1
|
Chakraborty A, Kamat SS. Lysophosphatidylserine: A Signaling Lipid with Implications in Human Diseases. Chem Rev 2024; 124:5470-5504. [PMID: 38607675 DOI: 10.1021/acs.chemrev.3c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Lysophosphatidylserine (lyso-PS) has emerged as yet another important signaling lysophospholipid in mammals, and deregulation in its metabolism has been directly linked to an array of human autoimmune and neurological disorders. It has an indispensable role in several biological processes in humans, and therefore, cellular concentrations of lyso-PS are tightly regulated to ensure optimal signaling and functioning in physiological settings. Given its biological importance, the past two decades have seen an explosion in the available literature toward our understanding of diverse aspects of lyso-PS metabolism and signaling and its association with human diseases. In this Review, we aim to comprehensively summarize different aspects of lyso-PS, such as its structure, biodistribution, chemical synthesis, and SAR studies with some synthetic analogs. From a biochemical perspective, we provide an exhaustive coverage of the diverse biological activities modulated by lyso-PSs, such as its metabolism and the receptors that respond to them in humans. We also briefly discuss the human diseases associated with aberrant lyso-PS metabolism and signaling and posit some future directions that may advance our understanding of lyso-PS-mediated mammalian physiology.
Collapse
Affiliation(s)
- Arnab Chakraborty
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
2
|
Kuhn CK, Stenzel U, Berndt S, Liebscher I, Schöneberg T, Horn S. The repertoire and structure of adhesion GPCR transcript variants assembled from publicly available deep-sequenced human samples. Nucleic Acids Res 2024; 52:3823-3836. [PMID: 38421639 DOI: 10.1093/nar/gkae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/24/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Alternative splicing and multiple transcription start and termination sites can produce a diverse repertoire of mRNA transcript variants from a given gene. While the full picture of the human transcriptome is still incomplete, publicly available RNA datasets have enabled the assembly of transcripts. Using publicly available deep sequencing data from 927 human samples across 48 tissues, we quantified known and new transcript variants, provide an interactive, browser-based application Splice-O-Mat and demonstrate its relevance using adhesion G protein-coupled receptors (aGPCRs) as an example. On average, 24 different transcript variants were detected for each of the 33 human aGPCR genes, and several dominant transcript variants were not yet annotated. Variable transcription starts and complex exon-intron structures encode a flexible protein domain architecture of the N- and C termini and the seven-transmembrane helix domain (7TMD). Notably, we discovered the first GPCR (ADGRG7/GPR128) with eight transmembrane helices. Both the N- and C terminus of this aGPCR were intracellularly oriented, anchoring the N terminus in the plasma membrane. Moreover, the assessment of tissue-specific transcript variants, also for other gene classes, in our application may change the evaluation of disease-causing mutations, as their position in different transcript variants may explain tissue-specific phenotypes.
Collapse
Affiliation(s)
- Christina Katharina Kuhn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Udo Stenzel
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Sandra Berndt
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
- Department of Biochemistry, School of Medicine, University of Global Health Equity (UGHE), PO Box 6955 Kigali, Rwanda
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| |
Collapse
|
3
|
Izume T, Kawahara R, Uwamizu A, Chen L, Yaginuma S, Omi J, Kawana H, Hou F, Sano FK, Tanaka T, Kobayashi K, Okamoto HH, Kise Y, Ohwada T, Aoki J, Shihoya W, Nureki O. Structural basis for lysophosphatidylserine recognition by GPR34. Nat Commun 2024; 15:902. [PMID: 38326347 PMCID: PMC10850092 DOI: 10.1038/s41467-024-45046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
GPR34 is a recently identified G-protein coupled receptor, which has an immunomodulatory role and recognizes lysophosphatidylserine (LysoPS) as a putative ligand. Here, we report cryo-electron microscopy structures of human GPR34-Gi complex bound with one of two ligands bound: either the LysoPS analogue S3E-LysoPS, or M1, a derivative of S3E-LysoPS in which oleic acid is substituted with a metabolically stable aromatic fatty acid surrogate. The ligand-binding pocket is laterally open toward the membrane, allowing lateral entry of lipidic agonists into the cavity. The amine and carboxylate groups of the serine moiety are recognized by the charged residue cluster. The acyl chain of S3E-LysoPS is bent and fits into the L-shaped hydrophobic pocket in TM4-5 gap, and the aromatic fatty acid surrogate of M1 fits more appropriately. Molecular dynamics simulations further account for the LysoPS-regioselectivity of GPR34. Thus, using a series of structural and physiological experiments, we provide evidence that chemically unstable 2-acyl LysoPS is the physiological ligand for GPR34. Overall, we anticipate the present structures will pave the way for development of novel anticancer drugs that specifically target GPR34.
