1
|
Rashid MHO, Li PT, Chen TT, Palanga KK, Gong WK, Ge Q, Gong JW, Liu AY, Lu QW, Diouf L, Sarfraz Z, Jamshed M, Shi YZ, Yuan YL. Genome-wide quantitative trait loci mapping on Verticillium wilt resistance in 300 chromosome segment substitution lines from Gossypium hirsutum × Gossypium barbadense. G3-GENES GENOMES GENETICS 2021; 11:6128683. [PMID: 33846710 PMCID: PMC8104949 DOI: 10.1093/g3journal/jkab027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 02/02/2021] [Indexed: 02/07/2023]
Abstract
Cotton Verticillium wilt (VW) is a devastating disease seriously affecting fiber yield and quality, and the most effective and economical prevention measure at present is selection and extension of Gossypium varieties harboring high resistance to VW. However, multiple attempts to improve the VW resistance of the most widely cultivated upland cottons have made little significant progress. The introduction of chromosome segment substitution lines (CSSLs) provide the practical solutions for merging the superior genes related with high yield and wide adaptation from Gossypium hirsutum and VW resistance and the excellent fiber quality from Gossypium barbadense. In this study, 300 CSSLs were chosen from the developed BC5F3:5 CSSLs constructed from CCRI36 (G. hirsutum) and Hai1 (G. barbadense) to conduct quantitative trait locus (QTL) mapping of VW resistance, and a total of 40 QTL relevant to VW disease index (DI) were identified. Phenotypic data were obtained from a 2-year investigation in two fields with two replications per year. All the QTL were distributed on 21 chromosomes, with phenotypic variation of 1.05%-10.52%, and 21 stable QTL were consistent in at least two environments. Based on a meta-analysis, 34 novel QTL were identified, while 6 loci were consistent with previously identified QTL. Meanwhile, 70 QTL hotspot regions were detected, including 44 novel regions. This study concentrates on QTL identification and screening for hotspot regions related with VW in the 300 CSSLs, and the results lay a solid foundation not only for revealing the genetic and molecular mechanisms of VW resistance but also for further fine mapping, gene cloning and molecular designing in breeding programs for resistant cotton varieties.
Collapse
Affiliation(s)
- Md Harun Or Rashid
- State Key Laboratory of Cotton Biology, Research Base, Anyang Institute of Technology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.,Senior Scientific Officer, Breeding Division, Bangladesh Jute Research Institute, Dhaka-1207, Bangladesh
| | - Peng-Tao Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China
| | - Ting-Ting Chen
- State Key Laboratory of Cotton Biology, Research Base, Anyang Institute of Technology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.,College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Koffi Kibalou Palanga
- State Key Laboratory of Cotton Biology, Research Base, Anyang Institute of Technology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.,Institut Supérieur des Métiers de l'Agriculture- Université de Kara (ISMA-UK), Kara, Togo
| | - Wan-Kui Gong
- State Key Laboratory of Cotton Biology, Research Base, Anyang Institute of Technology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Research Base, Anyang Institute of Technology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Ju-Wu Gong
- State Key Laboratory of Cotton Biology, Research Base, Anyang Institute of Technology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Ai-Ying Liu
- State Key Laboratory of Cotton Biology, Research Base, Anyang Institute of Technology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Quan-Wei Lu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China
| | - Latyr Diouf
- State Key Laboratory of Cotton Biology, Research Base, Anyang Institute of Technology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Zareen Sarfraz
- State Key Laboratory of Cotton Biology, Research Base, Anyang Institute of Technology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Muhammad Jamshed
- State Key Laboratory of Cotton Biology, Research Base, Anyang Institute of Technology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Yu-Zhen Shi
- State Key Laboratory of Cotton Biology, Research Base, Anyang Institute of Technology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - You-Lu Yuan
- State Key Laboratory of Cotton Biology, Research Base, Anyang Institute of Technology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| |
Collapse
|
2
|
Hamid R, Tomar RS, Marashi H, Shafaroudi SM, Golakiya BA, Mohsenpour M. Transcriptome profiling and cataloging differential gene expression in floral buds of fertile and sterile lines of cotton (Gossypium hirsutum L.). Gene 2018; 660:80-91. [PMID: 29577977 DOI: 10.1016/j.gene.2018.03.070] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 01/02/2023]
Abstract
Cytoplasmic Male Sterility is maternally inherited trait in plants, characterized by failure to produce functional pollen during anther development. Anther development is modulated through the interaction of nuclear and mitochondrial genes. In the present study, differential gene expression of floral buds at the sporogenous stage (SS) and microsporocyte stage (MS) between CGMS and its fertile maintainer line of cotton plants was studied. A total of 320 significantly differentially expressed genes, including 20 down-regulated and 37 up-regulated in CGMS comparing with its maintainer line at the SS stage, as well as and 89 down-regulated and 4 up-regulated in CGMS compared to the fertile line at MS stage. Comparing the two stages in the same line, there were 6 down-regulated differentially expressed genes only induced in CGMS and 9 up-regulated differentially expressed gene only induced in its maintainer. GO analysis revealed essential genes responsible for pollen development, and cytoskeleton category show differential expression between the fertile and CGMS lines. Validation studies by qRT-PCR shows concordance with RNA-seq result. A set of novel SSRs identified in this study can be used in evaluating genetic relationships among cultivars, QTL mapping, and marker-assisted breeding. We reported aberrant expression of genes related to pollen exine formation, and synthesis of pectin lyase, myosine heavy chain, tubulin, actin-beta, heat shock protein and myeloblastosis (MYB) protein as targets for CMS in cotton. The results of this study contribute to basic information for future screening of genes and identification of molecular portraits responsible for CMS as well as to elucidate molecular mechanisms that lead to CMS in cotton.
