1
|
Smits JJ, de Bruijn SE, Lanting CP, Oostrik J, O'Gorman L, Mantere T, Cremers FPM, Roosing S, Yntema HG, de Vrieze E, Derks R, Hoischen A, Pegge SAH, Neveling K, Pennings RJE, Kremer H. Exploring the missing heritability in subjects with hearing loss, enlarged vestibular aqueducts, and a single or no pathogenic SLC26A4 variant. Hum Genet 2021; 141:465-484. [PMID: 34410491 PMCID: PMC9035008 DOI: 10.1007/s00439-021-02336-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022]
Abstract
Pathogenic variants in SLC26A4 have been associated with autosomal recessive hearing loss (arHL) and a unilateral or bilateral enlarged vestibular aqueduct (EVA). SLC26A4 is the second most frequently mutated gene in arHL. Despite the strong genotype–phenotype correlation, a significant part of cases remains genetically unresolved. In this study, we investigated a cohort of 28 Dutch index cases diagnosed with HL in combination with an EVA but without (M0) or with a single (M1) pathogenic variant in SLC26A4. To explore the missing heritability, we first determined the presence of the previously described EVA-associated haplotype (Caucasian EVA (CEVA)), characterized by 12 single nucleotide variants located upstream of SLC26A4. We found this haplotype and a delimited V1-CEVA haplotype to be significantly enriched in our M1 patient cohort (10/16 cases). The CEVA haplotype was also present in two M0 cases (2/12). Short- and long-read whole genome sequencing and optical genome mapping could not prioritize any of the variants present within the CEVA haplotype as the likely pathogenic defect. Short-read whole-genome sequencing of the six M1 cases without this haplotype and the two M0/CEVA cases only revealed previously overlooked or misinterpreted splice-altering SLC26A4 variants in two cases, who are now genetically explained. No deep-intronic or structural variants were identified in any of the M1 subjects. With this study, we have provided important insights that will pave the way for elucidating the missing heritability in M0 and M1 SLC26A4 cases. For pinpointing the pathogenic effect of the CEVA haplotype, additional analyses are required addressing defect(s) at the RNA, protein, or epigenetic level.
Collapse
Affiliation(s)
- Jeroen J Smits
- Hearing and Genes, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Internal Postal Code 855, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Suzanne E de Bruijn
- Department of Human Genetics, Radboud University Medical Center, Internal Postal Code 855, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cornelis P Lanting
- Hearing and Genes, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jaap Oostrik
- Hearing and Genes, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Luke O'Gorman
- Department of Human Genetics, Radboud University Medical Center, Internal Postal Code 855, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Tuomo Mantere
- Department of Human Genetics, Radboud University Medical Center, Internal Postal Code 855, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Internal Postal Code 855, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Internal Postal Code 855, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Helger G Yntema
- Department of Human Genetics, Radboud University Medical Center, Internal Postal Code 855, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Erik de Vrieze
- Hearing and Genes, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronny Derks
- Department of Human Genetics, Radboud University Medical Center, Internal Postal Code 855, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Internal Postal Code 855, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Center for Infectious Diseases (RCI), Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Expertise Center for Immunodeficiency and Autoinflammation and Center for Infectious Disease (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sjoert A H Pegge
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kornelia Neveling
- Department of Human Genetics, Radboud University Medical Center, Internal Postal Code 855, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Ronald J E Pennings
- Hearing and Genes, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hannie Kremer
- Hearing and Genes, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands. .,Department of Human Genetics, Radboud University Medical Center, Internal Postal Code 855, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands. .,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Nosova O, Bazov I, Karpyak V, Hallberg M, Bakalkin G. Epigenetic and Transcriptional Control of the Opioid Prodynorphine Gene: In-Depth Analysis in the Human Brain. Molecules 2021; 26:molecules26113458. [PMID: 34200173 PMCID: PMC8201134 DOI: 10.3390/molecules26113458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
Neuropeptides serve as neurohormones and local paracrine regulators that control neural networks regulating behavior, endocrine system and sensorimotor functions. Their expression is characterized by exceptionally restricted profiles. Circuit-specific and adaptive expression of neuropeptide genes may be defined by transcriptional and epigenetic mechanisms controlled by cell type and subtype sequence-specific transcription factors, insulators and silencers. The opioid peptide dynorphins play a critical role in neurological and psychiatric disorders, pain processing and stress, while their mutations cause profound neurodegeneration in the human brain. In this review, we focus on the prodynorphin gene as a model for the in-depth epigenetic and transcriptional analysis of expression of the neuropeptide genes. Prodynorphin studies may provide a framework for analysis of mechanisms relevant for regulation of neuropeptide genes in normal and pathological human brain.