Collapse
Affiliation(s)
- Tamaki Izume
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ryo Kawahara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akiharu Uwamizu
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Luying Chen
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shun Yaginuma
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Jumpei Omi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroki Kawana
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Fengjue Hou
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Fumiya K Sano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tatsuki Tanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazuhiro Kobayashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroyuki H Okamoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yoshiaki Kise
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomohiko Ohwada
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
4
|
Zhou Y, Chang M, Wang N, Zhuang Y, Wang F, Zhang X, Guo M, Lin N, Li JZ, Wang Q. Phosphatidylserine-Specific Phospholipase A1 Limits Aggressiveness of Lung Adenocarcinoma by Lysophosphatidylserine and Protein Kinase A-Dependent Pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:970-983. [PMID: 35358472 DOI: 10.1016/j.ajpath.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Lipid metabolic abnormalities in cancer cells are increasingly being studied. Several studies have reported that phosphatidylserine-specific phospholipase A1 (PLA1A) might be involved in the pathogenesis of cancers. Nevertheless, the function and mechanistic details of PLA1A in lung adenocarcinoma (LUAD) progression remain largely undefined. In the present study, low PLA1A expression was correlated with poor prognosis in patients with LUAD. Results from in vitro and in vivo animal studies showed that overexpressed PLA1A suppressed the proliferation of LUAD cells in vitro and tumor growth in vivo through regulation of cyclin abundance, thereby inducing S-phase arrest. Meanwhile, PLA1A overexpression attenuated migration and invasion of LUAD cells, including by inhibiting the epithelial-mesenchymal transition. Mechanistically, PLA1A overexpression inhibited aggressiveness of LUAD cells through elevated lysophosphatidylserine, which acts via G-protein-coupled receptor 174, further activating cAMP/protein kinase A pathway. Activating G-protein-coupled receptor 174/protein kinase A pathway may involve effects on cell cycle regulators and transcription factors-regulated epithelial-mesenchymal transition. The study uncovered the mechanism through which PLA1A regulates LUAD proliferation, invasion, and migration. These results demonstrate the potential use of PLA1A as a biomarker for diagnosing LUAD, which may therefore potentially serve as a therapeutic target for LUAD.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meijia Chang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Ning Wang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Yuan Zhuang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Fang Wang
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xu Zhang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Min Guo
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ning Lin
- National Health Commission Contraceptives Adverse Reaction Surveillance Center, Jiangsu Health Development Research Center, Nanjing, China.
| | - John Zhong Li
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Qian Wang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Cheng Y, Heng X, Feng F. G-protein Coupled Receptor 34 Promotes Gliomagenesis by Inducing Proliferation and Malignant Phenotype via TGF-Beta/Smad Signaling Pathway. Technol Cancer Res Treat 2022; 21:15330338221105733. [PMID: 35770303 PMCID: PMC9252019 DOI: 10.1177/15330338221105733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background: G-protein coupled receptor 34 (GPR34) is involved in cell motility, differentiation, and mitosis. GPR34 was reported to be highly expressed and play an oncogenic role in several solid tumors. Here, we investigated the mechanisms underlying how GPR34 promotes glioma progression. Methods: Bioinformatic analysis was performed on RNA-seq and clinical data from the gene expression omnibus (GEO), cancer genome atlas (TCGA), and Genotype-Tissue Expression (GTEx) databases. TIMER database and single-sample GSEA (ssGAEA) method were used to investigate the association between the GPR34 expression and immune infiltration level in glioma. Cox regression analysis was employed to ascertain whether the risk signature was an independent prognostic indicator for glioma. The viability and migratory/invasive potential of glioma cells were assessed using Cell Counting Kit-8, colony formation, wound healing, and Transwell assays. Results: We found that GPR34 expression was positively correlated with immune infiltration level and that high GPR34 level may be associated with poor prognosis in glioma. We further found that GPR34 may serve as an independent prognostic marker and prediction factor for the clinicopathological features of glioma. We showed that knocking down GPR34 attenuated the viability and migratory/invasive capacity of glioma cells (U251 and LN229), while GPR34 overexpression exerted the opposite effects. Additionally, core enrichment in the GSEA analysis indicated that GPR34-mediated gliomagenesis was associated with the cell cycle arrest, epithelial–mesenchymal transition (EMT), and activation of the TGF-β/Smad pathway; furthermore, inhibiting TGF-β/Smad signaling using LY2157299, a TGF-β inhibitor, reversed the oncogenic effects and malignant phenotype associated with GPR34 overexpression. Conclusion: GPR34 enhances the malignancy and carcinogenesis of glioma by promoting an EMT-like process, G1/S phase cell cycle transition, and TGF-β/Smad signaling. Accordingly, GPR34 likely functions as an oncogene in glioma and may represent a potential therapeutic target for this cancer.