Collapse
Affiliation(s)
- Rasmieh Hamid
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Iran
| | - Rukam S Tomar
- Department of Biotechnology and Biochemistry, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Hassan Marashi
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Iran.
| | | | - Balaji A Golakiya
- Department of Biotechnology and Biochemistry, Junagadh Agricultural University, Junagadh, Gujarat, India
| | | |
Collapse
|
3
|
Hinze LL, Gazave E, Gore MA, Fang DD, Scheffler BE, Yu JZ, Jones DC, Frelichowski J, Percy RG. Genetic Diversity of the Two Commercial Tetraploid Cotton Species in the Gossypium Diversity Reference Set. J Hered 2016; 107:274-86. [PMID: 26774060 DOI: 10.1093/jhered/esw004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/04/2016] [Indexed: 11/14/2022] Open
Abstract
A diversity reference set has been constructed for the Gossypium accessions in the US National Cotton Germplasm Collection to facilitate more extensive evaluation and utilization of accessions held in the Collection. A set of 105 mapped simple sequence repeat markers was used to study the allelic diversity of 1933 tetraploid Gossypium accessions representative of the range of diversity of the improved and wild accessions of G. hirsutum and G. barbadense. The reference set contained 410 G. barbadense accessions and 1523 G. hirsutum accessions. Observed numbers of polymorphic and private bands indicated a greater diversity in G. hirsutum as compared to G. barbadense as well as in wild-type accessions as compared to improved accessions in both species. The markers clearly differentiated the 2 species. Patterns of diversity within species were observed but not clearly delineated, with much overlap occurring between races and regions of origin for wild accessions and between historical and geographic breeding pools for cultivated accessions. Although the percentage of accessions showing introgression was higher among wild accessions than cultivars in both species, the average level of introgression within individual accessions, as indicated by species-specific bands, was much higher in wild accessions of G. hirsutum than in wild accessions of G. barbadense. The average level of introgression within individual accessions was higher in improved G. barbadense cultivars than in G. hirsutum cultivars. This molecular characterization reveals the levels and distributions of genetic diversity that will allow for better exploration and utilization of cotton genetic resources.
Collapse
Affiliation(s)
- Lori L Hinze
- From the USDA-ARS, Southern Plains Agricultural Research Center, Crop Germplasm Research Unit, College Station, TX (Hinze, Yu, Frelichowski, and Percy); School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell University, Ithaca, NY (Gazave and Gore); USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, LA (Fang); USDA-ARS, Jamie Whitten Delta States Research Center, Genomics and Bioinformatics Research Unit, Stoneville, MS (Scheffler); and Cotton Incorporated, Cary, NC (Jones).
| | - Elodie Gazave
- From the USDA-ARS, Southern Plains Agricultural Research Center, Crop Germplasm Research Unit, College Station, TX (Hinze, Yu, Frelichowski, and Percy); School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell University, Ithaca, NY (Gazave and Gore); USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, LA (Fang); USDA-ARS, Jamie Whitten Delta States Research Center, Genomics and Bioinformatics Research Unit, Stoneville, MS (Scheffler); and Cotton Incorporated, Cary, NC (Jones)
| | - Michael A Gore
- From the USDA-ARS, Southern Plains Agricultural Research Center, Crop Germplasm Research Unit, College Station, TX (Hinze, Yu, Frelichowski, and Percy); School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell University, Ithaca, NY (Gazave and Gore); USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, LA (Fang); USDA-ARS, Jamie Whitten Delta States Research Center, Genomics and Bioinformatics Research Unit, Stoneville, MS (Scheffler); and Cotton Incorporated, Cary, NC (Jones)
| | - David D Fang
- From the USDA-ARS, Southern Plains Agricultural Research Center, Crop Germplasm Research Unit, College Station, TX (Hinze, Yu, Frelichowski, and Percy); School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell University, Ithaca, NY (Gazave and Gore); USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, LA (Fang); USDA-ARS, Jamie Whitten Delta States Research Center, Genomics and Bioinformatics Research Unit, Stoneville, MS (Scheffler); and Cotton Incorporated, Cary, NC (Jones)
| | - Brian E Scheffler
- From the USDA-ARS, Southern Plains Agricultural Research Center, Crop Germplasm Research Unit, College Station, TX (Hinze, Yu, Frelichowski, and Percy); School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell University, Ithaca, NY (Gazave and Gore); USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, LA (Fang); USDA-ARS, Jamie Whitten Delta States Research Center, Genomics and Bioinformatics Research Unit, Stoneville, MS (Scheffler); and Cotton Incorporated, Cary, NC (Jones)
| | - John Z Yu
- From the USDA-ARS, Southern Plains Agricultural Research Center, Crop Germplasm Research Unit, College Station, TX (Hinze, Yu, Frelichowski, and Percy); School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell University, Ithaca, NY (Gazave and Gore); USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, LA (Fang); USDA-ARS, Jamie Whitten Delta States Research Center, Genomics and Bioinformatics Research Unit, Stoneville, MS (Scheffler); and Cotton Incorporated, Cary, NC (Jones)
| | - Don C Jones
- From the USDA-ARS, Southern Plains Agricultural Research Center, Crop Germplasm Research Unit, College Station, TX (Hinze, Yu, Frelichowski, and Percy); School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell University, Ithaca, NY (Gazave and Gore); USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, LA (Fang); USDA-ARS, Jamie Whitten Delta States Research Center, Genomics and Bioinformatics Research Unit, Stoneville, MS (Scheffler); and Cotton Incorporated, Cary, NC (Jones)
| | - James Frelichowski
- From the USDA-ARS, Southern Plains Agricultural Research Center, Crop Germplasm Research Unit, College Station, TX (Hinze, Yu, Frelichowski, and Percy); School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell University, Ithaca, NY (Gazave and Gore); USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, LA (Fang); USDA-ARS, Jamie Whitten Delta States Research Center, Genomics and Bioinformatics Research Unit, Stoneville, MS (Scheffler); and Cotton Incorporated, Cary, NC (Jones)
| | - Richard G Percy
- From the USDA-ARS, Southern Plains Agricultural Research Center, Crop Germplasm Research Unit, College Station, TX (Hinze, Yu, Frelichowski, and Percy); School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell University, Ithaca, NY (Gazave and Gore); USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience Research Unit, New Orleans, LA (Fang); USDA-ARS, Jamie Whitten Delta States Research Center, Genomics and Bioinformatics Research Unit, Stoneville, MS (Scheffler); and Cotton Incorporated, Cary, NC (Jones)
| |
Collapse
|
4
|
Pingault L, Choulet F, Alberti A, Glover N, Wincker P, Feuillet C, Paux E. Deep transcriptome sequencing provides new insights into the structural and functional organization of the wheat genome. Genome Biol 2015; 16:29. [PMID: 25853487 PMCID: PMC4355351 DOI: 10.1186/s13059-015-0601-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/28/2015] [Indexed: 12/19/2022] Open
Abstract
Background Because of its size, allohexaploid nature, and high repeat content, the bread wheat genome is a good model to study the impact of the genome structure on gene organization, function, and regulation. However, because of the lack of a reference genome sequence, such studies have long been hampered and our knowledge of the wheat gene space is still limited. The access to the reference sequence of the wheat chromosome 3B provided us with an opportunity to study the wheat transcriptome and its relationships to genome and gene structure at a level that has never been reached before. Results By combining this sequence with RNA-seq data, we construct a fine transcriptome map of the chromosome 3B. More than 8,800 transcription sites are identified, that are distributed throughout the entire chromosome. Expression level, expression breadth, alternative splicing as well as several structural features of genes, including transcript length, number of exons, and cumulative intron length are investigated. Our analysis reveals a non-monotonic relationship between gene expression and structure and leads to the hypothesis that gene structure is determined by its function, whereas gene expression is subject to energetic cost. Moreover, we observe a recombination-based partitioning at the gene structure and function level. Conclusions Our analysis provides new insights into the relationships between gene and genome structure and function. It reveals mechanisms conserved with other plant species as well as superimposed evolutionary forces that shaped the wheat gene space, likely participating in wheat adaptation. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0601-9) contains supplementary material, which is available to authorized users.
