resulted in early or adult onset cysts, were used to evaluate NGAL levels. Further, the Han:SPRD rat model of polycystic disease was used to study IL-18 levels. In four annual serial urine samples from 107 patients with ADPKD in the Consortium for Radiologic Imaging for the Study of Polycystic Kidney Disease (CRISP) study, NGAL and IL-18 excretion rates were determined in conjunction with measures of total kidney volume and estimated GFR (eGFR) by the MDRD equation. Kidneys from affected mice and rats showed prominent expression of NGAL and IL-18/IL-18R, respectively, in epithelial cells lining kidney cysts. In human ADPKD cyst fluid, both NGAL and IL-18 were elevated. In CRISP patients, the mean percentage increase in total kidney volume was 5.4 /year and the mean decline in eGFR 2.4 mL/min/year. The trend of increased mean urine NGAL and IL-18 over three years was statistically significant; however, there was no association of tertiles of IL-18 or quartiles of NGAL and the change in total kidney volume or eGFR over this period. Thus, urinary NGAL and IL-18 excretion are mildly and stably elevated in ADPKD, but do not correlate with changes in total kidney volume or kidney function. This may be due, in part, to the lack of communication between individual cysts and the urinary collecting system in this disorder.
Collapse
Affiliation(s)
- Chirag R Parikh
- Department of Medicine (Nephrology), Yale University School of Medicine, New Haven, Connecticut 06516, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Drummond IA. Polycystins, focal adhesions and extracellular matrix interactions. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1322-6. [PMID: 21396443 DOI: 10.1016/j.bbadis.2011.03.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 03/02/2011] [Indexed: 11/29/2022]
Abstract
Polycystic kidney disease is the most common heritable disease in humans. In addition to epithelial cysts in the kidney, liver and pancreas, patients with autosomal dominant polycystic kidney disease (ADPKD) also suffer from abdominal hernia, intracranial aneurysm, gastrointestinal cysts, and cardiac valvular defects, conditions often associated with altered extracellular matrix production or integrity. Despite more than a decade of work on the principal ADPKD genes, PKD1 and PKD2, questions remain about the basis of cystic disease and the role of extracellular matrix in ADPKD pathology. This review explores the links between polycystins, focal adhesions, and extracellular matrix gene expression. These relationships suggest roles for polycystins in cell-matrix mechanosensory signaling that control matrix production and morphogenesis. This article is part of a Special Issue entitled: Polycystic Kidney Disease.
Collapse
|
22
|
Mason SB, Lai X, Ringham HN, Bacallao RL, Harris PC, Witzmann FA, Gattone VH. Differential expression of renal proteins in a rodent model of Meckel syndrome. Nephron Clin Pract 2010; 117:e31-8. [PMID: 20693816 DOI: 10.1159/000319722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 05/26/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Meckel syndrome (MKS) is a fatal autosomal recessive condition with prominent renal cystic pathology. Renal protein misexpression was evaluated in the Wpk rat model of human MKS3 gene disease to identify biomarkers for the staging of renal cystic progression. METHODS Misexpressed proteins were compared between early and late stages of MKS renal cystic disease using proteomic analysis (two-dimensional gel electrophoresis with LC-MS/MS identification) followed by Western blot analysis. RESULTS A proteomic analysis identified 76 proteins with statistically different, normalized abundance in at least one group. Subsequently, Western blot was used to confirm differential expression in several of these and polycystic kidney disease (PKD)-associated proteins. Galectin-1 and vimentin were identified as overexpressed proteins, which have been previously found in the jck mouse model of nephronophthisis 9. Ciliopathic PKD proteins, polycystins 1 & 2, and fibrocystin were also differentially expressed in Wpk kidney. CONCLUSION In the Wpk rat, misexpressed proteins were identified that were also implicated in other forms of cystic disease. Numerous proteins were either over- or underexpressed in late-stage disease. Differences in protein expression may serve as biomarkers of cystic disease and its progression.