Collapse
Affiliation(s)
- Yanhao Cheng
- Institute of Clinical Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Institute of Brain Science and Brain-Like Intelligence, 529858Linyi People's Hospital, Linyi, Shandong, People's Republic of China.,Department of Neurosurgery, 529858Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| | - Xueyuan Heng
- Institute of Clinical Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Institute of Brain Science and Brain-Like Intelligence, 529858Linyi People's Hospital, Linyi, Shandong, People's Republic of China.,Department of Neurosurgery, 529858Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| | - Fan Feng
- Institute of Clinical Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Institute of Brain Science and Brain-Like Intelligence, 529858Linyi People's Hospital, Linyi, Shandong, People's Republic of China.,Department of Neurosurgery, 529858Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| |
Collapse
|
6
|
Genetic basis of functional variability in adhesion G protein-coupled receptors. Sci Rep 2019; 9:11036. [PMID: 31363148 PMCID: PMC6667449 DOI: 10.1038/s41598-019-46265-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 06/21/2019] [Indexed: 12/15/2022] Open
Abstract
The enormous sizes of adhesion G protein-coupled receptors (aGPCRs) go along with complex genomic exon-intron architectures giving rise to multiple mRNA variants. There is a need for a comprehensive catalog of aGPCR variants for proper evaluation of the complex functions of aGPCRs found in structural, in vitro and animal model studies. We used an established bioinformatics pipeline to extract, quantify and visualize mRNA variants of aGPCRs from deeply sequenced transcriptomes. Data analysis showed that aGPCRs have multiple transcription start sites even within introns and that tissue-specific splicing is frequent. On average, 19 significantly expressed transcript variants are derived from a given aGPCR gene. The domain architecture of the N terminus encoded by transcript variants often differs and N termini without or with an incomplete seven-helix transmembrane anchor as well as separate seven-helix transmembrane domains are frequently derived from aGPCR genes. Experimental analyses of selected aGPCR transcript variants revealed marked functional differences. Our analysis has an impact on a rational design of aGPCR constructs for structural analyses and gene-deficient mouse lines and provides new support for independent functions of both, the large N terminus and the transmembrane domain of aGPCRs.
Collapse
|
7
|
Schöneberg T, Meister J, Knierim AB, Schulz A. The G protein-coupled receptor GPR34 - The past 20 years of a grownup. Pharmacol Ther 2018; 189:71-88. [PMID: 29684466 DOI: 10.1016/j.pharmthera.2018.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Research on GPR34, which was discovered in 1999 as an orphan G protein-coupled receptor of the rhodopsin-like class, disclosed its physiologic relevance only piece by piece. Being present in all recent vertebrate genomes analyzed so far it seems to improve the fitness of species although it is not essential for life and reproduction as GPR34-deficient mice demonstrate. However, closer inspection of macrophages and microglia, where it is mainly expressed, revealed its relevance in immune cell function. Recent data clearly demonstrate that GPR34 function is required to arrest microglia in the M0 homeostatic non-phagocytic phenotype. Herein, we summarize the current knowledge on its evolution, genomic and structural organization, physiology, pharmacology and relevance in human diseases including neurodegenerative diseases and cancer, which accumulated over the last 20 years.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany.
| | - Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Alexander Bernd Knierim
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; Leipzig University Medical Center, IFB AdiposityDiseases, 04103 Leipzig, Germany
| | - Angela Schulz
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
8
|
Topogenesis and cell surface trafficking of GPR34 are facilitated by positive-inside rule that effects through a tri-basic motif in the first intracellular loop. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1534-51. [PMID: 27086875 DOI: 10.1016/j.bbamcr.2016.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 11/21/2022]
Abstract
Protein folding, topogenesis and intracellular targeting of G protein-coupled receptors (GPCRs) must be precisely coordinated to ensure correct receptor localization. To elucidate how different steps of GPCR biosynthesis work together, we investigated the process of membrane topology determination and how it relates to the acquisition of cell surface trafficking competence in human GPR34. By monitoring a fused FLAG-tag and a conformation-sensitive native epitope during the expression of GPR34 mutant panel, a tri-basic motif in the first intracellular loop was identified as the key topogenic signal that dictates the orientation of transmembrane domain-1 (TM1). Charge disruption of the motif perturbed topogenic processes and resulted in the conformational epitope loss, post-translational processing alteration, and trafficking arrest in the Golgi. The placement of a cleavable N-terminal signal sequence as a surrogate topogenic determinant overcame the effects of tri-basic motif mutations and rectified the TM1 orientation; thereby restored the conformational epitope, post-translational modifications, and cell surface trafficking altogether. Progressive N-tail truncation and site-directed mutagenesis revealed that a proline-rich segment of the N-tail and all four cysteines individually located in the four separate extracellular regions must simultaneously reside in the ER lumen to muster the conformational epitope. Oxidation of all four cysteines was necessary for the epitope formation, but the cysteine residues themselves were not required for the trafficking event. The underlying biochemical properties of the conformational epitope was therefore the key to understand mechanistic processes propelled by positive-inside rule that simultaneously regulate the topogenesis and intracellular trafficking of GPR34.