Collapse
|
5
|
Hashmi U, Shafqat S, Khan F, Majid M, Hussain H, Kazi AG, John R, Ahmad P. Plant exomics: concepts, applications and methodologies in crop improvement. PLANT SIGNALING & BEHAVIOR 2015; 10:e976152. [PMID: 25482786 PMCID: PMC4622497 DOI: 10.4161/15592324.2014.976152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 08/17/2014] [Accepted: 08/18/2014] [Indexed: 05/17/2023]
Abstract
Molecular breeding has a crucial role in improvement of crops. Conventional breeding techniques have failed to ameliorate food production. Next generation sequencing has established new concepts of molecular breeding. Exome sequencing has proven to be a significant tool for assessing natural evolution in plants, studying host pathogen interactions and betterment of crop production as exons assist in interpretation of allelic variation with respect to their phenotype. This review covers the platforms for exome sequencing, next generation sequencing technologies that have revolutionized exome sequencing and led toward development of third generation sequencing. Also discussed in this review are the uses of these sequencing technologies to improve wheat, rice and cotton yield and how these technologies are used in exploring the biodiversity of crops, providing better understanding of plant-host pathogen interaction and assessing the process of natural evolution in crops and it also covers how exome sequencing identifies the gene pool involved in symbiotic and other co-existential systems. Furthermore, we conclude how integration of other methodologies including whole genome sequencing, proteomics, transcriptomics and metabolomics with plant exomics covers the areas which are left untouched with exomics alone and in the end how these integration will transform the future of crops.
Collapse
Key Words
- BAC, bacterial artificial chromosome
- BGR, bacterial grain rot
- CBOL, consortium for 860 the barcode of life
- ETI, effector-triggered immunity
- HPRT, hypoxanthineguanine phosphoribosyl transferase
- MMs, molecular markers
- NGS, next generation sequencing
- NITSR, nuclear internal transcribed spacer region
- OPC, open promoter complex
- QTL, quantitative trait locus
- SMRT, single molecule real time
- SNPs, single nucleotide poly-morphisms
- SOLiD, sequencing by oligonucleotide ligation and detection
- WES, whole exome sequencing
- WGS, whole genome sequencing
- WGS, whole genome shotgun
- biodiversity
- crop improvement
- dNMPs, deoxyribosenucleoside monophosphates
- exome sequencing
- plant biotechnology
- plant-host pathogen interactions
Collapse
Affiliation(s)
- Uzair Hashmi
- Atta ur Rahman School of Applied Biosciences; National University of Sciences and Technology; Islamabad, Pakistan
| | - Samia Shafqat
- Atta ur Rahman School of Applied Biosciences; National University of Sciences and Technology; Islamabad, Pakistan
| | - Faria Khan
- Atta ur Rahman School of Applied Biosciences; National University of Sciences and Technology; Islamabad, Pakistan
| | - Misbah Majid
- Atta ur Rahman School of Applied Biosciences; National University of Sciences and Technology; Islamabad, Pakistan
| | - Harris Hussain
- Atta ur Rahman School of Applied Biosciences; National University of Sciences and Technology; Islamabad, Pakistan
| | - Alvina Gul Kazi
- Atta ur Rahman School of Applied Biosciences; National University of Sciences and Technology; Islamabad, Pakistan
| | - Riffat John
- Department of Botany; University of Kashmir; Jammu and Kashmir, India
| | - Parvaiz Ahmad
- Department of Botany; S.P. College Srinagar; Jammu and Kashmir, India
- Correspondence to: Parvaiz Ahmad;
| |
Collapse
|
6
|
Yu JZ, Ulloa M, Hoffman SM, Kohel RJ, Pepper AE, Fang DD, Percy RG, Burke JJ. Mapping genomic loci for cotton plant architecture, yield components, and fiber properties in an interspecific (Gossypium hirsutum L. × G. barbadense L.) RIL population. Mol Genet Genomics 2014; 289:1347-67. [PMID: 25314923 DOI: 10.1007/s00438-014-0930-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 09/20/2014] [Indexed: 12/27/2022]
Abstract
A quantitative trait locus (QTL) mapping was conducted to better understand the genetic control of plant architecture (PA), yield components (YC), and fiber properties (FP) in the two cultivated tetraploid species of cotton (Gossypium hirsutum L. and G. barbadense L.). One hundred and fifty-nine genomic regions were identified on a saturated genetic map of more than 2,500 SSR and SNP markers, constructed with an interspecific recombinant inbred line (RIL) population derived from the genetic standards of the respective cotton species (G. hirsutum acc. TM-1 × G. barbadense acc. 3-79). Using the single nonparametric and MQM QTL model mapping procedures, we detected 428 putative loci in the 159 genomic regions that confer 24 cotton traits in three diverse production environments [College Station F&B Road (FB), TX; Brazos Bottom (BB), TX; and Shafter (SH), CA]. These putative QTL loci included 25 loci for PA, 60 for YC, and 343 for FP, of which 3, 12, and 60, respectively, were strongly associated with the traits (LOD score ≥ 3.0). Approximately 17.7 % of the PA putative QTL, 32.9 % of the YC QTL, and 48.3 % of the FP QTL had trait associations under multiple environments. The At subgenome (chromosomes 1-13) contributed 72.7 % of loci for PA, 46.2 % for YC, and 50.4 % for FP while the Dt subgenome (chromosomes 14-26) contributed 27.3 % of loci for PA, 53.8 % for YC, and 49.6 % for FP. The data obtained from this study augment prior evidence of QTL clusters or gene islands for specific traits or biological functions existing in several non-homoeologous cotton chromosomes. DNA markers identified in the 159 genomic regions will facilitate further dissection of genetic factors underlying these important traits and marker-assisted selection in cotton.