Collapse
Affiliation(s)
- Stephen B Mason
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Hornshøj H, Bendixen E, Conley LN, Andersen PK, Hedegaard J, Panitz F, Bendixen C. Transcriptomic and proteomic profiling of two porcine tissues using high-throughput technologies. BMC Genomics 2009; 10:30. [PMID: 19152685 PMCID: PMC2633351 DOI: 10.1186/1471-2164-10-30] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 01/19/2009] [Indexed: 02/03/2023] Open
Abstract
Background The recent development within high-throughput technologies for expression profiling has allowed for parallel analysis of transcriptomes and proteomes in biological systems such as comparative analysis of transcript and protein levels of tissue regulated genes. Until now, such studies of have only included microarray or short length sequence tags for transcript profiling. Furthermore, most comparisons of transcript and protein levels have been based on absolute expression values from within the same tissue and not relative expression values based on tissue ratios. Results Presented here is a novel study of two porcine tissues based on integrative analysis of data from expression profiling of identical samples using cDNA microarray, 454-sequencing and iTRAQ-based proteomics. Sequence homology identified 2.541 unique transcripts that are detectable by both microarray hybridizations and 454-sequencing of 1.2 million cDNA tags. Both transcript-based technologies showed high reproducibility between sample replicates of the same tissue, but the correlation across these two technologies was modest. Thousands of genes being differentially expressed were identified with microarray. Out of the 306 differentially expressed genes, identified by 454-sequencing, 198 (65%) were also found by microarray. The relationship between the regulation of transcript and protein levels was analyzed by integrating iTRAQ-based proteomics data. Protein expression ratios were determined for 354 genes, of which 148 could be mapped to both microarray and 454-sequencing data. A comparison of the expression ratios from the three technologies revealed that differences in transcript and protein levels across heart and muscle tissues are positively correlated. Conclusion We show that the reproducibility within cDNA microarray and 454-sequencing is high, but that the agreement across these two technologies is modest. We demonstrate that the regulation of transcript and protein levels across identical tissue samples is positively correlated when the tissue expression ratios are used for comparison. The results presented are of interest in systems biology research in terms of integration and analysis of high-throughput expression data from mammalian tissues.
Collapse
Affiliation(s)
- Henrik Hornshøj
- Department of Genetics and Biotechnology, Faculty of Agricultural Sciences, Aarhus University, Tjele, Denmark.
| | | | | | | | | | | | | |
Collapse
|
24
|
Lal M, Song X, Pluznick JL, Di Giovanni V, Merrick DM, Rosenblum ND, Chauvet V, Gottardi CJ, Pei Y, Caplan MJ. Polycystin-1 C-terminal tail associates with beta-catenin and inhibits canonical Wnt signaling. Hum Mol Genet 2008; 17:3105-17. [PMID: 18632682 DOI: 10.1093/hmg/ddn208] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Polycystin-1 (PC1), the product of the PKD1 gene mutated in the majority of autosomal dominant polycystic kidney disease (ADPKD) cases, undergoes a cleavage resulting in the intracellular release of its C-terminal tail (CTT). Here, we demonstrate that the PC1 CTT co-localizes with and binds to beta-catenin in the nucleus. This interaction requires a nuclear localization motif present in the PC1 CTT as well as the N-terminal portion of beta-catenin. The PC1 CTT inhibits the ability of both beta-catenin and Wnt ligands to activate T-cell factor (TCF)-dependent gene transcription, a major effector of the canonical Wnt signaling pathway. The PC1 CTT may produce this effect by reducing the apparent affinity of the interaction between beta-catenin and the TCF protein. DNA microarray analysis reveals that the canonical Wnt signaling pathway is activated in ADPKD patient cysts. Our results suggest a novel mechanism through which PC1 cleavage may impact upon Wnt-dependent signaling and thereby modulate both developmental processes and cystogenesis.
