1
|
Rasmussen KL, Tybjaerg-Hansen A, Nordestgaard BG, Frikke-Schmidt R. Plasma levels of apolipoprotein E and risk of dementia in the general population. Ann Neurol 2015; 77:301-11. [PMID: 25469919 DOI: 10.1002/ana.24326] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The apolipoprotein E (APOE) ε4 allele is a major genetic risk factor for Alzheimer disease and dementia. However, it remains unclear whether plasma levels of apoE confer additional risk. We tested this hypothesis. METHODS Using 75,708 participants from the general population, we tested whether low plasma levels of apoE at study enrollment were associated with increased risk of future Alzheimer disease and all dementia, and whether this association was independent of ε2/ε3/ε4 APOE genotype. RESULTS Multifactorially adjusted hazard ratios (HRs) for Alzheimer disease and all dementia increased from the highest to the lowest apoE tertile (p for trends < 1 × 10(-6) ). Multifactorially adjusted HRs for lowest versus highest tertile were 2.68 (95% confidence interval [CI] = 2.04-3.52) and 1.80 (95% CI = 1.52-2.13) for Alzheimer disease and all dementia, respectively. After further adjustment for ε2/ε3/ε4 APOE genotype, plasma apoE tertiles remained associated with Alzheimer disease (p for trend = 0.007) and all dementia (p for trend = 0.04). Plasma apoE tertiles did not interact with ε2/ε3/ε4 APOE genotype on risk of Alzheimer disease (p = 0.53) or all dementia (p = 0.79). In a subanalysis, the -219G>T GT promoter genotype, associated with low plasma apoE levels, remained significantly associated with increased risk of Alzheimer disease after adjustment for ε2/ε3/ε4 APOE genotype (HR = 1.56, 95% CI = 1.05-2.30). INTERPRETATION Low plasma levels of apoE are associated with increased risk of future Alzheimer disease and all dementia in the general population, independent of ε2/ε3/ε4 APOE genotype. This is clinically relevant, because no plasma biomarkers are currently implemented. Hence, plasma levels of apoE may be a new, easily accessible preclinical biomarker.
Collapse
Affiliation(s)
- Katrine L Rasmussen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen; Copenhagen University Hospital and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen
| | | | | | | |
Collapse
|
2
|
Johswich A, Longuet C, Pawling J, Abdel Rahman A, Ryczko M, Drucker DJ, Dennis JW. N-glycan remodeling on glucagon receptor is an effector of nutrient sensing by the hexosamine biosynthesis pathway. J Biol Chem 2014; 289:15927-41. [PMID: 24742675 DOI: 10.1074/jbc.m114.563734] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Glucose homeostasis in mammals is dependent on the opposing actions of insulin and glucagon. The Golgi N-acetylglucosaminyltransferases encoded by Mgat1, Mgat2, Mgat4a/b/c, and Mgat5 modify the N-glycans on receptors and solute transporter, possibly adapting activities in response to the metabolic environment. Herein we report that Mgat5(-/-) mice display diminished glycemic response to exogenous glucagon, together with increased insulin sensitivity. Glucagon receptor signaling and gluconeogenesis in Mgat5(-/-) cultured hepatocytes was impaired. In HEK293 cells, signaling by ectopically expressed glucagon receptor was increased by Mgat5 expression and GlcNAc supplementation to UDP-GlcNAc, the donor substrate shared by Mgat branching enzymes. The mobility of glucagon receptor in primary hepatocytes was reduced by galectin-9 binding, and the strength of the interaction was dependent on Mgat5 and UDP-GlcNAc levels. Finally, oral GlcNAc supplementation rescued the glucagon response in Mgat5(-/-) hepatocytes and mice, as well as glycolytic metabolites and UDP-GlcNAc levels in liver. Our results reveal that the hexosamine biosynthesis pathway and GlcNAc salvage contribute to glucose homeostasis through N-glycan branching on glucagon receptor.