Collapse
Affiliation(s)
- John Z Yu
- USDA-ARS, Southern Plains Agricultural Research Center, 2881 F&B Road, College Station, TX, 77845, USA,
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Nigam D, Kavita P, Tripathi RK, Ranjan A, Goel R, Asif M, Shukla A, Singh G, Rana D, Sawant SV. Transcriptome dynamics during fibre development in contrasting genotypes of Gossypium hirsutum L. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:204-218. [PMID: 24119257 DOI: 10.1111/pbi.12129] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 06/02/2023]
Abstract
Understanding the contribution of genetic background in fibre quality traits is important for the development of future cotton varieties with superior fibre quality. We used Affymetrix microarray (Santa Clara, CA) and Roche 454 GSFLX (Branford, CT) for comparative transcriptome analysis between two superior and three inferior genotypes at six fibre developmental stages. Microarray-based analysis of variance (ANOVA) for 89 microarrays encompassing five contrasting genotypes and six developmental stages suggests that the stages of the fibre development have a more pronounced effect on the differentially expressed genes (DEGs) than the genetic background of genotypes. Superior genotypes showed enriched activity of cell wall enzymes, such as pectin methyl esterase, at early elongation stage, enriched metabolic activities such as lipid, amino acid and ribosomal protein subunits at peak elongation, and prolonged combinatorial regulation of brassinosteroid and auxin at later stages. Our efforts on transcriptome sequencing were focused on changes in gene expression at 25 DPA. Transcriptome sequencing resulted in the generation of 475 658 and 429 408 high-quality reads from superior and inferior genotypes, respectively. A total of 24 609 novel transcripts were identified manually for Gossypium hirsutum with no hits in NCBI 'nr' database. Gene ontology analyses showed that the genes for ribosome biogenesis, protein transport and fatty acid biosynthesis were over-represented in superior genotype, whereas salt stress, abscisic acid stimuli and water deprivation leading to the increased proteolytic activity were more pronounced in inferior genotype.
Collapse
Affiliation(s)
- Deepti Nigam
- Plant Molecular Biology Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Li X, Yuan D, Zhang J, Lin Z, Zhang X. Genetic mapping and characteristics of genes specifically or preferentially expressed during fiber development in cotton. PLoS One 2013; 8:e54444. [PMID: 23372723 PMCID: PMC3555819 DOI: 10.1371/journal.pone.0054444] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 12/11/2012] [Indexed: 01/26/2023] Open
Abstract
Cotton fiber is an ideal model to study cell elongation and cell wall construction in plants. During fiber development, some genes and proteins have been reported to be specifically or preferentially expressed. Mapping of them will reveal the genomic distribution of these genes, and will facilitate selection in cotton breeding. Based on previous reports, we designed 331 gene primers and 164 protein primers, and used single-strand conformation polymorphism (SSCP) to map and integrate them into our interspecific BC1 linkage map. This resulted in the mapping of 57 loci representing 51 genes or proteins on 22 chromosomes. For those three markers which were tightly linked with quantitative trait loci (QTLs), the QTL functions obtained in this study and gene functions reported in previous reports were consistent. Reverse transcription-polymerase chain reaction (RT-PCR) analysis of 52 polymorphic functional primers showed that 21 gene primers and 17 protein primers had differential expression between Emian22 (Gossypium hirsutum) and 3–79 (G. barbadense). Both RT-PCR and quantitative real-time PCR (qRT-PCR) analyses of the three markers tightly linked with QTLs were consistent with QTL analysis and field experiments. Gene Ontology (GO) categorization revealed that almost all 51 mapped genes belonged to multiple categories that contribute to fiber development, indicating that fiber development is a complex process regulated by various genes. These 51 genes were all specifically or preferentially expressed during fiber cell elongation and secondary wall biosynthesis. Therefore, these functional gene-related markers would be beneficial for the genetic improvement of cotton fiber length and strength.
