1
|
Steinbusch MMF, Caron MMJ, Surtel DAM, van den Akker GGH, van Dijk PJ, Friedrich F, Zabel B, van Rhijn LW, Peffers MJ, Welting TJM. The antiviral protein viperin regulates chondrogenic differentiation via CXCL10 protein secretion. J Biol Chem 2019; 294:5121-5136. [PMID: 30718282 PMCID: PMC6442052 DOI: 10.1074/jbc.ra119.007356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/29/2019] [Indexed: 01/10/2023] Open
Abstract
Viperin (also known as radical SAM domain–containing 2 (RSAD2)) is an interferon-inducible and evolutionary conserved protein that participates in the cell's innate immune response against a number of viruses. Viperin mRNA is a substrate for endoribonucleolytic cleavage by RNase mitochondrial RNA processing (MRP) and mutations in the RNase MRP small nucleolar RNA (snoRNA) subunit of the RNase MRP complex cause cartilage-hair hypoplasia (CHH), a human developmental condition characterized by metaphyseal chondrodysplasia and severe dwarfism. It is unknown how CHH-pathogenic mutations in RNase MRP snoRNA interfere with skeletal development, and aberrant processing of RNase MRP substrate RNAs is thought to be involved. We hypothesized that viperin plays a role in chondrogenic differentiation. Using immunohistochemistry, real-time quantitative PCR, immunoblotting, ELISA, siRNA-mediated gene silencing, plasmid-mediated gene overexpression, label-free MS proteomics, and promoter reporter bioluminescence assays, we discovered here that viperin is expressed in differentiating chondrocytic cells and regulates their protein secretion and the outcome of chondrogenic differentiation by influencing transforming growth factor β (TGF-β)/SMAD family 2/3 (SMAD2/3) activity via C-X-C motif chemokine ligand 10 (CXCL10). Of note, we observed disturbances in this viperin–CXCL10–TGF-β/SMAD2/3 axis in CHH chondrocytic cells. Our results indicate that the antiviral protein viperin controls chondrogenic differentiation by influencing secretion of soluble proteins and identify a molecular route that may explain impaired chondrogenic differentiation of cells from individuals with CHH.
Collapse
Affiliation(s)
- Mandy M F Steinbusch
- From the Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery and
| | - Marjolein M J Caron
- From the Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery and
| | - Don A M Surtel
- From the Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery and
| | | | - Paul J van Dijk
- the Department of Anatomy and Embryology, Maastricht University, NL-6202 AZ Maastricht, The Netherlands
| | - Franziska Friedrich
- the University Heart Centre Freiburg, Faculty of Medicine, University of Freiburg, Institute for Experimental Cardiovascular Medicine, 79110 Freiburg, Germany
| | - Bernhard Zabel
- the Medical Faculty, Otto van Guericke University of Magdeburg, 39106 Magdeburg, Germany, and
| | - Lodewijk W van Rhijn
- From the Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery and
| | - Mandy J Peffers
- the Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Tim J M Welting
- From the Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery and
| |
Collapse
|
2
|
Caterson B, Melrose J. Keratan sulfate, a complex glycosaminoglycan with unique functional capability. Glycobiology 2018; 28:182-206. [PMID: 29340594 PMCID: PMC5993099 DOI: 10.1093/glycob/cwy003] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/20/2017] [Accepted: 01/08/2018] [Indexed: 12/19/2022] Open
Abstract
From an evolutionary perspective keratan sulfate (KS) is the newest glycosaminoglycan (GAG) but the least understood. KS is a sophisticated molecule with a diverse structure, and unique functional roles continue to be uncovered for this GAG. The cornea is the richest tissue source of KS in the human body but the central and peripheral nervous systems also contain significant levels of KS and a diverse range of KS-proteoglycans with essential functional roles. KS also displays important cell regulatory properties in epithelial and mesenchymal tissues and in bone and in tumor development of diagnostic and prognostic utility. Corneal KS-I displays variable degrees of sulfation along the KS chain ranging from non-sulfated polylactosamine, mono-sulfated and disulfated disaccharide regions. Skeletal KS-II is almost completely sulfated consisting of disulfated disaccharides interrupted by occasional mono-sulfated N-acetyllactosamine residues. KS-III also contains highly sulfated KS disaccharides but differs from KS-I and KS-II through 2-O-mannose linkage to serine or threonine core protein residues on proteoglycans such as phosphacan and abakan in brain tissue. Historically, the major emphasis on the biology of KS has focused on its sulfated regions for good reason. The sulfation motifs on KS convey important molecular recognition information and direct cell behavior through a number of interactive proteins. Emerging evidence also suggest functional roles for the poly-N-acetyllactosamine regions of KS requiring further investigation. Thus further research is warranted to better understand the complexities of KS.