Collapse
|
9
|
Jäger E, Schulz A, Lede V, Lin CC, Schöneberg T, Le Duc D. Dendritic Cells Regulate GPR34 through Mitogenic Signals and Undergo Apoptosis in Its Absence. THE JOURNAL OF IMMUNOLOGY 2016; 196:2504-13. [DOI: 10.4049/jimmunol.1501326] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/03/2016] [Indexed: 11/19/2022]
|
10
|
Zuo B, Li M, Liu Y, Li K, Ma S, Cui M, Qin Y, Zhu H, Pan X, Guo J, Dai Z, Yu W. G-protein coupled receptor 34 activates Erk and phosphatidylinositol 3-kinase/Akt pathways and functions as alternative pathway to mediate p185Bcr-Abl-induced transformation and leukemogenesis. Leuk Lymphoma 2014; 56:2170-81. [PMID: 25363403 DOI: 10.3109/10428194.2014.981177] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tyrosine 177 and the Src homology 2 (SH2) domain play important roles in linking p185Bcr-Abl to downstream pathways critical for cell growth and survival. However, a mutant p185(Y177FR552L) (p185(YR)), in which tyrosine 177 and arginine 552 in the SH2 domain are mutated, is still capable of transforming hematopoietic cells in vitro. Transplant of these cells into syngeneic mice also leads to leukemogenesis, albeit with a phenotype distinct from that produced by wild-type p185Bcr-Abl (p185(wt))-transformed cells. Here we show that G-protein coupled receptor 34 (Gpr34) expression is markedly up-regulated in p185(YR)-transformed cells compared to those transformed by p185(wt). Knockdown of Gpr34 in p185(YR) cells is sufficient to suppress growth factor-independent proliferation and survival in vitro and attenuate leukemogenesis in vivo. The Erk and phosphatidylinositol 3-kinase/Akt pathways are activated in p185(YR) cells and the activation is dependent on Gpr34 expression. These studies identify Gpr34 as an alternative pathway that may mediate p185Bcr-Abl-induced transformation and leukemogenesis.
Collapse
Affiliation(s)
- Bo Zuo
- Institute of Clinical Molecular Biology, People's Hospital, Peking University , Beijing , People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Diaz C, Labit-Le Bouteiller C, Yvon S, Cambon-Kernëis A, Roasio A, Jamme MF, Aries A, Feuillerat C, Perret E, Guette F, Dieu P, Miloux B, Albène D, Hasel N, Kaghad M, Ferran E, Lupker J, Ferrara P. A Strategy Combining Differential Low-Throughput Screening and Virtual Screening (DLS-VS) Accelerating the Discovery of new Modulators for the Orphan GPR34 Receptor. Mol Inform 2013; 32:213-29. [PMID: 27481282 DOI: 10.1002/minf.201200047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 01/05/2012] [Indexed: 12/21/2022]
Abstract
The DLS-VS strategy was developed as an integrated method for identifying chemical modulators for orphan GPCRs. It combines differential low-throughput screening (DLS) and virtual screening (VS). The two cascaded techniques offer complementary advantages and allow the experimental testing of a minimal number of compounds. First, DLS identifies modulators specific for the considered receptor among a set of receptors, through the screening of a small library with diverse chemical compounds. Then, an active molecular model of the receptor is built by homology to a validated template, and it is progressively refined by rotamers modification for key side-chains, by VS of the already screened library, and by iterative selection of the model generating the best enrichment. The refined active model is finally used for the VS of a large chemical library and the selection of a small set of compounds for experimental testing. Applied to the orphan receptor GPR34, the DLS-VS strategy combined the experimental screening of 20 000 compounds and the virtual screening of 1 250 000 compounds. It identified one agonist and eight inverse agonists, showing a high chemical diversity. We describe the method. The strategy can be applied to other GPCRs.
Collapse
Affiliation(s)
- Constantino Diaz
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156.
| | - Christine Labit-Le Bouteiller
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Stéphane Yvon
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Aimée Cambon-Kernëis
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Annette Roasio
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Marie-Françoise Jamme
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Amélie Aries
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Claude Feuillerat
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Eric Perret
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Fréderique Guette
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Pierre Dieu
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Brigitte Miloux
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Danielle Albène
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Nathalie Hasel
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Mourad Kaghad
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Edgardo Ferran
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Jan Lupker
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Pascual Ferrara
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| |
Collapse
|
12
|
Grzelczyk A, Gendaszewska-Darmach E. Novel bioactive glycerol-based lysophospholipids: new data -- new insight into their function. Biochimie 2012; 95:667-79. [PMID: 23089136 DOI: 10.1016/j.biochi.2012.10.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 10/11/2012] [Indexed: 11/28/2022]
Abstract
Based on the results of research conducted over last two decades, lysophospholipids (LPLs) were observed to be not only structural components of cellular membranes but also biologically active molecules influencing a broad variety of processes such as carcinogenesis, neurogenesis, immunity, vascular development or regulation of metabolic diseases. With a growing interest in the involvement of extracellular lysophospholipids in both normal physiology and pathology, it has become evident that those small molecules may have therapeutic potential. While lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) have been studied in detail, other LPLs such as lysophosphatidylglycerol (LPG), lysophosphatidylserine (LPS), lysophosphatidylinositol (LPI), lysophosphatidylethanolamine (LPE) or even lysophosphatidylcholine (LPC) have not been elucidated to such a high degree. Although information concerning the latter LPLs is sparse as compared to LPA and S1P, within the last couple of years much progress has been made. Recently published data suggest that these compounds may regulate fundamental cellular activities by modulating multiple molecular targets, e.g. by binding to specific receptors and/or altering the structure and fluidity of lipid rafts. Therefore, the present review is devoted to novel bioactive glycerol-based lysophospholipids and recent findings concerning their functions and possible signaling pathways regulating physiological and pathological processes.