Collapse
Affiliation(s)
- Ximei Li
- National Key Laboratory of Crop Genetic Improvement (Wuhan), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement (Wuhan), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement (Wuhan), Huazhong Agricultural University, Wuhan, Hubei, China
- * E-mail:
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement (Wuhan), Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
9
|
Gottlieb A, Müller HG, Massa AN, Wanjugi H, Deal KR, You FM, Xu X, Gu YQ, Luo MC, Anderson OD, Chan AP, Rabinowicz P, Devos KM, Dvorak J. Insular organization of gene space in grass genomes. PLoS One 2013; 8:e54101. [PMID: 23326580 PMCID: PMC3543359 DOI: 10.1371/journal.pone.0054101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 12/06/2012] [Indexed: 01/28/2023] Open
Abstract
Wheat and maize genes were hypothesized to be clustered into islands but the hypothesis was not statistically tested. The hypothesis is statistically tested here in four grass species differing in genome size, Brachypodium distachyon, Oryza sativa, Sorghum bicolor, and Aegilops tauschii. Density functions obtained under a model where gene locations follow a homogeneous Poisson process and thus are not clustered are compared with a model-free situation quantified through a non-parametric density estimate. A simple homogeneous Poisson model for gene locations is not rejected for the small O. sativa and B. distachyon genomes, indicating that genes are distributed largely uniformly in those species, but is rejected for the larger S. bicolor and Ae. tauschii genomes, providing evidence for clustering of genes into islands. It is proposed to call the gene islands “gene insulae” to distinguish them from other types of gene clustering that have been proposed. An average S. bicolor and Ae. tauschii insula is estimated to contain 3.7 and 3.9 genes with an average intergenic distance within an insula of 2.1 and 16.5 kb, respectively. Inter-insular distances are greater than 8 and 81 kb and average 15.1 and 205 kb, in S. bicolor and Ae. tauschii, respectively. A greater gene density observed in the distal regions of the Ae. tauschii chromosomes is shown to be primarily caused by shortening of inter-insular distances. The comparison of the four grass genomes suggests that gene locations are largely a function of a homogeneous Poisson process in small genomes. Nonrandom insertions of LTR retroelements during genome expansion creates gene insulae, which become less dense and further apart with the increase in genome size. High concordance in relative lengths of orthologous intergenic distances among the investigated genomes including the maize genome suggests functional constraints on gene distribution in the grass genomes.
Collapse
Affiliation(s)
- Andrea Gottlieb
- Department of Statistics, University of California Davis, Davis, California, United States of America
| | - Hans-Georg Müller
- Department of Statistics, University of California Davis, Davis, California, United States of America
| | - Alicia N. Massa
- Institute of Plant Breeding, Genetics and Genomics (Department of Crop and Soil Sciences), Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Humphrey Wanjugi
- USDA/ARS Western Research Center, Albany, California, United States of America
| | - Karin R. Deal
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Frank M. You
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Xiangyang Xu
- Institute of Plant Breeding, Genetics and Genomics (Department of Crop and Soil Sciences), Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Yong Q. Gu
- USDA/ARS Western Research Center, Albany, California, United States of America
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Olin D. Anderson
- USDA/ARS Western Research Center, Albany, California, United States of America
| | - Agnes P. Chan
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Pablo Rabinowicz
- Institute for Genome Sciences, and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Katrien M. Devos
- Institute of Plant Breeding, Genetics and Genomics (Department of Crop and Soil Sciences), Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Jan Dvorak
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Shi H, Liu Z, Zhu L, Zhang C, Chen Y, Zhou Y, Li F, Li X. Overexpression of cotton (Gossypium hirsutum) dirigent1 gene enhances lignification that blocks the spread of Verticillium dahliae. Acta Biochim Biophys Sin (Shanghai) 2012; 44:555-64. [PMID: 22595512 DOI: 10.1093/abbs/gms035] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Dirigent super-family abounds throughout the plant kingdom, especially vascular plants. To elucidate the function of cotton (Gossypium hirsutum) DIR genes in lignification, two cDNAs (designated GhDIR1 and GhDIR2) encoding putative dirigent proteins were isolated from cotton cDNA libraries. Real-time quantitative reverse transcription-polymerase chain reaction analysis revealed that GhDIR1 transcript was preferentially accumulated in cotton hypocotyls, whereas GhDIR2 was predominantly expressed in cotton fibers. Overexpression of GhDIR1 gene resulted in an increase in lignin content in transgenic cotton plants, compared with that of wild type. Histochemical assay revealed that the transgenic plants displayed more widespread lignification than that of wild type in epidermis and vascular bundle. Furthermore, the transgenic cotton plants displayed more tolerance to the infection of Verticillium dahliae. Our data suggest that GhDIR1 may be involved in cotton lignification which can block the spread of fungal pathogen V. dahliae.
Collapse
Affiliation(s)
- Haiyan Shi
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang P, Zhu Y, Song X, Cao Z, Ding Y, Liu B, Zhu X, Wang S, Guo W, Zhang T. Inheritance of long staple fiber quality traits of Gossypium barbadense in G. hirsutum background using CSILs. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:1415-28. [PMID: 22297564 DOI: 10.1007/s00122-012-1797-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 01/05/2012] [Indexed: 05/02/2023]
Abstract
Gossypium hirsutum is a high yield cotton species that exhibits only moderate performance in fiber qualities. A promising but challenging approach to improving its phenotypes is interspecific introgression, the transfer of valuable traits or genes from the germplasm of another species such as G. barbadense, an important cultivated extra long staple cotton species. One set of chromosome segment introgression lines (CSILs) was developed, where TM-1, the genetic standard in G. hirsutum, was used as the recipient parent and the long staple cotton G. barbadense Hai7124 was used as the donor parent by molecular marker-assisted selection (MAS) in BC(5)S(1–4) and BC(4)S(1–3) generations. After four rounds of MAS, the CSIL population was comprised of 174 lines containing 298 introgressed segments, of which 86 (49.4%) lines had single introgressed segments. The total introgressed segment length covered 2,948.7 cM with an average length of 16.7 cM and represented 83.3% of tetraploid cotton genome. The CSILs were highly varied in major fiber qualities. By integrated analysis of data collected in four environments, a total of 43 additive quantitative trait loci (QTL) and six epistatic QTL associated with fiber qualities were detected by QTL IciMapping 3.0 and multi-QTL joint analysis. Six stable QTL were detected in various environments. The CSILs developed and the analyses presented here will enhance the understanding of the genetics of fiber qualities in long staple G. barbadense and facilitate further molecular breeding to improve fiber quality in Upland cotton.