Collapse
Affiliation(s)
- Anita Johswich
- From the Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada and
| | - Christine Longuet
- From the Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada and
| | - Judy Pawling
- From the Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada and
| | - Anas Abdel Rahman
- From the Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada and
| | - Michael Ryczko
- From the Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada and the Departments of Molecular Genetics
| | - Daniel J Drucker
- From the Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada and Medicine, University of Toronto, Toronto, Ontario M5R 0A3, Canada
| | - James W Dennis
- From the Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada and the Departments of Molecular Genetics, Laboratory Medicine and Pathology, and Medicine, University of Toronto, Toronto, Ontario M5R 0A3, Canada
| |
Collapse
|
3
|
Reed B, Villeneuve S, Mack W, DeCarli C, Chui HC, Jagust W. Associations between serum cholesterol levels and cerebral amyloidosis. JAMA Neurol 2014; 71:195-200. [PMID: 24378418 DOI: 10.1001/jamaneurol.2013.5390] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
IMPORTANCE Because deposition of cerebral β-amyloid (Aβ) seems to be a key initiating event in Alzheimer disease (AD), factors associated with increased deposition are of great interest. Whether elevated serum cholesterol levels act as such a factor is unknown. OBJECTIVE To investigate the association between serum cholesterol levels and cerebral Aβ during life early in the AD process. DESIGN, SETTING, AND PARTICIPANTS A multisite, university medical center-based, cross-sectional analysis of potential associations between contemporaneously assayed total serum cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and cerebral Aβ, measured with carbon C11-labeled Pittsburgh Compound B (PIB) positron emission tomography. Seventy-four persons (mean age, 78 years) were recruited via direct outreach in stroke clinics and community senior facilities following a protocol designed to obtain a cohort enriched for cerebrovascular disease and elevated vascular risk. Three patients had mild dementia. All others were clinically normal (n = 33) or had mild cognitive impairment (n = 38). RESULTS Cerebral Aβ was quantified using a Global PIB Index, which averages PIB retention in cortical areas prone to amyloidosis. Statistical models that controlled for age and the apolipoprotein E ε4 allele revealed independent associations among the levels of LDL-C, HDL-C, and PIB index. Higher LDL-C and lower HDL-C levels were both associated with a higher PIB index. No association was found between the total cholesterol level and PIB index. No association was found between statin use and PIB index, and controlling for cholesterol treatment in the statistical models did not alter the basic findings. CONCLUSIONS AND RELEVANCE Elevated cerebral Aβ level was associated with cholesterol fractions in a pattern analogous to that found in coronary artery disease. This finding, in living humans, is consistent with prior autopsy reports, epidemiologic findings, and animal and in vitro work, suggesting an important role for cholesterol in Aβ processing. Because cholesterol levels are modifiable, understanding their link to Aβ deposition could potentially and eventually have an effect on retarding the pathologic cascade of AD. These findings suggest that understanding the mechanisms through which serum lipids modulate Aβ could offer new approaches to slowing Aβ deposition and thus to reducing the incidence of AD.
Collapse
Affiliation(s)
| | | | - Wendy Mack
- University of Southern California, Los Angeles
| | | | | | | |
Collapse
|
4
|
Tyson J, Armour JAL. Determination of haplotypes at structurally complex regions using emulsion haplotype fusion PCR. BMC Genomics 2012; 13:693. [PMID: 23231411 PMCID: PMC3543183 DOI: 10.1186/1471-2164-13-693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/07/2012] [Indexed: 12/26/2022] Open
Abstract
Background Genotyping and massively-parallel sequencing projects result in a vast amount of diploid data that is only rarely resolved into its constituent haplotypes. It is nevertheless this phased information that is transmitted from one generation to the next and is most directly associated with biological function and the genetic causes of biological effects. Despite progress made in genome-wide sequencing and phasing algorithms and methods, problems assembling (and reconstructing linear haplotypes in) regions of repetitive DNA and structural variation remain. These dynamic and structurally complex regions are often poorly understood from a sequence point of view. Regions such as these that are highly similar in their sequence tend to be collapsed onto the genome assembly. This is turn means downstream determination of the true sequence haplotype in these regions poses a particular challenge. For structurally complex regions, a more focussed approach to assembling haplotypes may be required. Results In order to investigate reconstruction of spatial information at structurally complex regions, we have used an emulsion haplotype fusion PCR approach to reproducibly link sequences of up to 1kb in length to allow phasing of multiple variants from neighbouring loci, using allele-specific PCR and sequencing to detect the phase. By using emulsion systems linking flanking regions to amplicons within the CNV, this led to the reconstruction of a 59kb haplotype across the DEFA1A3 CNV in HapMap individuals. Conclusion This study has demonstrated a novel use for emulsion haplotype fusion PCR in addressing the issue of reconstructing structural haplotypes at multiallelic copy variable regions, using the DEFA1A3 locus as an example.
