1
|
Kaltsas A, Moustakli E, Zikopoulos A, Georgiou I, Dimitriadis F, Symeonidis EN, Markou E, Michaelidis TM, Tien DMB, Giannakis I, Ioannidou EM, Papatsoris A, Tsounapi P, Takenaka A, Sofikitis N, Zachariou A. Impact of Advanced Paternal Age on Fertility and Risks of Genetic Disorders in Offspring. Genes (Basel) 2023; 14:486. [PMID: 36833413 PMCID: PMC9957550 DOI: 10.3390/genes14020486] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The average age of fathers at first pregnancy has risen significantly over the last decade owing to various variables, including a longer life expectancy, more access to contraception, later marriage, and other factors. As has been proven in several studies, women over 35 years of age have an increased risk of infertility, pregnancy problems, spontaneous abortion, congenital malformations, and postnatal issues. There are varying opinions on whether a father's age affects the quality of his sperm or his ability to father a child. First, there is no single accepted definition of old age in a father. Second, much research has reported contradictory findings in the literature, particularly concerning the most frequently examined criteria. Increasing evidence suggests that the father's age contributes to his offspring's higher vulnerability to inheritable diseases. Our comprehensive literature evaluation shows a direct correlation between paternal age and decreased sperm quality and testicular function. Genetic abnormalities, such as DNA mutations and chromosomal aneuploidies, and epigenetic modifications, such as the silencing of essential genes, have all been linked to the father's advancing years. Paternal age has been shown to affect reproductive and fertility outcomes, such as the success rate of in vitro fertilisation (IVF), intracytoplasmic sperm injection (ICSI), and premature birth rate. Several diseases, including autism, schizophrenia, bipolar disorders, and paediatric leukaemia, have been linked to the father's advanced years. Therefore, informing infertile couples of the alarming correlations between older fathers and a rise in their offspring's diseases is crucial, so that they can be effectively guided through their reproductive years.
Collapse
Affiliation(s)
- Aris Kaltsas
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Efthalia Moustakli
- Laboratory of Medical Genetics in Clinical Practice, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Athanasios Zikopoulos
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Ioannis Georgiou
- Laboratory of Medical Genetics in Clinical Practice, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Evangelos N. Symeonidis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleftheria Markou
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece
| | - Theologos M. Michaelidis
- Department of Biological Applications and Technologies, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45500 Ioannina, Greece
| | - Dung Mai Ba Tien
- Department of Andrology, Binh Dan Hospital, Ho chi Minh City 70000, Vietnam
| | - Ioannis Giannakis
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | | | - Athanasios Papatsoris
- 2nd Department of Urology, School of Medicine, Sismanoglio Hospital, National and Kapodistrian Univesity of Athens, 15126 Athens, Greece
| | - Panagiota Tsounapi
- Division of Urology, Department of Surgery, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Atsushi Takenaka
- Division of Urology, Department of Surgery, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Nikolaos Sofikitis
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Athanasios Zachariou
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
2
|
Shah T, Schneider JV, Zizka G, Maurin O, Baker W, Forest F, Brewer GE, Savolainen V, Darbyshire I, Larridon I. Joining forces in Ochnaceae phylogenomics: a tale of two targeted sequencing probe kits. AMERICAN JOURNAL OF BOTANY 2021; 108:1201-1216. [PMID: 34180046 DOI: 10.1002/ajb2.1682] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/23/2021] [Indexed: 05/10/2023]
Abstract
PREMISE Both universal and family-specific targeted sequencing probe kits are becoming widely used for reconstruction of phylogenetic relationships in angiosperms. Within the pantropical Ochnaceae, we show that with careful data filtering, universal kits are equally as capable in resolving intergeneric relationships as custom probe kits. Furthermore, we show the strength in combining data from both kits to mitigate bias and provide a more robust result to resolve evolutionary relationships. METHODS We sampled 23 Ochnaceae genera and used targeted sequencing with two probe kits, the universal Angiosperms353 kit and a family-specific kit. We used maximum likelihood inference with a concatenated matrix of loci and multispecies-coalescence approaches to infer relationships in the family. We explored phylogenetic informativeness and the impact of missing data on resolution and tree support. RESULTS For the Angiosperms353 data set, the concatenation approach provided results more congruent with those of the Ochnaceae-specific data set. Filtering missing data was most impactful on the Angiosperms353 data set, with a relaxed threshold being the optimum scenario. The Ochnaceae-specific data set resolved consistent topologies using both inference methods, and no major improvements were obtained after data filtering. Merging of data obtained with the two kits resulted in a well-supported phylogenetic tree. CONCLUSIONS The Angiosperms353 data set improved upon data filtering, and missing data played an important role in phylogenetic reconstruction. The Angiosperms353 data set resolved the phylogenetic backbone of Ochnaceae as equally well as the family specific data set. All analyses indicated that both Sauvagesia L. and Campylospermum Tiegh. as currently circumscribed are polyphyletic and require revised delimitation.