Collapse
Affiliation(s)
- Peng Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Claverie M, Souquet M, Jean J, Forestier-Chiron N, Lepitre V, Pré M, Jacobs J, Llewellyn D, Lacape JM. cDNA-AFLP-based genetical genomics in cotton fibers. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:665-683. [PMID: 22080217 DOI: 10.1007/s00122-011-1738-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 10/18/2011] [Indexed: 05/31/2023]
Abstract
Genetical genomics, or genetic analysis applied to gene expression data, has not been widely used in plants. We used quantitative cDNA-AFLP to monitor the variation in the expression level of cotton fiber transcripts among a population of inter-specific Gossypium hirsutum × G. barbadense recombinant inbred lines (RILs). Two key fiber developmental stages, elongation (10 days post anthesis, dpa), and secondary cell wall thickening (22 dpa), were studied. Normalized intensity ratios of 3,263 and 1,201 transcript-derived fragments (TDFs) segregating over 88 RILs were analyzed for quantitative trait loci (QTL) mapping for the 10 and 22 dpa fibers, respectively. Two-thirds of all TDFs mapped between 1 and 6 eQTLs (LOD > 3.5). Chromosome 21 had a higher density of eQTLs than other chromosomes in both data sets and, within chromosomes, hotspots of presumably trans-acting eQTLs were identified. The eQTL hotspots were compared to the location of phenotypic QTLs for fiber characteristics among the RILs, and several cases of co-localization were detected. Quantitative RT-PCR for 15 sequenced TDFs showed that 3 TDFs had at least one eQTL at a similar location to those identified by cDNA-AFLP, while 3 other TDFs mapped an eQTL at a similar location but with opposite additive effect. In conclusion, cDNA-AFLP proved to be a cost-effective and highly transferable platform for genome-wide and population-wide gene expression profiling. Because TDFs are anonymous, further validation and interpretation (in silico analysis, qPCR gene profiling) of the eQTL and eQTL hotspots will be facilitated by the increasing availability of cDNA and genomic sequence resources in cotton.
Collapse
Affiliation(s)
- Michel Claverie
- UMR AGAP, CIRAD, Avenue Agropolis, 34398, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rustenholz C, Choulet F, Laugier C, Šafář J, Šimková H, Doležel J, Magni F, Scalabrin S, Cattonaro F, Vautrin S, Bellec A, Bergès H, Feuillet C, Paux E. A 3,000-loci transcription map of chromosome 3B unravels the structural and functional features of gene islands in hexaploid wheat. PLANT PHYSIOLOGY 2011; 157:1596-608. [PMID: 22034626 PMCID: PMC3327205 DOI: 10.1104/pp.111.183921] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
To improve our understanding of the organization and regulation of the wheat (Triticum aestivum) gene space, we established a transcription map of a wheat chromosome (3B) by hybridizing a newly developed wheat expression microarray with bacterial artificial chromosome pools from a new version of the 3B physical map as well as with cDNA probes derived from 15 RNA samples. Mapping data for almost 3,000 genes showed that the gene space spans the whole chromosome 3B with a 2-fold increase of gene density toward the telomeres due to an increase in the number of genes in islands. Comparative analyses with rice (Oryza sativa) and Brachypodium distachyon revealed that these gene islands are composed mainly of genes likely originating from interchromosomal gene duplications. Gene Ontology and expression profile analyses for the 3,000 genes located along the chromosome revealed that the gene islands are enriched significantly in genes sharing the same function or expression profile, thereby suggesting that genes in islands acquired shared regulation during evolution. Only a small fraction of these clusters of cofunctional and coexpressed genes was conserved with rice and B. distachyon, indicating a recent origin. Finally, genes with the same expression profiles in remote islands (coregulation islands) were identified suggesting long-distance regulation of gene expression along the chromosomes in wheat.
Collapse
MESH Headings
- Base Sequence
- Brachypodium/genetics
- Centromere/genetics
- Chromosomes, Artificial, Bacterial/genetics
- Chromosomes, Plant/genetics
- DNA, Intergenic/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Evolution, Molecular
- Gene Duplication
- Gene Expression Profiling
- Gene Expression Regulation, Plant/genetics
- Genes, Plant/genetics
- Genome, Plant/genetics
- Genomic Islands/genetics
- Genomic Islands/physiology
- Molecular Sequence Data
- Multigene Family
- Oligonucleotide Array Sequence Analysis
- Oryza/genetics
- Physical Chromosome Mapping/methods
- Polyploidy
- Sequence Analysis, DNA
- Telomere/genetics
- Transcriptome
- Triticum/genetics
Collapse
|
14
|
Boopathi NM, Thiyagu K, Urbi B, Santhoshkumar M, Gopikrishnan A, Aravind S, Swapnashri G, Ravikesavan R. Marker-assisted breeding as next-generation strategy for genetic improvement of productivity and quality: can it be realized in cotton? INTERNATIONAL JOURNAL OF PLANT GENOMICS 2011; 2011:670104. [PMID: 21577317 PMCID: PMC3092514 DOI: 10.1155/2011/670104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 01/22/2011] [Indexed: 05/29/2023]
Abstract
The dawdling development in genetic improvement of cotton with conventional breeding program is chiefly due to lack of complete knowledge on and precise manipulation of fiber productivity and quality. Naturally available cotton continues to be a resource for the upcoming breeding program, and contemporary technologies to exploit the available natural variation are outlined in this paper for further improvement of fiber. Particularly emphasis is given to application, obstacles, and perspectives of marker-assisted breeding since it appears to be more promising in manipulating novel genes that are available in the cotton germplasm. Deployment of system quantitative genetics in marker-assisted breeding program would be essential to realize its role in cotton. At the same time, role of genetic engineering and in vitro mutagenesis cannot be ruled out in genetic improvement of cotton.