Collapse
Affiliation(s)
- Mark Lal
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tang Z, Li Y, Wan P, Li X, Zhao S, Liu B, Fan B, Zhu M, Yu M, Li K. LongSAGE analysis of skeletal muscle at three prenatal stages in Tongcheng and Landrace pigs. Genome Biol 2008; 8:R115. [PMID: 17573972 PMCID: PMC2394763 DOI: 10.1186/gb-2007-8-6-r115] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 01/30/2007] [Accepted: 06/16/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obese and lean pig breeds show obvious differences in muscle growth; however, the molecular mechanism underlying phenotype variation remains unknown. Prenatal muscle development programs postnatal performance. Here, we describe a genome-wide analysis of differences in prenatal skeletal muscle between Tongcheng (a typical indigenous Chinese breed) and Landrace (a leaner Western breed) pigs. RESULTS We generated transcriptome profiles of skeletal muscle from Tongcheng and Landrace pigs at 33, 65 and 90 days post coitus (dpc), using long serial analysis of gene expression (LongSAGE). We sequenced 317,115 LongSAGE tags and identified 1,400 and 1,201 differentially expressed transcripts during myogenesis in Tongcheng and Landrace pigs, respectively. From these, the Gene Ontology processes and expression patterns of these differentially expressed genes were constructed. Most of the genes showed different expression patterns in the two breeds. We also identified 532, 653 and 459 transcripts at 33, 65 and 90 dpc, respectively, that were differentially expressed between the two breeds. Growth factors, anti-apoptotic factors and genes involved in the regulation of protein synthesis were up-regulated in Landrace pigs. Finally, 12 differentially expressed genes were validated by quantitative PCR. CONCLUSION Our data show that gene expression phenotypes differ significantly between the two breeds. In particular, a slower muscle growth rate and more complicated molecular changes were found in Tongcheng pigs, while genes responsible for increased cellular growth and myoblast survival were up-regulated in Landrace pigs. Our analyses will assist in the identification of candidate genes for meat production traits and elucidation of the development of prenatal skeletal muscle in mammals.
Collapse
Affiliation(s)
- Zhonglin Tang
- Department of Gene and Cell Engineering, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100094, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Education of China, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yong Li
- Department of Gene and Cell Engineering, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100094, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Education of China, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ping Wan
- Shanghai Huaguan Biochip Co. Ltd, Shanghai, 201203, PR China
- Life and Environment Science College, Shanghai Normal University, Shanghai, 200234, PR China
| | - Xiaoping Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Education of China, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shuhong Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Education of China, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Bang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Education of China, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Bin Fan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Education of China, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mengjin Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Education of China, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mei Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Education of China, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kui Li
- Department of Gene and Cell Engineering, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100094, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Education of China, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
26
|
Overexpression of innate immune response genes in a model of recessive polycystic kidney disease. Kidney Int 2007; 73:63-76. [PMID: 17960140 DOI: 10.1038/sj.ki.5002627] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Defects in the primary cilium/basal body complex of renal tubular cells cause polycystic kidney disease (PKD). To uncover pathways associated with disease progression, we determined the kidney transcriptome of 10-day-old severely and mildly affected cpk mice, a model of recessive PKD. In the severe phenotype, the most highly expressed genes were those associated with the innate immune response including many macrophage markers, particularly those associated with a profibrotic alternative activation pathway. Additionally, gene expression of macrophage activators was dominated by the complement system factors including the central complement component 3. Additional studies confirmed increased complement component 3 protein levels in both cystic and non-cystic epithelia in the kidneys of cpk compared to wild-type mice. We also found elevated complement component 3 activation in two other mouse-recessive models and human-recessive PKD. Our results suggest that abnormal complement component 3 activation is a key element of progression in PKD.
Collapse
|
27
|
Condac E, Silasi-Mansat R, Kosanke S, Schoeb T, Towner R, Lupu F, Cummings RD, Hinsdale ME. Polycystic disease caused by deficiency in xylosyltransferase 2, an initiating enzyme of glycosaminoglycan biosynthesis. Proc Natl Acad Sci U S A 2007; 104:9416-21. [PMID: 17517600 PMCID: PMC1890509 DOI: 10.1073/pnas.0700908104] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Indexed: 01/12/2023] Open
Abstract
The basic biochemical mechanisms underlying many heritable human polycystic diseases are unknown despite evidence that most cases are caused by mutations in members of several protein families, the most prominent being the polycystin gene family, whose products are found on the primary cilia, or due to mutations in posttranslational processing and transport. Inherited polycystic kidney disease, the most prevalent polycystic disease, currently affects approximately 500,000 people in the United States. Decreases in proteoglycans (PGs) have been found in tissues and cultured cells from patients who suffer from autosomal dominant polycystic kidney disease, and this PG decrease has been hypothesized to be responsible for cystogenesis. This is possible because alterations in PG concentrations would be predicted to disrupt many homeostatic mechanisms of growth, development, and metabolism. To test this hypothesis, we have generated mice lacking xylosyltransferase 2 (XylT2), an enzyme involved in PG biosynthesis. Here we show that inactivation of XylT2 results in a substantial reduction in PGs and a phenotype characteristic of many aspects of polycystic liver and kidney disease, including biliary epithelial cysts, renal tubule dilation, organ fibrosis, and basement membrane abnormalities. Our findings demonstrate that alterations in PG concentrations can occur due to loss of XylT2, and that reduced PGs can induce cyst development.