Collapse
Affiliation(s)
- Jess Tyson
- School of Biology, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| | | |
Collapse
|
5
|
Characterisation of unclassified variants in the BRCA1/2 genes with a putative effect on splicing. Breast Cancer Res Treat 2011; 129:971-82. [PMID: 21638052 DOI: 10.1007/s10549-011-1599-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 05/14/2011] [Indexed: 10/18/2022]
Abstract
A subset of the unclassified variants (UVs) identified during genetic screening of BRCA1/2 genes may affect splicing. We assessed at RNA level the effect of four BRCA1 and ten BRCA2 UVs with a putative splice effect, as predicted in silico. The variants selected for this study were beyond the positions -1, -2 or +1, +2 from the exon, and were not previously described (n = 8) or their effect on splicing was not assessed previously (n = 6). Lymphocytes from UV carriers and healthy controls were cultured and treated with puromycin to prevent nonsense-mediated mRNA decay. The relative contribution of each allele to the various transcripts was assessed using combinations of allele-specific and transcript-specific primers. BRCA2 c.425G>T, c.7976+3_7976+4del and c.8754+3G>C give rise to aberrant transcripts BRCA2Δ4, BRCA2Δ17 and retention of 46nt of intron 21, respectively, and were considered pathogenic. BRCA1 c.4987-3C>G gives rise to BRCA1Δ17 that is likely pathogenic; however, residual expression of the full-length transcript from the variant allele could not be excluded. BRCA1 c.692C>T, c.693G>A and BRCA2 c.6935A>T, besides expressing the full-length transcript, increased expression of BRCA1Δ11 and BRCA2Δ12, respectively. As these are naturally occurring isoforms, also observed in controls, the clinical relevance is unclear. The seven remaining UVs did not affect splicing and three intronic variants were therefore classified as neutral. In conclusion, the RNA analysis results clarified the clinical relevance of 6 of the 14 studied UVs and thereby greatly improve the genetic counselling of high-risk breast/ovarian cancer patients carrying these classified variants.
Collapse
|
6
|
Bekris LM, Galloway NM, Montine TJ, Schellenberg GD, Yu CE. APOE mRNA and protein expression in postmortem brain are modulated by an extended haplotype structure. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:409-417. [PMID: 19554612 PMCID: PMC2829359 DOI: 10.1002/ajmg.b.30993] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Currently the epsilon4 allele of the apolipoprotein E gene (APOE) is the strongest genetic risk factor for late onset Alzheimer's disease (AD). However, inheritance of the APOE epsilon4 allele is not necessary or sufficient for the development of AD. Genetic evidence suggests that multiple loci in a 70 kb region surrounding APOE are associated with AD risk. Even though these loci could represent surrogate markers in linkage disequilibrium with APOE epsilon4 allele, they could also contribute biological effects independent of the APOE epsilon4 allele. Our previous study identified multiple SNPs upstream from APOE that are associated with cerebrospinal fluid apoE levels, suggesting that a haplotype structure proximal to APOE can influence apoE expression. In this study, we examined apoE expression in human post-mortem brain (PMB), and constructed chromosome-phase-separated haplotypes of the APOE proximal region to evaluate their effect on PMB apoE expression. ApoE protein expression was found to differ among AD brain regions and to differ between AD and control hippocampus. In addition, an extended APOE proximal haplotype structure, spanning from the TOMM40 gene to the APOE promoter, may modulate apoE expression in a brain region-specific manner and may influence AD disease status. In conclusion, this haplotype-phenotype analysis of apoE expression in PMB suggests that either; (1) the cis-regulation of APOE expression levels extends far upstream of the APOE promoter or (2) an APOE epsilon4 allele independent mechanism involving the TOMM40 gene plays a role in the risk of AD.