Collapse
Affiliation(s)
- Bruce Caterson
- Connective Tissue Biology Laboratories, School of Biosciences, College of Biological & Life Sciences, Cardiff University, Cardiff, Wales, UK
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute of Medical Research, Northern Sydney Local Health District, St. Leonards, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
3
|
Deckx S, Heymans S, Papageorgiou AP. The diverse functions of osteoglycin: a deceitful dwarf, or a master regulator of disease? FASEB J 2016; 30:2651-61. [PMID: 27080639 DOI: 10.1096/fj.201500096r] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/05/2016] [Indexed: 12/21/2022]
Abstract
Small leucine-rich proteoglycans are emerging as important regulatory proteins within the extracellular matrix, where they exert both structural and nonstructural functions and hence are modulators of numerous biological processes, such as inflammation, fibrosis, and cell proliferation. One proteoglycan in particular, osteoglycin (OGN), also known as mimecan, shows great structural and functional diversity in normal physiology and in disease states, therefore making it a very interesting candidate for the development of novel therapeutic strategies. Unfortunately, the literature on OGN is confusing, as it has different names, and different transcript and protein variants have been identified. This review will give a clear overview of the different structures and functions of OGN that have been identified to date, portray its central role in pathophysiology, and highlight the importance of posttranslational processing, such as glycosylation, for the diversity of its functions.-Deckx, S., Heymans, S., Papageorgiou, A.-P. The diverse functions of osteoglycin: a deceitful dwarf, or a master regulator of disease?
Collapse
Affiliation(s)
- Sophie Deckx
- Department of Cardiology, Maastricht University, Maastricht, The Netherlands; and Center for Molecular and Vascular Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Stephane Heymans
- Department of Cardiology, Maastricht University, Maastricht, The Netherlands; and Center for Molecular and Vascular Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Anna-Pia Papageorgiou
- Department of Cardiology, Maastricht University, Maastricht, The Netherlands; and Center for Molecular and Vascular Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Chondrogenic and fibrotic process in the ligamentum flavum of patients with lumbar spinal canal stenosis. Spine (Phila Pa 1976) 2015; 40:429-35. [PMID: 25627290 DOI: 10.1097/brs.0000000000000795] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A histological, biological, and immunohisto-chemical study of human lumbar ligamentum flavum. OBJECTIVE To analyze changes in the hypertrophied ligamentum flavum and clarify their etiology. SUMMARY OF BACKGROUND DATA Hypertrophy of the ligamentum flavum has been considered a major contributor to the development of lumbar spinal canal stenosis (LSCS). Although previous studies have reported some factors related to ligamentum flavum hypertrophy, its etiology is still unclear. METHODS Ligamentum flavum samples were collected from 20 patients with LSCS (LSCS group) and 10 patients with lumbar disc herniation (LDH group) as a control. The thickness of the ligamentum flavum was measured histologically. The amounts of elastic fibers and proteoglycans were assessed by Elastica-Masson staining and alcian blue staining, respectively. Gene and protein expressions related to fibrosis, inflammation, and chondrogenesis were analyzed by quantitative reverse transcription-polymerase chain reaction and immunohistochemistry. The total genes of the 2 groups were compared by DNA microarray analysis. RESULTS The ligamentum flavum was significantly thicker in the LSCS group, which had a smaller amount of elastic fibers and a larger amount of proteoglycans. The gene expression related to fibrosis was significantly higher in the LSCS group; however, the immunoreactivities of collagen types I and III were weaker on the dorsal side of the ligamentum flavum in the LSCS group. The gene expression related to chondrogenesis and proteoglycan synthesis was significantly higher in the LSCS group. There was no significant difference in the gene expression related to inflammation between the 2 groups. CONCLUSION Synthesis of the collagenous fibers and degradation of the elastic and collagenous fibers are both accelerated in the ligamentum flavum of patient with LSCS, which may be the reason for hypertrophy of the tissue. In addition, chondrogenesis and proteoglycan synthesis may have critical roles in the pathogenesis of the ligamentum flavum hypertrophy. LEVEL OF EVIDENCE 5.