Collapse
Affiliation(s)
- Anna Grzelczyk
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland
| | | |
Collapse
|
13
|
t(X;14)(p11;q32) in MALT lymphoma involving GPR34 reveals a role for GPR34 in tumor cell growth. Blood 2012; 120:3949-57. [PMID: 22966169 DOI: 10.1182/blood-2011-11-389908] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Genetic aberrations, including trisomies 3 and 18, and well-defined IGH translocations, have been described in marginal zone lymphomas (MZLs); however, these known genetic events are present in only a subset of cases. Here, we report the cloning of an IGH translocation partner on chromosome X, t(X;14)(p11.4;q32) that deregulates expression of an poorly characterized orphan G-protein-coupled receptor, GPR34. Elevated GPR34 gene expression was detected independent of the translocation in multiple subtypes of non-Hodgkin lymphoma and distinguished a unique molecular subtype of MZL. Increased expression of GPR34 was also detected in tissue from brain tumors and surface expression of GPR34 was detected on human MZL tumor cells and normal immune cells. Overexpression of GPR34 in lymphoma and HeLa cells resulted in phosphorylation of ERK, PKC, and CREB; induced CRE, AP1, and NF-κB-mediated gene transcription; and increased cell proliferation. In summary, these results are the first to identify a role for a GPR34 in lymphoma cell growth, provide insight into GPR34-mediated signaling, identify a genetically unique subset of MZLs that express high levels of GPR34, and suggest that MEK inhibitors may be useful for treatment of GPR34-expressing tumors.
Collapse
|
14
|
Abstract
Lyso-PS (lyso-phosphatidylserine) has been shown to activate the G(i/o)-protein-coupled receptor GPR34. Since in vitro and in vivo studies provided controversial results in assigning lyso-PS as the endogenous agonist for GPR34, we investigated the evolutionary conservation of agonist specificity in more detail. Except for some fish GPR34 subtypes, lyso-PS has no or very weak agonistic activity at most vertebrate GPR34 orthologues investigated. Using chimaeras we identified single positions in the second extracellular loop and the transmembrane helix 5 of carp subtype 2a that, if transferred to the human orthologue, enabled lyso-PS to activate the human GPR34. Significant improvement of agonist efficacy by changing only a few positions strongly argues against the hypothesis that nature optimized GPR34 as the receptor for lyso-PS. Phylogenetic analysis revealed several positions in some fish GPR34 orthologues which are under positive selection. These structural changes may indicate functional specification of these orthologues which can explain the species- and subtype-specific pharmacology of lyso-PS. Furthermore, we identified aminoethyl-carbamoyl ATP as an antagonist of carp GPR34, indicating ligand promiscuity with non-lipid compounds. The results of the present study suggest that lyso-PS has only a random agonistic activity at some GPR34 orthologues and the search for the endogenous agonist should consider additional chemical entities.
Collapse
|
15
|
Wegner F, Kraft R, Busse K, Härtig W, Ahrens J, Leffler A, Dengler R, Schwarz J. Differentiated human midbrain-derived neural progenitor cells express excitatory strychnine-sensitive glycine receptors containing α2β subunits. PLoS One 2012; 7:e36946. [PMID: 22606311 PMCID: PMC3350492 DOI: 10.1371/journal.pone.0036946] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 04/16/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Human fetal midbrain-derived neural progenitor cells (NPCs) may deliver a tissue source for drug screening and regenerative cell therapy to treat Parkinson's disease. While glutamate and GABA(A) receptors play an important role in neurogenesis, the involvement of glycine receptors during human neurogenesis and dopaminergic differentiation as well as their molecular and functional characteristics in NPCs are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS Here we investigated NPCs in respect to their glycine receptor function and subunit expression using electrophysiology, calcium imaging, immunocytochemistry, and quantitative real-time PCR. Whole-cell recordings demonstrate the ability of NPCs to express functional strychnine-sensitive glycine receptors after differentiation for 3 weeks in vitro. Pharmacological and molecular analyses indicate a predominance of glycine receptor heteromers containing α2β subunits. Intracellular calcium measurements of differentiated NPCs suggest that glycine evokes depolarisations mediated by strychnine-sensitive glycine receptors and not by D-serine-sensitive excitatory glycine receptors. Culturing NPCs with additional glycine, the glycine-receptor antagonist strychnine, or the Na(+)-K(+)-Cl(-) co-transporter 1 (NKCC1)-inhibitor bumetanide did not significantly influence cell proliferation and differentiation in vitro. CONCLUSIONS/SIGNIFICANCE These data indicate that NPCs derived from human fetal midbrain tissue acquire essential glycine receptor properties during neuronal maturation. However, glycine receptors seem to have a limited functional impact on neurogenesis and dopaminergic differentiation of NPCs in vitro.