Collapse
Affiliation(s)
- Lynn M. Bekris
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington,Department of Medicine, University of Washington, Seattle, Washington
| | - Nichole M. Galloway
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington
| | - Thomas J. Montine
- Department of Pathology, University of Washington, Seattle, Washington
| | - Gerard D. Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chang-En Yu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington,Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
7
|
Ronald J, Rajagopalan R, Ranchalis JE, Marshall JK, Hatsukami TS, Heagerty PJ, Jarvik GP. Analysis of recently identified dyslipidemia alleles reveals two loci that contribute to risk for carotid artery disease. Lipids Health Dis 2009; 8:52. [PMID: 19951432 PMCID: PMC2794863 DOI: 10.1186/1476-511x-8-52] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 12/01/2009] [Indexed: 11/11/2022] Open
Abstract
Background Genome-wide association studies have identified numerous single nucleotide polymorphisms (SNPs) affecting high density lipoprotein (HDL) or low density lipoprotein (LDL) cholesterol levels; these SNPs may contribute to the genetic basis of vascular diseases. Results We assessed the impact of 34 SNPs at 23 loci on dyslipidemia, key lipid sub-phenotypes, and severe carotid artery disease (CAAD) in a case-control cohort. The effects of these SNPs on HDL and LDL were consistent with those previously reported, and we provide unbiased estimates of the percent variance in HDL (3.9%) and LDL (3.3%) explained by genetic risk scores. We assessed the effects of these SNPs on HDL subfractions, apolipoprotein A-1, LDL buoyancy, apolipoprotein B, and lipoprotein (a) and found that rs646776 predicts apolipoprotein B level while rs2075650 predicts LDL buoyancy. Finally, we tested the role of these SNPs in conferring risk for ultrasonographically documented CAAD stenosis status. We found that two loci, chromosome 1p13.3 near CELSR2 and PSRC1 which contains rs646776, and 19q13.2 near TOMM40 and APOE which contains rs2075650, harbor risk alleles for CAAD. Conclusion Our analysis of 34 SNPs contributing to dyslipidemia at 23 loci suggests that genetic variation in the 1p13.3 region may increase risk of CAAD by increasing LDL particle number, whereas variation in the 19q13.2 region may increase CAAD risk by promoting formation of smaller, denser LDL particles.
Collapse
Affiliation(s)
- James Ronald
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Yu CE, Seltman H, Peskind ER, Galloway N, Zhou PX, Rosenthal E, Wijsman EM, Tsuang DW, Devlin B, Schellenberg GD. Comprehensive analysis of APOE and selected proximate markers for late-onset Alzheimer's disease: patterns of linkage disequilibrium and disease/marker association. Genomics 2007; 89:655-65. [PMID: 17434289 PMCID: PMC1978251 DOI: 10.1016/j.ygeno.2007.02.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 02/14/2007] [Accepted: 02/15/2007] [Indexed: 10/23/2022]
Abstract
The epsilon(4) allele of APOE confers a two- to fourfold increased risk for late-onset Alzheimer's disease (LOAD), but LOAD pathology does not all fit neatly around APOE. It is conceivable that genetic variation proximate to APOE contributes to LOAD risk. Therefore, we investigated the degree of linkage disequilibrium (LD) for a comprehensive set of 50 SNPs in and surrounding APOE using a substantial Caucasian sample of 1100 chromosomes. SNPs in APOE were further molecularly haplotyped to determine their phases. One set of SNPs in TOMM40, roughly 15 kb upstream of APOE, showed intriguing LD with the epsilon(4) allele and was strongly associated with the risk for developing LOAD. However, when all the SNPs were entered into a logit model, only the effect of APOE epsilon(4) remained significant. These observations diminish the possibility that loci in the TOMM40 gene may have a major effect on the risk for LOAD in Caucasians.