Collapse
Affiliation(s)
- Olga Nosova
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden; (I.B.); (M.H.)
- Correspondence: (O.N.); (G.B.)
| | - Igor Bazov
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden; (I.B.); (M.H.)
| | | | - Mathias Hallberg
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden; (I.B.); (M.H.)
| | - Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden; (I.B.); (M.H.)
- Correspondence: (O.N.); (G.B.)
| |
Collapse
|
3
|
An introduction to EpiPol (Epigenetic affecting Polymorphism) concept with an in silico identification of CpG-affecting SNPs in the upstream regulatory sequences of human AHR gene. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
4
|
Bioinformatics tools for discovery and functional analysis of single nucleotide polymorphisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 827:287-310. [PMID: 25387971 DOI: 10.1007/978-94-017-9245-5_17] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
With the high speed DNA sequencing of genome, databases of genome data continue to grow, and the understanding of genetic variation between individuals grows as well. Single nucleotide polymorphisms (SNPs), a main type of genetic variation, are increasingly important resource for understanding the structure and function of the human genome and become a valuable resource for investigating the genetic basis of disease. During the past years, in addition to experimental approaches to characterize specific variants, intense bioinformatics techniques were applied to understand effects of these genetic changes. In the genetics studies, one intends to understand the molecular basis of disease, and computational methods are becoming increasingly important for SNPs selection, prediction and understanding the downstream effects of genetic variation. The review provides systematic information on the available resources and methods for SNPs discovery and analysis. We also report some new results on DNA sequence-based prediction of SNPs in human cytochrome P450, which serves as an example of computational methods to predict and discovery SNPs. Additionally, annotation and prediction of functional SNPs, as well as a comprehensive list of existing tools and online recourses, are reviewed and described.
Collapse
|
5
|
Bacolla A, Temiz NA, Yi M, Ivanic J, Cer RZ, Donohue DE, Ball EV, Mudunuri US, Wang G, Jain A, Volfovsky N, Luke BT, Stephens RM, Cooper DN, Collins JR, Vasquez KM. Guanine holes are prominent targets for mutation in cancer and inherited disease. PLoS Genet 2013; 9:e1003816. [PMID: 24086153 PMCID: PMC3784513 DOI: 10.1371/journal.pgen.1003816] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 08/07/2013] [Indexed: 12/27/2022] Open
Abstract
Single base substitutions constitute the most frequent type of human gene mutation and are a leading cause of cancer and inherited disease. These alterations occur non-randomly in DNA, being strongly influenced by the local nucleotide sequence context. However, the molecular mechanisms underlying such sequence context-dependent mutagenesis are not fully understood. Using bioinformatics, computational and molecular modeling analyses, we have determined the frequencies of mutation at G • C bp in the context of all 64 5'-NGNN-3' motifs that contain the mutation at the second position. Twenty-four datasets were employed, comprising >530,000 somatic single base substitutions from 21 cancer genomes, >77,000 germline single-base substitutions causing or associated with human inherited disease and 16.7 million benign germline single-nucleotide variants. In several cancer types, the number of mutated motifs correlated both with the free energies of base stacking and the energies required for abstracting an electron from the target guanines (ionization potentials). Similar correlations were also evident for the pathological missense and nonsense germline mutations, but only when the target guanines were located on the non-transcribed DNA strand. Likewise, pathogenic splicing mutations predominantly affected positions in which a purine was located on the non-transcribed DNA strand. Novel candidate driver mutations and tissue-specific mutational patterns were also identified in the cancer datasets. We conclude that electron transfer reactions within the DNA molecule contribute to sequence context-dependent mutagenesis, involving both somatic driver and passenger mutations in cancer, as well as germline alterations causing or associated with inherited disease.