Collapse
Affiliation(s)
| | | | - Stanley Kosanke
- Department of Pathology, University of Oklahoma, 940 Stanton L. Young Boulevard, BMSB, Room 203, Health Sciences Center, Oklahoma City, OK 73104
| | - Trenton Schoeb
- Department of Genetics, University of Alabama at Birmingham, Volker Hall, 402, 1670 University Boulevard, Birmingham, AL 35294-0019
| | - Rheal Towner
- Free Radical Biology and Aging Research Program, 825 Northeast 13th Street, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | | | - Richard D. Cummings
- Department of Biochemistry, Emory University School of Medicine, 4001 Rollins Research Center, Atlanta, GA 30322; and
| | - Myron E. Hinsdale
- *Cardiovascular Biology Research Program
- Department of Cell Biology, College of Medicine, University of Oklahoma Health Sciences Center, P.O. Box 26901, Oklahoma City, OK 73104
| |
Collapse
|
28
|
Amura CR, Brodsky KS, Groff R, Gattone VH, Voelkel NF, Doctor RB. VEGF receptor inhibition blocks liver cyst growth in pkd2(WS25/-) mice. Am J Physiol Cell Physiol 2007; 293:C419-28. [PMID: 17475663 DOI: 10.1152/ajpcell.00038.2007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proliferation of cyst-lining epithelial cells is an integral part of autosomal dominant polycystic kidney disease (ADPKD) cyst growth. Cytokines and growth factors within cyst fluids are positioned to induce cyst growth. Vascular endothelial growth factor (VEGF) is a pleiotropic growth factor present in ADPKD liver cyst fluids (human 1,128 +/- 78, mouse 2,787 +/- 136 pg/ml) and, to a lesser extent, in ADPKD renal cyst fluids (human 294 +/- 41, mouse 191 +/- 90 pg/ml). Western blotting showed that receptors for VEGF (VEGFR1 and VEGFR2) were present in both normal mouse bile ducts and pkd2(WS25/-) liver cyst epithelial cells. Treatment of pkd2(WS25/-) liver cyst epithelial cells with VEGF (50-50,000 pg/ml) or liver cyst fluid induced a proliferative response. The effect on proliferation of liver cyst fluid was inhibited by SU-5416, a potent VEGF receptor inhibitor. Treatment of pkd2(WS25/-) mice between 4 and 8 mo of age with SU-5416 markedly reduced the cyst volume density of the liver (vehicle 9.9 +/- 4.3%, SU-5416 1.8 +/- 0.7% of liver). SU-5416 treatment between 4 and 12 mo of age markedly protected against increases in liver weight [pkd2(+/+) 4.8 +/- 0.2%, pkd2(WS25/-)-vehicle 10.8 +/- 1.9%, pkd2(WS25/-)-SU-5416 4.8 +/- 0.4% body wt]. The capacity of VEGF signaling to induce in vitro proliferation of pkd2(WS25/-) liver cyst epithelial cells and inhibition of in vivo VEGF signaling to retard liver cyst growth in pkd2(WS25/-) mice indicates that the VEGF signaling pathway is a potentially important therapeutic target in the treatment of ADPKD liver cyst disease.