Collapse
Affiliation(s)
- Florian Wegner
- Department of Neurology, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Tarnow P, Rediger A, Schulz A, Grüters A, Biebermann H. Identification of the translation start site of the human melanocortin 3 receptor. Obes Facts 2012; 5:45-51. [PMID: 22433616 DOI: 10.1159/000336070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 10/12/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The melanocortin-3-receptor (MC3R) is a G-protein coupled receptor participating in hypothalamic energy metabolism. So far, it was assumed that the translation of the human MC3R starts at the non-conserved first ATG, however, a second evolutionary conserved ATG is located 37 amino acids downstream. One frequent polymorphism, T6K, is located between these two ATGs. METHODS For characterization of the two potential start ATGs, COS-7 cells were transfected with plasmids encoding the longer and the shorter form of the human MC3R. For signal transduction properties, cAMP was measured. Cell surface expression was determined by using an ELISA method. The translational start point of the MC3R was investigated by a GFP-based method. RESULTS Signal transduction was comparable for the long and the short receptor form. Cell surface expression via aminoterminal hemagglutinin tag could only be detected in the shorter form, but not in the longer one. In our study we show that the translation of the human MC3R protein starts at the evolutionary conserved ATG codon which results in a shorter protein than previously assumed. CONCLUSION The polymorphism T6K is not located in the coding region of the human MC3R and has no influence on translation initiation which makes an impact on body weight unlikely.
Collapse
Affiliation(s)
- Patrick Tarnow
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, Humboldt University, Augustenburger Platz 1, Berlin, Germany
| | | | | | | | | |
Collapse
|
17
|
Engel KMY, Schröck K, Teupser D, Holdt LM, Tönjes A, Kern M, Dietrich K, Kovacs P, Krügel U, Scheidt HA, Schiller J, Huster D, Brockmann GA, Augustin M, Thiery J, Blüher M, Stumvoll M, Schöneberg T, Schulz A. Reduced food intake and body weight in mice deficient for the G protein-coupled receptor GPR82. PLoS One 2011; 6:e29400. [PMID: 22216272 PMCID: PMC3247265 DOI: 10.1371/journal.pone.0029400] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 11/28/2011] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCR) are involved in the regulation of numerous physiological functions. Therefore, GPCR variants may have conferred important selective advantages during periods of human evolution. Indeed, several genomic loci with signatures of recent selection in humans contain GPCR genes among them the X-chromosomally located gene for GPR82. This gene encodes a so-called orphan GPCR with unknown function. To address the functional relevance of GPR82 gene-deficient mice were characterized. GPR82-deficient mice were viable, reproduced normally, and showed no gross anatomical abnormalities. However, GPR82-deficient mice have a reduced body weight and body fat content associated with a lower food intake. Moreover, GPR82-deficient mice showed decreased serum triacylglyceride levels, increased insulin sensitivity and glucose tolerance, most pronounced under Western diet. Because there were no differences in respiratory and metabolic rates between wild-type and GPR82-deficient mice our data suggest that GPR82 function influences food intake and, therefore, energy and body weight balance. GPR82 may represent a thrifty gene most probably representing an advantage during human expansion into new environments.
Collapse
Affiliation(s)
- Kathrin M. Y. Engel
- Molecular Biochemistry, Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Kristin Schröck
- Molecular Biochemistry, Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Daniel Teupser
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Lesca Miriam Holdt
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Anke Tönjes
- Department of Internal Medicine, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Matthias Kern
- Department of Internal Medicine, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Kerstin Dietrich
- Interdisciplinary Centre for Clinical Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Peter Kovacs
- Interdisciplinary Centre for Clinical Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Ute Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Holger A. Scheidt
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Jürgen Schiller
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Daniel Huster
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Gudrun A. Brockmann
- Institute of Animal Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Joachim Thiery
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Department of Internal Medicine, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Michael Stumvoll
- Department of Internal Medicine, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Torsten Schöneberg
- Molecular Biochemistry, Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
- * E-mail:
| | - Angela Schulz
- Molecular Biochemistry, Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
18
|
Baens M, Finalet Ferreiro J, Tousseyn T, Urbankova H, Michaux L, de Leval L, Dierickx D, Wolter P, Sagaert X, Vandenberghe P, De Wolf-Peeters C, Wlodarska I. t(X;14)(p11.4;q32.33) is recurrent in marginal zone lymphoma and up-regulates GPR34. Haematologica 2011; 97:184-8. [PMID: 22058210 DOI: 10.3324/haematol.2011.052639] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Genetic events underlying pathogenesis of nodal and extranodal marginal zone lymphoma are not completely understood. We report here a novel t(X;14)(p11.4;q32.33) identified in 4 lymphoma cases: 2 with a mucosa-associated lymphoid tissue lymphoma, one with a nodal marginal zone lymphoma and one with gastric diffuse large B-cell lymphoma. In all cases, lymphoma evolved from a previous auto-immune disorder. Fluorescence in situ hybridization and molecular studies showed that t(X;14), which is mediated by immunoglobulin heavy chain locus, targets the GPR34 gene at Xp11.4. Upregulation of GPR34 mRNA and aberrant expression of GPR34 protein has been demonstrated in 3 presented cases by quantitative real-time polymerase chain reaction and immunohistochemistry, respectively. GPR34 belongs to the largest family of cell surface molecules involved in signal transmission that play important roles in many physiological and pathological processes, including tumorigenesis. Although functional consequences of t(X;14) have not been identified, our studies suggest that up-regulated GPR34 activate neither nuclear factor-κB nor ELK-related tyrosine kinase.