Collapse
Affiliation(s)
- N. Manikanda Boopathi
- Department of Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - K. Thiyagu
- Department of Cotton, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - B. Urbi
- Department of Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - M. Santhoshkumar
- Department of Cotton, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - A. Gopikrishnan
- Department of Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - S. Aravind
- Department of Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Gat Swapnashri
- Department of Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - R. Ravikesavan
- Department of Cotton, Tamil Nadu Agricultural University, Coimbatore 641003, India
| |
Collapse
|
15
|
Xu Z, Yu JZ, Cho J, Yu J, Kohel RJ, Percy RG. Polyploidization altered gene functions in cotton (Gossypium spp.). PLoS One 2010; 5:e14351. [PMID: 21179551 PMCID: PMC3002935 DOI: 10.1371/journal.pone.0014351] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Accepted: 11/04/2010] [Indexed: 11/19/2022] Open
Abstract
Cotton (Gossypium spp.) is an important crop plant that is widely grown to produce both natural textile fibers and cottonseed oil. Cotton fibers, the economically more important product of the cotton plant, are seed trichomes derived from individual cells of the epidermal layer of the seed coat. It has been known for a long time that large numbers of genes determine the development of cotton fiber, and more recently it has been determined that these genes are distributed across At and Dt subgenomes of tetraploid AD cottons. In the present study, the organization and evolution of the fiber development genes were investigated through the construction of an integrated genetic and physical map of fiber development genes whose functions have been verified and confirmed. A total of 535 cotton fiber development genes, including 103 fiber transcription factors, 259 fiber development genes, and 173 SSR-contained fiber ESTs, were analyzed at the subgenome level. A total of 499 fiber related contigs were selected and assembled. Together these contigs covered about 151 Mb in physical length, or about 6.7% of the tetraploid cotton genome. Among the 499 contigs, 397 were anchored onto individual chromosomes. Results from our studies on the distribution patterns of the fiber development genes and transcription factors between the At and Dt subgenomes showed that more transcription factors were from Dt subgenome than At, whereas more fiber development genes were from At subgenome than Dt. Combining our mapping results with previous reports that more fiber QTLs were mapped in Dt subgenome than At subgenome, the results suggested a new functional hypothesis for tetraploid cotton. After the merging of the two diploid Gossypium genomes, the At subgenome has provided most of the genes for fiber development, because it continues to function similar to its fiber producing diploid A genome ancestor. On the other hand, the Dt subgenome, with its non-fiber producing D genome ancestor, provides more transcription factors that regulate the expression of the fiber genes in the At subgenome. This hypothesis would explain previously published mapping results. At the same time, this integrated map of fiber development genes would provide a framework to clone individual full-length fiber genes, to elucidate the physiological mechanisms of the fiber differentiation, elongation, and maturation, and to systematically study the functional network of these genes that interact during the process of fiber development in the tetraploid cottons.
Collapse
Affiliation(s)
- Zhanyou Xu
- Crop Germplasm Research Unit, Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), College Station, Texas, United States of America
| | - John Z. Yu
- Crop Germplasm Research Unit, Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), College Station, Texas, United States of America
- * E-mail:
| | - Jaemin Cho
- Crop Germplasm Research Unit, Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), College Station, Texas, United States of America
| | - Jing Yu
- Crop Germplasm Research Unit, Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), College Station, Texas, United States of America
| | - Russell J. Kohel
- Crop Germplasm Research Unit, Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), College Station, Texas, United States of America
| | - Richard G. Percy
- Crop Germplasm Research Unit, Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), College Station, Texas, United States of America
| |
Collapse
|
16
|
Wang QQ, Liu F, Chen XS, Ma XJ, Zeng HQ, Yang ZM. Transcriptome profiling of early developing cotton fiber by deep-sequencing reveals significantly differential expression of genes in a fuzzless/lintless mutant. Genomics 2010; 96:369-76. [PMID: 20828606 DOI: 10.1016/j.ygeno.2010.08.009] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 08/30/2010] [Accepted: 08/31/2010] [Indexed: 12/21/2022]
Abstract
Cotton fiber as a single-celled trichome is a biological model system for studying cell differentiation and elongation. However, the complexity of its gene expression and regulatory mechanism allows only marginal progress. Here, we report the high-throughput tag-sequencing (Tag-seq) analysis using Solexa Genome Analyzer platform on transcriptome of -2 to 1 (fiber initiation, stage I) and 2-8 (fiber elongation, stage II) days post anthesis (DPA) cotton (Gossypium hirsutum) ovules (wild type: WT; Xuzhou 142 and its mutant: fuzzless/lintless or flM, in the same background). To this end, we sequenced 3.5-3.8 million tags representing 0.7-1.0 million unique transcripts for each library (WT1, WT2, M1, and M2). After removal of low quality tags, we obtained a total of 2,973,104, 3,139,306, 2,943,654, and 3,392,103 clean sequences that corresponded to 357,852, 280,787, 372,952, and 382,503 distinct tags for WT1, WT2, M1, and M2, respectively. All clean tags were aligned to the publicly available cotton transcript database (TIGR, http://www.tigr.org). About 15% of the distinct tags were uniquely mapped to the reference genes, and 31.4% of existing genes were matched by tags. The tag mapping to the database sequences generated 23,854, 24,442, 23,497, and 19,957 annotated genes for WT1, WT2, M1, and M2 libraries, respectively. Analyses of differentially expressed genes revealed the substantial changes in gene type and abundance between the wild type and mutant libraries. Among the 20 most differentially expressed genes in WT1/M1 and WT2/M2 libraries were cellulose synthase, phosphatase, and dehydrogenase, all of which are involved in the fiber cell development. Overall, the deep-sequencing analyses demonstrate the high degree of transcriptional complexity in early developing fibers and represent a major improvement over the microarrays for analyzing transcriptional changes on a large scale.
Collapse
Affiliation(s)
- Qin Qin Wang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
17
|
Lacape JM, Llewellyn D, Jacobs J, Arioli T, Becker D, Calhoun S, Al-Ghazi Y, Liu S, Palaï O, Georges S, Giband M, de Assunção H, Barroso PAV, Claverie M, Gawryziak G, Jean J, Vialle M, Viot C. Meta-analysis of cotton fiber quality QTLs across diverse environments in a Gossypium hirsutum x G. barbadense RIL population. BMC PLANT BIOLOGY 2010; 10:132. [PMID: 20584292 PMCID: PMC3017793 DOI: 10.1186/1471-2229-10-132] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 06/28/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Cotton fibers (produced by Gossypium species) are the premier natural fibers for textile production. The two tetraploid species, G. barbadense (Gb) and G. hirsutum (Gh), differ significantly in their fiber properties, the former having much longer, finer and stronger fibers that are highly prized. A better understanding of the genetics and underlying biological causes of these differences will aid further improvement of cotton quality through breeding and biotechnology. We evaluated an inter-specific Gh x Gb recombinant inbred line (RIL) population for fiber characteristics in 11 independent experiments under field and glasshouse conditions. Sites were located on 4 continents and 5 countries and some locations were analyzed over multiple years. RESULTS The RIL population displayed a large variability for all major fiber traits. QTL analyses were performed on a per-site basis by composite interval mapping. Among the 651 putative QTLs (LOD > 2), 167 had a LOD exceeding permutation based thresholds. Coincidence in QTL location across data sets was assessed for the fiber trait categories strength, elongation, length, length uniformity, fineness/maturity, and color. A meta-analysis of more than a thousand putative QTLs was conducted with MetaQTL software to integrate QTL data from the RIL and 3 backcross populations (from the same parents) and to compare them with the literature. Although the global level of congruence across experiments and populations was generally moderate, the QTL clustering was possible for 30 trait x chromosome combinations (5 traits in 19 different chromosomes) where an effective co-localization of unidirectional (similar sign of additivity) QTLs from at least 5 different data sets was observed. Most consistent meta-clusters were identified for fiber color on chromosomes c6, c8 and c25, fineness on c15, and fiber length on c3. CONCLUSIONS Meta-analysis provided a reliable means of integrating phenotypic and genetic mapping data across multiple populations and environments for complex fiber traits. The consistent chromosomal regions contributing to fiber quality traits constitute good candidates for the further dissection of the genetic and genomic factors underlying important fiber characteristics, and for marker-assisted selection.