Collapse
MESH Headings
- Animals
- Cell Proliferation/drug effects
- Cells, Cultured
- Cyst Fluid/metabolism
- Cysts/genetics
- Cysts/metabolism
- Cysts/pathology
- Cysts/prevention & control
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Indoles/pharmacology
- Indoles/therapeutic use
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Liver Diseases/genetics
- Liver Diseases/metabolism
- Liver Diseases/pathology
- Liver Diseases/prevention & control
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Polycystic Kidney, Autosomal Dominant/complications
- Polycystic Kidney, Autosomal Dominant/drug therapy
- Polycystic Kidney, Autosomal Dominant/genetics
- Polycystic Kidney, Autosomal Dominant/metabolism
- Polycystic Kidney, Autosomal Dominant/pathology
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Pyrroles/pharmacology
- Pyrroles/therapeutic use
- Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors
- Receptors, Vascular Endothelial Growth Factor/metabolism
- Signal Transduction/drug effects
- TRPP Cation Channels/metabolism
- Time Factors
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor A/pharmacology
- Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors
- Vascular Endothelial Growth Factor Receptor-1/metabolism
- Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors
- Vascular Endothelial Growth Factor Receptor-2/metabolism
Collapse
Affiliation(s)
- Claudia R Amura
- Department of Medicine, University of Colorado Health Sciences Center, Denver, USA
| | | | | | | | | | | |
Collapse
|
29
|
Sugiyama N, Yokoyama T. Sustained cell proliferation of renal epithelial cells in mice with inv mutation. Genes Cells 2006; 11:1213-24. [PMID: 16999740 DOI: 10.1111/j.1365-2443.2006.01011.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A tubule system is an important component of the nephron, which is the structural and functional unit of the kidney. Expansion of renal tubules results in renal cysts. Hereditary forms of renal cystic diseases suggest that tubular size is determined genetically. The inv was discovered as a mutant with renal cysts and situs inversus. Inv/inv, inv deltaC::GFP (inv deltaC) mouse was created by the introduction of the inv gene lacking the C-terminus (inv deltaC) into inv/inv mice. The mouse develops multiple renal cysts without situs abnormality, giving us an opportunity to study inv function in renal tubular structure maintenance. In the present study, we showed that inv suppresses cyst progression in a dose-dependent manner and that the inv deltaC cystic kidneys showed increased cell proliferation and apoptosis. Cell cycle regulators for G1-S progression were activated in the cystic kidney. Furthermore, cDNA microarray and semiquantitative RT-PCR analysis showed that growth-related genes maintained a high level of expression in the cystic kidney at 4 weeks of age whereas they were decreased in control kidneys, suggesting that cells in inv deltaC kidney are still active in the cell cycle. One of the inv protein functions may provide a stop signal for renal epithelial cell proliferation.
Collapse
Affiliation(s)
- Noriyuki Sugiyama
- Department of Anatomy and Developmental Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | |
Collapse
|
30
|
Bergmann C, Frank V, Küpper F, Kamitz D, Hanten J, Berges P, Mager S, Moser M, Kirfel J, Büttner R, Senderek J, Zerres K. Diagnosis, pathogenesis, and treatment prospects in cystic kidney disease. Mol Diagn Ther 2006; 10:163-74. [PMID: 16771602 DOI: 10.1007/bf03256455] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cystic kidney diseases (CKDs) are a clinically and genetically heterogeneous group of disorders characterized by progressive fibrocystic renal and hepatobiliary changes. Recent findings have proven the cystogenic process to be compatible with cellular dedifferentiation, i. e. increased apoptosis and proliferation rates, altered protein sorting and secretory characteristics, as well as disorganization of the extracellular matrix. Compelling evidence suggests that cilia play a central pathogenic role and most cystic kidney disorders converge into a common pathogenic pathway. Recently, several promising trials have further extended our understanding of the pathophysiology of CKD and may have the potential for rational personalized therapies in future years. This review aims to summarize the current state of knowledge of the structure and function of proteins underlying polycystic kidney disease, to explore the clinical consequences of changes in respective genes, and to discuss potential therapeutic approaches.