Collapse
Affiliation(s)
- Albino Bacolla
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, Texas, United States of America
- Advanced Biomedical Computing Center, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Nuri A. Temiz
- Advanced Biomedical Computing Center, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Ming Yi
- Advanced Biomedical Computing Center, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Joseph Ivanic
- Advanced Biomedical Computing Center, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Regina Z. Cer
- Advanced Biomedical Computing Center, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Duncan E. Donohue
- Advanced Biomedical Computing Center, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Edward V. Ball
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Uma S. Mudunuri
- Advanced Biomedical Computing Center, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Guliang Wang
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, Texas, United States of America
| | - Aklank Jain
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, Texas, United States of America
| | - Natalia Volfovsky
- Advanced Biomedical Computing Center, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Brian T. Luke
- Advanced Biomedical Computing Center, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Robert M. Stephens
- Advanced Biomedical Computing Center, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - David N. Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jack R. Collins
- Advanced Biomedical Computing Center, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Karen M. Vasquez
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, Texas, United States of America
| |
Collapse
|
6
|
Sirohi S, Bakalkin G, Walker BM. Alcohol-induced plasticity in the dynorphin/kappa-opioid receptor system. Front Mol Neurosci 2012; 5:95. [PMID: 23060746 PMCID: PMC3459013 DOI: 10.3389/fnmol.2012.00095] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/29/2012] [Indexed: 01/02/2023] Open
Abstract
Alcoholism is a chronic relapsing disorder characterized by continued alcohol use despite numerous adverse consequences. Alcohol has been shown to interact with numerous neurotransmitter systems to exert its pharmacological effects. The endogenous opioid system (EOS) has been strongly implicated in the positive and negative reinforcing effects of alcohol. Traditionally recognized as dysphoric/anhedonic in nature, the dynorphin/kappa-opioid receptor (DYN/KOR) system has recently received considerable attention due to evidence suggesting that an upregulated DYN/KOR system may be a critical contributor to the complex factors that result in escalated alcohol consumption once dependent. The present review will discuss alcohol-induced plasticity in the DYN/KOR system and how these neuroadaptations could contribute to excessive alcohol seeking and consumption.
Collapse
Affiliation(s)
- Sunil Sirohi
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Washington State University Pullman, WA, USA
| | | | | |
Collapse
|
7
|
Sigurdsson MI, Smith AV, Bjornsson HT, Jonsson JJ. Distribution of a marker of germline methylation differs between major families of transposon-derived repeats in the human genome. Gene 2011; 492:104-9. [PMID: 22093876 DOI: 10.1016/j.gene.2011.10.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 10/18/2011] [Accepted: 10/27/2011] [Indexed: 11/18/2022]
Abstract
A potential relationship between transposon-derived repeats (TDR) and human germline methylation is of biological importance since many genes are flanked by TDR and methylation could affect the expression of nearby genes. Furthermore, DNA methylation has been suggested as a global defense mechanism against genome instability threatened by TDR. We studied the correlation between the density of HapMap methyl-associated SNPs (mSNPs), a marker of germline methylation, and proportion of TDR. After correcting for confounding variables, we found a negative correlation between proportion of Alu repeats and mSNP density for 125-1000 kb windows. Similar results were found for the most active subgroup of repeats. In contrast, a negative correlation between proportion of L1 repeats and mSNP density was found only in the larger 1000 kb windows. Using methylation data on germ cells (sperm) from the Human Epigenome Project, we found a lower proportion of Alu repeats adjacent (3-15 kb) to hypermethylated amplicons. On the contrary, there was a higher proportion of L1 repeats in the 3-5 kb of sequence flanking hypermethylated amplicons but not in the 10-15 kb flanks. Our data indicate a differential response to the major repeat families and that DNA methylation is unlikely to be a uniform global defense system against all TDR. It appears to play a role for the L1 subgroup, with sequences adjacent to L1 repeats methylated in response to their proximity. In contrast, sequences adjacent to Alu repeats appear to be hypomethylated, arguing against a role of methylation in germline defense against those elements.