Collapse
Affiliation(s)
- Jean-Marc Lacape
- UMR-DAP, CIRAD, Avenue Agropolis, 34398, Montpellier Cedex 5, France
| | - Danny Llewellyn
- CSIRO Plant Industry, P.O. Box 1600 Canberra, ACT, Australia
| | - John Jacobs
- Bayer BioScience N.V., Technologiepark 38, Ghent, Belgium
| | - Tony Arioli
- Bayer CropScience, BioScience research, Lubbock, TX, USA
| | - David Becker
- Bayer CropScience, BioScience research, Lubbock, TX, USA
| | - Steve Calhoun
- Bayer CropScience, BioScience research, Lubbock, TX, USA
| | - Yves Al-Ghazi
- CSIRO Plant Industry, P.O. Box 1600 Canberra, ACT, Australia
| | - Shiming Liu
- CSIRO Plant Industry, P.O. Box 1600 Canberra, ACT, Australia
| | - Oumarou Palaï
- IRAD, Centre Régional de Recherche Agricole de Maroua, BP 33 Maroua, Cameroon
| | - Sophie Georges
- IRAD, Centre Régional de Recherche Agricole de Maroua, BP 33 Maroua, Cameroon
- UPR-SCA, CIRAD, Avenue Agropolis, 34398, Montpellier Cedex 5, France
| | - Marc Giband
- UMR-DAP, CIRAD, Avenue Agropolis, 34398, Montpellier Cedex 5, France
- EMBRAPA Algodão, Rua Osvaldo Cruz 1143, Centenario, 58.428-095 Campina Grande, PB, Brazil
| | - Henrique de Assunção
- EMBRAPA Algodão, Rua Osvaldo Cruz 1143, Centenario, 58.428-095 Campina Grande, PB, Brazil
| | | | - Michel Claverie
- UMR-DAP, CIRAD, Avenue Agropolis, 34398, Montpellier Cedex 5, France
| | - Gérard Gawryziak
- UPR-SCA, CIRAD, Avenue Agropolis, 34398, Montpellier Cedex 5, France
| | - Janine Jean
- UPR-SCA, CIRAD, Avenue Agropolis, 34398, Montpellier Cedex 5, France
| | - Michèle Vialle
- UPR-SCA, CIRAD, Avenue Agropolis, 34398, Montpellier Cedex 5, France
| | - Christopher Viot
- UMR-DAP, CIRAD, Avenue Agropolis, 34398, Montpellier Cedex 5, France
| |
Collapse
|
18
|
Wiley C, Shaw KL. Multiple genetic linkages between female preference and male signal in rapidly speciating Hawaiian crickets. Evolution 2010; 64:2238-45. [PMID: 20394669 DOI: 10.1111/j.1558-5646.2010.01007.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Diverging sexual communication systems can lead to the evolution of new species that no longer recognize each other as potential mates. The coevolution of male and female components of sexual communication is facilitated by physical linkage between genes underlying signals and preferences. By crossing two closely related Hawaiian crickets (Laupala kohalensis and Laupala paranigra) with vastly different song pulse rates and female preferences, and assessing segregation of songs and preferences among second generation backcrosses, we show a strong genetic correlation between song and preference variation. Furthermore, multiple, but not all, quantitative trait loci underlying song variation also predict female preferences. This physical linkage or pleiotropy may have facilitated the striking diversification of pulse rates observed among Laupala species in conjunction with one of the most rapid species radiations so far recorded.
Collapse
Affiliation(s)
- Chris Wiley
- Department of Neurobiology and Behavior, Mudd Hall, Cornell University, Ithaca, New York 14850, USA.
| | | |
Collapse
|
19
|
Cervantes-Martinez I, Sandhu D, Xu M, Ortiz-Pérez E, Kato KK, Horner HT, Palmer RG. The male sterility locus ms3 is present in a fertility controlling gene cluster in soybean. J Hered 2009; 100:565-70. [PMID: 19617521 DOI: 10.1093/jhered/esp054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Soybean [Glycine max (L.) Merr.] is self-pollinated. To produce large quantities of hybrid seed, insect-mediated cross-pollination is necessary. An efficient nuclear male-sterile system for hybrid seed production would benefit from molecular and/or phenotypic markers linked to male fertility/sterility loci to facilitate early identification of phenotypes. Nuclear male-sterile, female-fertile ms3 mutant is a single recessive gene and displays high outcrossed seed set with pollinators. Our objective was to map the ms3 locus. A segregating population of 150 F(2) plants from Minsoy (PI 27890) x T284H, Ms3ms3 (A00-68), was screened with 231 simple sequence repeat markers. The ms3 locus mapped to molecular linkage group (MLG) D1b (Gm02) and is flanked by markers Satt157 and Satt542, with a distance of 3.7 and 12.3 cM, respectively. Female-partial sterile-1 (Fsp1) and the Midwest Oilseed male-sterile (msMOS) mutants previously were located on MLG D1b. msMOS and Fsp1 are independent genes located very close to each other. All 3 genes are located in close proximity of Satt157. We believe that this is the first report of clustering of fertility-related genes in plants. Characterization of these closely linked genes may help in understanding the evolutionary relationship among them.
Collapse
|