Collapse
MESH Headings
- Genotype
- Humans
- Kidney Diseases, Cystic/diagnosis
- Kidney Diseases, Cystic/drug therapy
- Kidney Diseases, Cystic/genetics
- Kidney Diseases, Cystic/physiopathology
- Phenotype
- Polycystic Kidney, Autosomal Dominant/diagnosis
- Polycystic Kidney, Autosomal Dominant/drug therapy
- Polycystic Kidney, Autosomal Dominant/genetics
- Polycystic Kidney, Autosomal Dominant/physiopathology
- Polycystic Kidney, Autosomal Recessive/diagnosis
- Polycystic Kidney, Autosomal Recessive/drug therapy
- Polycystic Kidney, Autosomal Recessive/genetics
- Polycystic Kidney, Autosomal Recessive/physiopathology
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- TRPP Cation Channels/metabolism
Collapse
Affiliation(s)
- Carsten Bergmann
- Department of Human Genetics, Aachen University, Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Smith LA, Bukanov NO, Husson H, Russo RJ, Barry TC, Taylor AL, Beier DR, Ibraghimov-Beskrovnaya O. Development of polycystic kidney disease in juvenile cystic kidney mice: insights into pathogenesis, ciliary abnormalities, and common features with human disease. J Am Soc Nephrol 2006; 17:2821-31. [PMID: 16928806 DOI: 10.1681/asn.2006020136] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Significant progress in understanding the molecular mechanisms of polycystic kidney disease (PKD) has been made in recent years. Translating this understanding into effective therapeutics will require testing in animal models that closely resemble human PKD by multiple parameters. Similar to autosomal dominant PKD, juvenile cystic kidney (jck) mice develop cysts in multiple nephron segments, including cortical collecting ducts, distal tubules, and loop of Henle. The jck mice display gender dimorphism in kidney disease progression with more aggressive disease in male mice. Gonadectomy experiments show that testosterone aggravates the severity of the disease in jck male mice, while female gonadal hormones have protective effects. EGF receptor is overexpressed and mislocalized in jck cystic epithelia, a hallmark of human disease. Increased cAMP levels in jck kidneys and activation of the B-Raf/extracellular signal-regulated kinase pathway are demonstrated. The effect of jck mutation on the expression of Nek8, a NIMA-related (never in mitosis A) kinase, and polycystins in jck cilia is shown for the first time. Nek8 overexpression and loss of ciliary localization in jck epithelia are accompanied by enhanced expression of polycystins along the cilia. The primary cilia in jck kidneys are significantly more lengthened than the cilia in wild-type mice, suggesting a role for Nek8 in controlling ciliary length. Collectively, these data demonstrate that the jck mice should be useful for testing potential therapies and for studying the molecular mechanisms that link ciliary structure/function and cystogenesis.
Collapse
Affiliation(s)
- Laurie A Smith
- Genzyme Corporation, 5 Mountain Road, Framingham, MA 01701-9322, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Riera M, Burtey S, Fontés M. Transcriptome analysis of a rat PKD model: Importance of genes involved in extracellular matrix metabolism. Kidney Int 2006; 69:1558-63. [PMID: 16541020 DOI: 10.1038/sj.ki.5000309] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transcriptome analysis of a rat polycystic kidney disease (PKD) model: importance of genes involved in extracellular matrix metabolism. PKD is a common genetic cause of chronic renal failure, and is characterized by the accumulation of fluid-filled cysts in the kidneys and other organs. Abnormalities in the expression of selected genes thought to be involved in cystogenesis have been described, but no systematic analysis of the global transcriptomal pattern has been reported. With this aim, a rat oligomicroarray was used to identify variations in gene expression in Han:Sprague-Dawley Cy/Cy rats, an animal model presenting a severe PKD phenotype. Some upregulated genes were validated using real-time polymerase chain reaction in Cy/Cy and Cy/+ rats. Among the 350 genes identified as being upregulated, we found about 30 genes involved in extracellular matrix metabolism. These genes encoded proteins or peptides that could be implicated into two different biological processes: molecules involved in fibrosis and proteins involved in adhesion to the extracellular matrix. In heterozygotes, some genes (glypican 3, fibronectin 1) were already upregulated in early stages of the disease. We conclude that differential regulation of genes linked to extracellular matrix metabolism may be one of the first events leading to tubule enlargement and subsequent cyst formation in PKD.