Collapse
Affiliation(s)
- Martin I Sigurdsson
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Iceland, IS-101, and Department of Genetics and Molecular Medicine, Landspitali-University Hospital, Reykjavik, IS-101, Iceland
| | | | | | | |
Collapse
|
8
|
Taqi MM, Bazov I, Watanabe H, Sheedy D, Harper C, Alkass K, Druid H, Wentzel P, Nyberg F, Yakovleva T, Bakalkin G. Prodynorphin CpG-SNPs associated with alcohol dependence: elevated methylation in the brain of human alcoholics. Addict Biol 2011; 16:499-509. [PMID: 21521424 DOI: 10.1111/j.1369-1600.2011.00323.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The genetic, epigenetic and environmental factors may influence the risk for neuropsychiatric disease through their effects on gene transcription. Mechanistically, these effects may be integrated through regulation of methylation of CpG dinucleotides overlapping with single-nucleotide polymorphisms (SNPs) associated with a disorder. We addressed this hypothesis by analyzing methylation of prodynorphin (PDYN) CpG-SNPs associated with alcohol dependence, in human alcoholics. Postmortem specimens of the dorsolateral prefrontal cortex (dl-PFC) involved in cognitive control of addictive behavior were obtained from 14 alcohol-dependent and 14 control subjects. Methylation was measured by pyrosequencing after bisulfite treatment of DNA. DNA binding proteins were analyzed by electromobility shift assay. Three PDYN CpG-SNPs associated with alcoholism were found to be differently methylated in the human brain. In the dl-PFC of alcoholics, methylation levels of the C, non-risk variant of 3'-untranslated region (3'-UTR) SNP (rs2235749; C > T) were increased, and positively correlated with dynorphins. A DNA-binding factor that differentially targeted the T, risk allele and methylated and unmethylated C allele of this SNP was identified in the brain. The findings suggest a causal link between alcoholism-associated PDYN 3'-UTR CpG-SNP methylation, activation of PDYN transcription and vulnerability of individuals with the C, non-risk allele(s) to develop alcohol dependence.
Collapse
Affiliation(s)
- Malik Mumtaz Taqi
- The Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Guerrero-Bosagna C, Settles M, Lucker B, Skinner MK. Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS One 2010; 5. [PMID: 20927350 PMCID: PMC2948035 DOI: 10.1371/journal.pone.0013100] [Citation(s) in RCA: 291] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 08/31/2010] [Indexed: 12/16/2022] Open
Abstract
Previous observations have demonstrated that embryonic exposure to the endocrine disruptor vinclozolin during gonadal sex determination promotes transgenerational adult onset disease such as male infertility, kidney disease, prostate disease, immune abnormalities and tumor development. The current study investigates genome-wide promoter DNA methylation alterations in the sperm of F3 generation rats whose F0 generation mother was exposed to vinclozolin. A methylated DNA immunoprecipitation with methyl-cytosine antibody followed by a promoter tilling microarray (MeDIP-Chip) procedure was used to identify 52 different regions with statistically significant altered methylation in the sperm promoter epigenome. Mass spectrometry bisulfite analysis was used to map the CpG DNA methylation and 16 differential DNA methylation regions were confirmed, while the remainder could not be analyzed due to bisulfite technical limitations. Analysis of these validated regions identified a consensus DNA sequence (motif) that associated with 75% of the promoters. Interestingly, only 16.8% of a random set of 125 promoters contained this motif. One candidate promoter (Fam111a) was found to be due to a copy number variation (CNV) and not a methylation change, suggesting initial alterations in the germline epigenome may promote genetic abnormalities such as induced CNV in later generations. This study identifies differential DNA methylation sites in promoter regions three generations after the initial exposure and identifies common genome features present in these regions. In addition to primary epimutations, a potential indirect genetic abnormality was identified, and both are postulated to be involved in the epigenetic transgenerational inheritance observed. This study confirms that an environmental agent has the ability to induce epigenetic transgenerational changes in the sperm epigenome.
Collapse
Affiliation(s)
- Carlos Guerrero-Bosagna
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Matthew Settles
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Ben Lucker
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
10
|
Abstract
Global loss of DNA methylation has been known for decades as an epigenomic aberration associated with carcinogenesis and cancer progression. Loss of DNA methylation affects predominantly repetitive elements, which encompass >50% of the CpG dinucleotides present in the human genome. Because of the lack of an effective approach, no studies have been conducted to reveal such genome-wide methylation changes at a single-base resolution. To precisely determine the CpG sites with methylation loss during progression of pediatric intracranial ependymomas, we exploited a high-throughput bisulfite sequencing approach that simultaneously generates methylation profiles for thousands of Alu elements and their flanking sequences. Comparison of the methylation profiles of normal and tumor tissues revealed that the methylation status of the majority of CpG sites adjacent to or within Alu repeats remain unaltered, while a small set of CpG sites gain or lose methylation in ependymomas. Compared to the CpG sites with stable methylation level between normal control and ependymomas, the differentially methylated CpG sites are enriched in the sequences with low CpG density in the flanking regions of Alu repeats, rather than within the Alu sequences themselves. In addition, the CpG sites that are hypermethylated in ependymomas are proximal to CpG islands, whereas those that are hypomethylated are overrepresented in intergenic regions. Lastly, aberrant methylation of several genomic loci was confirmed to be associated with the aggressive primary tumors and the relapsed ependymomas.
Collapse
|