Collapse
|
5
|
Tanaka KI, Matsumoto E, Higashimaki Y, Katagiri T, Sugimoto T, Seino S, Kaji H. Role of osteoglycin in the linkage between muscle and bone. J Biol Chem 2012; 287:11616-28. [PMID: 22351757 DOI: 10.1074/jbc.m111.292193] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The interaction between muscle tissues and bone metabolism is incompletely understood. We hypothesized that there might be some humoral factors that are produced in muscle tissues and exhibit bone anabolic activity. We, therefore, performed comparative DNA microarray analysis between mouse myoblastic C2C12 cells transfected with either stable empty vector or ALK2 (R206H), the mutation that constitutively activates the bone morphogenetic protein (BMP) receptor, to search for muscle-derived bone anabolic factors. Twenty-five genes whose expression was decreased to <1/4, were identified; these included osteoglycin (OGN). Stable overexpression of OGN significantly decreased the levels of Runx2 and Osterix mRNA compared with those in cells transfected with vector alone in MC3T3-E1 cells. On the other hand, it significantly enhanced the levels of alkaline phosphatase (ALP), type I collagen (Col1), and osteocalcin (OCN) mRNA as well as β-catenin and mineralization. A reduction in endogenous OGN level showed the opposite effects to those of OGN overexpression in MC3T3-E1 and mouse calvarial osteoblastic cells. Transient OGN overexpression significantly suppressed the levels of Runx2, Osterix, ALP, Col1, and OCN mRNA induced by BMP-2 in C2C12 cells. The conditioned medium from OGN-overexpressed and OGN-suppressed myoblastic cells enhanced and decreased, respectively, the levels of ALP, Col1, and β-catenin in MC3T3-E1 cells. Moreover, OGN increased Smad3/4-responsive transcriptional activity as well as Col1 mRNA levels independently of endogenous TGF-β in these cells. In conclusion, this study suggests that OGN may be a crucial humoral bone anabolic factor that is produced by muscle tissues.
Collapse
Affiliation(s)
- Ken-ichiro Tanaka
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Mokhtar NM, Ramzi NH, Yin-Ling W, Rose IM, Hatta Mohd Dali AZ, Jamal R. Laser capture microdissection with genome-wide expression profiling displayed gene expression signatures in endometrioid endometrial cancer. Cancer Invest 2011; 30:156-64. [PMID: 22122087 DOI: 10.3109/07357907.2011.633290] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This research determined genes contributing to the pathogenesis of endometrioid endometrial cancer (EEC). Eight pairs of microdissected EEC samples matched with normal glandular epithelium were analyzed using microarray. Unsupervised analysis identified 162 transcripts (58 up- and 104 down-regulated) that were differentially expressed (p < .01, fold change ≥ 1.5) between both groups. Quantitative real-time polymerase chain reaction (qPCR) validated the genes of interest: SLC7A5, SATB1, H19, and ZAK (p < .05). Pathway analysis revealed genes involved in acid amino transport, translation, and chromatin remodeling (p < .05). Laser capture microdissection (LCM) followed by microarray enabled precise assessment of homogeneous cell population and identified putative genes for endometrial carcinogenesis.