Collapse
Affiliation(s)
- Chang-En Yu
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Sieh W, Yu CE, Bird TD, Schellenberg GD, Wijsman EM. Accounting for linkage disequilibrium among markers in linkage analysis: impact of haplotype frequency estimation and molecular haplotypes for a gene in a candidate region for Alzheimer's disease. Hum Hered 2007; 63:26-34. [PMID: 17215579 DOI: 10.1159/000098459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 11/02/2006] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVES Linkage disequilibrium (LD) between closely spaced SNPs can be accommodated in linkage analysis by specifying the multi-SNP haplotype frequencies, if known. Phased haplotypes in candidate regions can provide gold standard haplotype frequency estimates, and may be of inherent interest as markers. We evaluated the effects of different methods of haplotype frequency estimation, and the use of marker phase information, on linkage analysis of a multi-SNP cluster in a candidate region for Alzheimer's disease (AD). METHODS We performed parametric linkage analysis of a five-SNP cluster in extended pedigrees to compare the use of: (1) haplotype frequencies estimated by molecular phase determination, maximum likelihood estimation, or by assuming linkage equilibrium (LE); (2) AD families or controls as the frequency source; and (3) unphased or molecularly phased SNP data. RESULTS There was moderate to strong pairwise LD among the five SNPs. Falsely assuming LE substantially inflated the LOD score, but the method of haplotype frequency estimation and particular sample used made little difference provided that LD was accommodated. Use of phased haplotypes produced a modest increase in the LOD score over unphased SNPs. CONCLUSIONS Ignoring LD between markers can lead to substantially inflated evidence for linkage in LOD score analysis of extended pedigrees with missing data. Use of marker phase information in linkage analysis may be important in disease studies where the costs of family recruitment and phenotyping greatly exceed the costs of phase determination.
Collapse
Affiliation(s)
- Weiva Sieh
- Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
Many methods exist for genotyping—revealing which alleles an individual carries at different genetic loci. A harder problem is haplotyping—determining which alleles lie on each of the two homologous chromosomes in a diploid individual. Conventional approaches to haplotyping require the use of several generations to reconstruct haplotypes within a pedigree, or use statistical methods to estimate the prevalence of different haplotypes in a population. Several molecular haplotyping methods have been proposed, but have been limited to small numbers of loci, usually over short distances. Here we demonstrate a method which allows rapid molecular haplotyping of many loci over long distances. The method requires no more genotypings than pedigree methods, but requires no family material. It relies on a procedure to identify and genotype single DNA molecules, and reconstruction of long haplotypes by a ‘tiling’ approach. We demonstrate this by resolving haplotypes in two regions of the human genome, harbouring 20 and 105 single-nucleotide polymorphisms, respectively. The method can be extended to reconstruct haplotypes of arbitrary complexity and length, and can make use of a variety of genotyping platforms. We also argue that this method is applicable in situations which are intractable to conventional approaches.
Collapse
Affiliation(s)
| | | | - Paul H. Dear
- To whom correspondence should be addressed. Tel: +44 1223 402190; Fax: +44 1223 412178;
| |
Collapse
|
11
|
Gillanders EM, Pearson JV, Sorant AJM, Trent JM, O'Connell JR, Bailey-Wilson JE. The value of molecular haplotypes in a family-based linkage study. Am J Hum Genet 2006; 79:458-68. [PMID: 16909384 PMCID: PMC1559540 DOI: 10.1086/506626] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Accepted: 06/12/2006] [Indexed: 11/03/2022] Open
Abstract
Novel methods that could improve the power of conventional methods of gene discovery for complex diseases should be investigated. In a simulation study, we aimed to investigate the value of molecular haplotypes in the context of a family-based linkage study. The term "haplotype" (or "haploid genotype") refers to syntenic alleles inherited on a single chromosome, and we use the term "molecular haplotype" to refer to haplotypes that have been determined directly by use of a molecular technique such as long-range allele-specific polymerase chain reaction. In our study, we simulated genotype and phenotype data and then compared the powers of analyzing these data under the assumptions that various levels of information from molecular haplotypes were available. (This information was available because of the simulation procedure.) Several conclusions can be drawn. First, as expected, when genetic homogeneity is expected or when marker data are complete, it is not efficient to generate molecular haplotyping information. However, with levels of heterogeneity and missing data patterns typical of complex diseases, we observed a 23%-77% relative increase in the power to detect linkage in the presence of heterogeneity with heterogeneity LOD scores >3.0 when all individuals are molecularly haplotyped (compared with the power when only standard genotypes are used). Furthermore, our simulations indicate that most of the increase in power can be achieved by molecularly haplotyping a single individual in each family, thereby making molecular haplotyping a valuable strategy for increasing the power of gene mapping studies of complex diseases. Maximization of power, given an existing family set, can be particularly important for late-onset, often-fatal diseases such as cancer, for which informative families are difficult to collect.