Collapse
Affiliation(s)
- Mathijs Baens
- Center for Human Genetics, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Grado-Ahuir JA, Aad PY, Spicer LJ. New insights into the pathogenesis of cystic follicles in cattle: microarray analysis of gene expression in granulosa cells. J Anim Sci 2011; 89:1769-86. [PMID: 21239663 DOI: 10.2527/jas.2010-3463] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Ovarian follicular growth and development are regulated by extraovarian and intraovarian factors, which influence granulosa cell proliferation and differentiation. However, the molecular mechanisms that drive follicular growth are not completely understood. Ovarian follicular cysts are one of the most common causes of reproductive failure in dairy cattle. Nevertheless, the primary cause of cyst formation has not been clearly established. A gene expression comparison may aid in elucidating the causes of ovarian cyst disease. Our objective was to identify differentially expressed genes in ovarian granulosa cells between normal dominant and cystic follicles of cattle. Granulosa cells and follicular fluid were isolated from dominant and cystic follicles collected via either ultrasound-guided aspiration from dairy cows (n = 24) or slaughterhouse ovaries from beef cows (n = 23). Hormonal analysis for progesterone, estradiol, and androstenedione in follicular fluid was performed by RIA. Total RNA was extracted and hybridized to 6 Affymetrix GeneChip Bovine Genome Arrays (Affymetrix, Santa Clara, CA). Abundance of mRNA for differentially expressed selected genes was determined through quantitative real-time reverse-transcription PCR. Follicular cysts showed greater (P < 0.05) progesterone, lesser (P < 0.05) estradiol, and no differences (P > 0.10) in androstenedione concentrations compared with noncystic follicles. A total of 163 gene sequences were differentially expressed (P < 0.01), with 19 upregulated and 144 downregulated. From selected target genes, quantitative real-time reverse-transcription PCR confirmed angiogenin, PGE(2) receptor 4, and G-protein coupled receptor 34 genes as upregulated in cystic follicles, and Indian hedgehog protein precursor and secreted frizzled-related protein 4 genes as downregulated in cystic follicles. Further research is required to elucidate the role of these factors in follicular development and cyst formation.
Collapse
Affiliation(s)
- J A Grado-Ahuir
- Department of Animal Science, Oklahoma State University, Stillwater 74078, USA
| | | | | |
Collapse
|
20
|
Liebscher I, Müller U, Teupser D, Engemaier E, Engel KMY, Ritscher L, Thor D, Sangkuhl K, Ricken A, Wurm A, Piehler D, Schmutzler S, Fuhrmann H, Albert FW, Reichenbach A, Thiery J, Schöneberg T, Schulz A. Altered immune response in mice deficient for the G protein-coupled receptor GPR34. J Biol Chem 2010; 286:2101-10. [PMID: 21097509 DOI: 10.1074/jbc.m110.196659] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The X-chromosomal GPR34 gene encodes an orphan G(i) protein-coupled receptor that is highly conserved among vertebrates. To evaluate the physiological relevance of GPR34, we generated a GPR34-deficient mouse line. GPR34-deficient mice were vital, reproduced normally, and showed no gross abnormalities in anatomical, histological, laboratory chemistry, or behavioral investigations under standard housing. Because GPR34 is highly expressed in mononuclear cells of the immune system, mice were specifically tested for altered functions of these cell types. Following immunization with methylated BSA, the number of granulocytes and macrophages in spleens was significantly lower in GPR34-deficient mice as in wild-type mice. GPR34-deficient mice showed significantly increased paw swelling in the delayed type hypersensitivity test and higher pathogen burden in extrapulmonary tissues after pulmonary infection with Cryptococcus neoformans compared with wild-type mice. The findings in delayed type hypersensitivity and infection tests were accompanied by significantly different basal and stimulated TNF-α, GM-CSF, and IFN-γ levels in GPR34-deficient animals. Our data point toward a functional role of GPR34 in the cellular response to immunological challenges.