Collapse
Affiliation(s)
- Norfilza Mohd Mokhtar
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia.
| | | | | | | | | | | |
Collapse
|
7
|
Clement TM, Anway MD, Uzumcu M, Skinner MK. Regulation of the gonadal transcriptome during sex determination and testis morphogenesis: comparative candidate genes. Reproduction 2007; 134:455-72. [PMID: 17709564 PMCID: PMC8260008 DOI: 10.1530/rep-06-0341] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Gene expression profiles during sex determination and gonadal differentiation were investigated to identify new potential regulatory factors. Embryonic day 13 (E13), E14, and E16 rat testes and ovaries were used for microarray analysis, as well as E13 testis organ cultures that undergo testis morphogenesis and develop seminiferous cords in vitro. A list of 109 genes resulted from a selective analysis for genes present in male gonadal development and with a 1.5-fold change in expression between E13 and E16. Characterization of these 109 genes potentially important for testis development revealed that cytoskeletal-associated proteins, extracellular matrix factors, and signaling factors were highly represented. Throughout the developmental period (E13-E16), sex-enriched transcripts were more prevalent in the male with 34 of the 109 genes having testis-enriched expression during sex determination. In ovaries, the total number of transcripts with a 1.5-fold change in expression between E13 and E16 was similar to the testis, but none of those genes were both ovary enriched and regulated during the developmental period. Genes conserved in sex determination were identified by comparing changing transcripts in the rat analysis herein, to transcripts altered in previously published mouse studies of gonadal sex determination. A comparison of changing mouse and rat transcripts identified 43 genes with species conservation in sex determination and testis development. Profiles of gene expression during E13-E16 rat testis and ovary development are presented and candidate genes for involvement in sex determination and testis differentiation are identified. Analysis of cellular pathways did not reveal any specific pathways involving multiple candidate genes. However, the genes and gene network identified influence numerous cellular processes with cellular differentiation, proliferation, focal contact, RNA localization, and development being predominant.
Collapse
Affiliation(s)
- Tracy M Clement
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, USA
| | | | | | | |
Collapse
|
8
|
Tagariello A, Luther J, Streiter M, Didt-Koziel L, Wuelling M, Surmann-Schmitt C, Stock M, Adam N, Vortkamp A, Winterpacht A. Ucma--A novel secreted factor represents a highly specific marker for distal chondrocytes. Matrix Biol 2007; 27:3-11. [PMID: 17707622 DOI: 10.1016/j.matbio.2007.07.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 07/03/2007] [Accepted: 07/06/2007] [Indexed: 11/28/2022]
Abstract
Growth and development of most parts of the vertebrate skeleton takes place by endochondral ossification, a process during which chondrocytes undergo distinct stages of differentiation resulting in a successive replacement of the cartilage anlagen by bone. In the context of an EST project we isolated a novel transcript from a human fetal growth plate cartilage cDNA library. The transcript which we called Ucma (unique cartilage matrix-associated protein) encodes a short protein of 138 amino acids. The protein sequence is evolutionary conserved throughout vertebrates and comprises a signal peptide, a coiled-coil domain, and a putative dibasic cleavage site for proprotein convertases. Using RNA in situ hybridization and immunohistochemistry with a polyclonal anti-Ucma antibody we found high expression of Ucma uniquely in distal (resting) chondrocytes in developing long bones of wildtype mice. This restricted expression could also be observed in Ihh(-/-), Ihh(-/-); Gli3(-/-), Gli3(-/-) mice, and in mice that overexpress Ihh under the control of the Col2a1 promoter indicating that expression of Ucma is regulated independent of hedgehog signaling. During insulin-induced differentiation of ATDC5 cells we found gradual increase of Ucma expression at day 21 with a maximum at day 24 and a decrease correlating with a simultaneous increase in the expression of cartilage link protein (Crtl1), a protein with maximum expression in column-forming proliferating chondrocytes. The present data strongly suggest an important function of Ucma in the early phase of chondrocyte differentiation.
Collapse
Affiliation(s)
- Andreas Tagariello
- Institute of Human Genetics, University Hospital Erlangen, Schwabachanlage 10, D-91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|