Collapse
Affiliation(s)
- E M Gillanders
- Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Guo Z, Hood L, Malkki M, Petersdorf EW. Long-range multilocus haplotype phasing of the MHC. Proc Natl Acad Sci U S A 2006; 103:6964-9. [PMID: 16632595 PMCID: PMC1459002 DOI: 10.1073/pnas.0602286103] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Indexed: 01/01/2023] Open
Abstract
Haplotypes are a powerful tool for identifying the genetic basis of common complex diseases. Disease-association mapping requires molecular methods for haplotyping biallelic SNP variation and highly complex polymorphisms. We developed a method for phasing HLA-A, HLA-B, and HLA-DRB1 alleles on chromosome 6 in unrelated individuals. This method uses the highly polymorphic HLA-B locus to discriminate the two HLA haplotypes in heterozygous individuals and its ideal location 1.4 Mbp telomeric to HLA-DRB1 and 1.2 Mbp centromeric to HLA-A to capture 2-Mbp-long genomic DNA. Genomic DNA representing a single HLA-B-captured haplotype is genotyped for HLA-A and HLA-DRB1 alleles and linkage to HLA-B is established. Proof of principle was established in a large blinded study of phase-known samples. Availability of an efficient method for MHC haplotype phase determination will facilitate the mapping of causative MHC-resident genes in many human diseases and has the potential to be broadened to other polymorphic gene complexes.
Collapse
Affiliation(s)
- Zhen Guo
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109
| | - Leroy Hood
- The Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103; and
| | - Mari Malkki
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109
| | - Effie W. Petersdorf
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109
- Division of Medical Oncology, University of Washington School of Medicine, Box 358080, Seattle, WA 98195
| |
Collapse
|
13
|
Lindsay SJ, Bonfield JK, Hurles ME. Shotgun haplotyping: a novel method for surveying allelic sequence variation. Nucleic Acids Res 2005; 33:e152. [PMID: 16221968 PMCID: PMC1253838 DOI: 10.1093/nar/gni152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Haplotypic sequences contain significantly more information than genotypes of genetic markers and are critical for studying disease association and genome evolution. Current methods for obtaining haplotypic sequences require the physical separation of alleles before sequencing, are time consuming and are not scaleable for large surveys of genetic variation. We have developed a novel method for acquiring haplotypic sequences from long PCR products using simple, high-throughput techniques. This method applies modified shotgun sequencing protocols to sequence both alleles concurrently, with read-pair information allowing the two alleles to be separated during sequence assembly. Although the haplotypic sequences can be assembled manually from the resultant data using pre-existing sequence assembly software, we have devised a novel heuristic algorithm to automate assembly and remove human error. We validated the approach on two long PCR products amplified from the human genome and confirmed the accuracy of our sequences against full-length clones of the same alleles. This method presents a simple high-throughput means to obtain full haplotypic sequences potentially up to 20 kb in length and is suitable for surveying genetic variation even in poorly-characterized genomes as it requires no prior information on sequence variation.
Collapse
Affiliation(s)
| | | | - Matthew E. Hurles
- To whom correspondence should be addressed. Tel: +44 (0) 1223 495377; Fax +44 (0) 1223 494919;
| |
Collapse
|
14
|
Pont-Kingdon G, Lyon E. Direct molecular haplotyping by melting curve analysis of hybridization probes: beta 2-adrenergic receptor haplotypes as an example. Nucleic Acids Res 2005; 33:e89. [PMID: 15937194 PMCID: PMC1142492 DOI: 10.1093/nar/gni090] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Direct determination of the association of multiple genetic polymorphisms, or haplotyping, in individual samples is challenging because of chromosome diploidy. Here, we describe the ability of hybridization probes, commonly used as genotyping tools, to establish single nucleotide polymorphism (SNP) haplotypes in a single step. Three haplotypes found in the beta 2-adrenergic receptor (beta2AR) gene and characterized by three different SNPs combinations are presented as examples. Each combination of SNPs has a unique stability, recorded by its melting temperature, even when intervening sequences from the template must loop out during probe hybridization. In the course of this study, two haplotypes in beta2AR not described previously were discovered. This approach provides a tool for molecular haplotyping that should prove useful in clinical molecular genetics diagnostics and pharmacogenetic research where methods for direct haplotyping are needed.
Collapse
Affiliation(s)
- Genevieve Pont-Kingdon
- Institute for Clinical and Experimental Pathology, ARUP Laboratories 500 Chipeta Way, Salt Lake City, UT 84108, USA.
| | | |
Collapse
|