Collapse
Affiliation(s)
- Ines Liebscher
- Institute of Biochemistry, Medical Faculty, University Leipzig, 04103 Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wegner F, Kraft R, Busse K, Schaarschmidt G, Härtig W, Schwarz SC, Schwarz J. Glutamate receptor properties of human mesencephalic neural progenitor cells: NMDA enhances dopaminergic neurogenesisin vitro. J Neurochem 2009; 111:204-16. [DOI: 10.1111/j.1471-4159.2009.06315.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Schaarschmidt G, Wegner F, Schwarz SC, Schmidt H, Schwarz J. Characterization of voltage-gated potassium channels in human neural progenitor cells. PLoS One 2009; 4:e6168. [PMID: 19584922 PMCID: PMC2702754 DOI: 10.1371/journal.pone.0006168] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 06/03/2009] [Indexed: 12/30/2022] Open
Abstract
Background Voltage-gated potassium (Kv) channels are among the earliest ion channels to appear during brain development, suggesting a functional requirement for progenitor cell proliferation and/or differentiation. We tested this hypothesis, using human neural progenitor cells (hNPCs) as a model system. Methodology/Principal Findings In proliferating hNPCs a broad spectrum of Kv channel subtypes was identified using quantitative real-time PCR with a predominant expression of the A-type channel Kv4.2. In whole-cell patch-clamp recordings Kv currents were separated into a large transient component characteristic for fast-inactivating A-type potassium channels (IA) and a small, sustained component produced by delayed-rectifying channels (IK). During differentiation the expression of IA as well as A-type channel transcripts dramatically decreased, while IK producing delayed-rectifiers were upregulated. Both Kv currents were differentially inhibited by selective neurotoxins like phrixotoxin-1 and α-dendrotoxin as well as by antagonists like 4-aminopyridine, ammoniumchloride, tetraethylammonium chloride and quinidine. In viability and proliferation assays chronic inhibition of the A-type currents severely disturbed the cell cycle and precluded proper hNPC proliferation, while the blockade of delayed-rectifiers by α-dendrotoxin increased proliferation. Conclusions/Significance These findings suggest that A-type potassium currents are essential for proper proliferation of immature multipotent hNPCs.
Collapse
|
23
|
Wegner F, Kraft R, Busse K, Härtig W, Schaarschmidt G, Schwarz SC, Schwarz J, Hevers W. Functional and molecular analysis of GABA receptors in human midbrain-derived neural progenitor cells. J Neurochem 2008; 107:1056-69. [PMID: 18796004 DOI: 10.1111/j.1471-4159.2008.05688.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
GABA(A) receptor function is involved in regulating proliferation, migration, and differentiation of rodent neural progenitor cells (NPCs). However, little is known about the molecular composition and functional relevance of GABA(A) receptors in human neural progenitors. Here, we investigated human fetal midbrain-derived NPCs in respect to their GABA(A) receptor function and subunit expression using electrophysiology, calcium imaging, and quantitative real-time PCR. Whole-cell recordings of ligand- and voltage-gated ion channels demonstrate the ability of NPCs to generate action potentials and to express functional GABA(A) receptors after differentiation for 3 weeks in vitro. Pharmacological and molecular characterizations indicate a predominance of GABA(A) receptor heteromers containing subunits alpha2, beta1, and/or beta3, and gamma. Intracellular Ca(2+) measurements and the expression profile of the Na(+)-K(+)-Cl(-) co-transporter 1 and the K(+)-Cl(-) co-transporter 2 in differentiated NPCs suggest that GABA evokes depolarizations mediated by GABA(A) receptors. These data indicate that NPCs derived from human fetal midbrain tissue acquire essential GABA(A) receptor properties during neuronal maturation in vitro.
Collapse
Affiliation(s)
- Florian Wegner
- Department of Neurology, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kreth S, Ledderose C, Kaufmann I, Groeger G, Thiel M. Differential expression of 5′‐UTR splice variants of the adenosine A
2A
receptor gene in human granulocytes: identification, characterization, and functional impact on activation. FASEB J 2008; 22:3276-86. [DOI: 10.1096/fj.07-101097] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Simone Kreth
- Department of AnaesthesiologyLudwig Maximilians University of MunichGermany
| | - Carola Ledderose
- Department of AnaesthesiologyLudwig Maximilians University of MunichGermany
| | - Ines Kaufmann
- Department of AnaesthesiologyLudwig Maximilians University of MunichGermany
| | - Gabriele Groeger
- Department of AnaesthesiologyLudwig Maximilians University of MunichGermany
| | - Manfred Thiel
- Department of AnaesthesiologyLudwig Maximilians University of MunichGermany
| |
Collapse
|
25
|
Schöneberg T, Hermsdorf T, Engemaier E, Engel K, Liebscher I, Thor D, Zierau K, Römpler H, Schulz A. Structural and functional evolution of the P2Y(12)-like receptor group. Purinergic Signal 2007; 3:255-68. [PMID: 18404440 PMCID: PMC2072910 DOI: 10.1007/s11302-007-9064-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 07/19/2007] [Indexed: 12/11/2022] Open
Abstract
Metabotropic pyrimidine and purine nucleotide receptors (P2Y receptors) belong to the superfamily of G protein-coupled receptors (GPCR). They are distinguishable from adenosine receptors (P1) as they bind adenine and/or uracil nucleotide triphosphates or diphosphates depending on the subtype. Over the past decade, P2Y receptors have been cloned from a variety of tissues and species, and as many as eight functional subtypes have been characterized. Most recently, several members of the P2Y12-like receptor group, which includes the clopidogrel-sensitive ADP receptor P2Y12, have been deorphanized. The P2Y12-like receptor group comprises several structurally related GPCR which, however, display heterogeneous agonist specificity including nucleotides, their derivatives, and lipids. Besides the established function of P2Y12 in platelet activation, expression in macrophages, neuronal and glial cells as well as recent results from functional studies implicate that several members of this group may have specific functions in neurotransmission, inflammation, chemotaxis, and response to tissue injury. This review focuses specifically on the structure-function relation and shortly summarizes some aspects of the physiological relevance of P2Y12-like receptor members.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|