Collapse
Affiliation(s)
- M Riera
- INSERM UMR 491, Medical Genetics and Development, IPHM, Faculté de Médecine de la Timone, Marseille cedex, France
| | | | | |
Collapse
|
33
|
Schieren G, Rumberger B, Klein M, Kreutz C, Wilpert J, Geyer M, Faller D, Timmer J, Quack I, Rump LC, Walz G, Donauer J. Gene profiling of polycystic kidneys. Nephrol Dial Transplant 2006; 21:1816-24. [PMID: 16520345 DOI: 10.1093/ndt/gfl071] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND While the genetic basis of autosomal dominant polycystic kidney disease (ADPKD) has been clearly established, the pathogenesis of renal failure in ADPKD remains elusive. Cyst formation originates from proliferating renal tubular epithelial cells that de-differentiate. Fluid secretion with cyst expansion and reactive changes in the extracellular matrix composition combined with increased apoptosis and proliferation rates have been implicated in cystogenesis. METHODS To identify genes that characterize pathogenical changes in ADPKD, we compared the expression profiles of 12 ADPKD kidneys, 13 kidneys with chronic transplant nephropathy and 16 normal kidneys using a 7 k cDNA microarray. RT-PCR and immunohistochemical techniques were used to confirm the microarray data. RESULTS Hierarchical clustering revealed that the gene expression profiles of normal, ADPKD and rejected kidneys were clearly distinct. A total of 87 genes were specifically regulated in ADPKD; 26 of these 87 genes were typical for smooth muscle, suggesting epithelial-to-myofibroblast transition (EMT) as a pathogenetic factor in ADPKD. Immunohistology revealed that smooth muscle actin, a typical marker for myofibroblast transition, and caldesmon were mainly expressed in the interstitium of ADPKD kidneys. In contrast, up-regulated keratin 19 and fibulin-1 were confined to cystic epithelia. CONCLUSION Our results show that the end stage of ADPKD is associated with increased markers of EMT, suggesting that EMT contributes to the progressive loss of renal function in ADPKD.
Collapse
Affiliation(s)
- Gisela Schieren
- Renal Division, Department of Internal Medicine, Ruhr-University Hospital Bochum at Marienhospital Herne, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gattone VH. Prothymosin alpha as a cystogen. Kidney Int 2005; 67:2063-4. [PMID: 15840058 DOI: 10.1111/j.1523-1755.2005.00313.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Paterson AD, Magistroni R, He N, Wang K, Johnson A, Fain PR, Dicks E, Parfrey P, St George-Hyslop P, Pei Y. Progressive Loss of Renal Function Is an Age-Dependent Heritable Trait in Type 1 Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol 2005; 16:755-62. [PMID: 15677307 DOI: 10.1681/asn.2004090758] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Significant intrafamilial phenotypic variability is well documented in autosomal dominant polycystic kidney disease (ADPKD) and suggests a modifier effect. In this study, variance components analysis was performed to estimate the contribution of genetic factors for within-family renal disease variability in 406 patients from 66 type 1 ADPKD families. Overall, 39% of the study patients had ESRD at their last follow-up, and their renal survival did not differ by gender (P = 0.35, log-rank test). Because their frequency plot of creatinine clearance (Ccr) assumed a bimodal distribution with a marked kurtosis that was not improved by transformations, the study cohort was decomposed into two separate groups (non-ESRD [n = 247] and ESRD [n = 159]) in which the Ccr plots were normally distributed. The heritability (h(2)) of Ccr and age at ESRD (age(ESRD)) and the genetic correlations between these measures and their covariates were estimated. In patients without ESRD, a significant heritability was found for Ccr (h(2) = 0.42; P = 0.0015) after adjusting for age (P = 0.0001), systolic BP (P = 0.0006), and treatment with angiotensin-converting enzyme inhibitor/angiotensin receptor blocker (P = 0.00001). Birth year, gender, BMI, diastolic and mean BP, and pack-years of cigarette smoking did not significantly influence the heritability of this trait. In patients with ESRD, age(ESRD) provides a better measure than Ccr, which was very narrowly distributed. A significant heritability was found for age(ESRD) (h(2) = 0.78; P = 0.00009) in these latter patients. None of the above covariates influenced the heritability of this trait. It is concluded that a significant modifier gene effect influences the progression of renal disease in type 1 ADPKD.
Collapse
Affiliation(s)
- Andrew D Paterson
- Division of Nephrology, University Health Network, 13 EN-228, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2005. [PMCID: PMC2448604 DOI: 10.1002/cfg.419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|