Collapse
Affiliation(s)
- Toral Shah
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Department of Life Sciences, Imperial College, Silwood Park Campus, Ascot, Berks, SL5 7PY, UK
| | - Julio V Schneider
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, Frankfurt am Main, D-60325, Germany
| | - Georg Zizka
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, Frankfurt am Main, D-60325, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 13, Frankfurt am Main, 60438, Germany
| | - Olivier Maurin
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - William Baker
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Grace E Brewer
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Vincent Savolainen
- Department of Life Sciences, Imperial College, Silwood Park Campus, Ascot, Berks, SL5 7PY, UK
| | | | - Isabel Larridon
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, K.L., Ledeganckstraat 35, Gent, 9000, Belgium
| |
Collapse
|
3
|
Elliott I, Thangnimitchok N, de Cesare M, Linsuwanon P, Paris DH, Day NPJ, Newton PN, Bowden R, Batty EM. Targeted capture and sequencing of Orientia tsutsugamushi genomes from chiggers and humans. INFECTION GENETICS AND EVOLUTION 2021; 91:104818. [PMID: 33771726 PMCID: PMC8164161 DOI: 10.1016/j.meegid.2021.104818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
Scrub typhus is a febrile disease caused by Orientia tsutsugamushi, transmitted by larval stage Trombiculid mites (chiggers), whose primary hosts are small mammals. The phylogenomics of O. tsutsugamushi in chiggers, small mammals and humans remains poorly understood. To combat the limitations imposed by the low relative quantities of pathogen DNA in typical O. tsutsugamushi clinical and ecological samples, along with the technical, safety and cost limitations of cell culture, a novel probe-based target enrichment sequencing protocol was developed. The method was designed to capture variation among conserved genes and facilitate phylogenomic analysis at the scale of population samples. A whole-genome amplification step was incorporated to enhance the efficiency of sequencing by reducing duplication rates. This resulted in on-target capture rates of up to 93% for a diverse set of human, chigger, and rodent samples, with the greatest success rate in samples with real-time PCR Ct values below 35. Analysis of the best-performing samples revealed phylogeographic clustering at local, provincial and international scales. Applying the methodology to a comprehensive set of samples could yield a more complete understanding of the ecology, genomic evolution and population structure of O. tsutsugamushi and other similarly challenging organisms, with potential benefits in the development of diagnostic tests and vaccines.
Collapse
Affiliation(s)
- Ivo Elliott
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| | - Neeranuch Thangnimitchok
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
| | | | - Piyada Linsuwanon
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Daniel H Paris
- Department of Medicine, Swiss Tropical and Public Health Institute, Basel, Switzerland; Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Nicholas P J Day
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Paul N Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rory Bowden
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom; Division of Advanced Technology and Biology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Elizabeth M Batty
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Schultzhaus Z, Wang Z, Stenger D. CRISPR-based enrichment strategies for targeted sequencing. Biotechnol Adv 2020; 46:107672. [PMID: 33253795 DOI: 10.1016/j.biotechadv.2020.107672] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/31/2020] [Accepted: 11/22/2020] [Indexed: 12/26/2022]
Abstract
The ability to easily produce or procure sequencing data has expanded to be within the reach of most clinics and research laboratories, but the complexity of sequence analysis remains a hurdle for many scientists, and a decline in sequencing cost means that the generation of gratuitous information in a given experiment is a challenge that is more and more often being encountered. To address this issue, methods have been present, some dating to the advent of nucleic acid sequencing, for capturing, targeting, or otherwise enriching specific nucleic acids in order to obtain greater depth of reads from a small portion of sequences within a complex sample. However, many of these methods have been complicated and laborious, relying on the design of hundreds to thousands of oligonucleotide probes, fabrication of microarray chips, and long hybridization times. Here, we review these methods, their benefits and uses, and catalog and discuss the implications of a recent development that has enabled a more efficient and expanded set of tools for enriching nucleic acids - the application of CRISPR technology. This introduction and analysis of the capabilities of new CRISPR-based enrichment strategies shows that it has the potential to expand the scope of enrichment to new possibilities, including the coupling of DNA and RNA targeting with long-read, portable sequencing platforms. Moreover, there are several areas where CRISPR-enrichment is a logical next step to more powerful and simplified sequencing for applications such as diagnostics and environmental monitoring.
Collapse
Affiliation(s)
- Zachary Schultzhaus
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, DC 20375, USA.
| | - Zheng Wang
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, DC 20375, USA.
| | - David Stenger
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, DC 20375, USA.
| |
Collapse
|
5
|
Giebner H, Langen K, Bourlat SJ, Kukowka S, Mayer C, Astrin JJ, Misof B, Fonseca VG. Comparing diversity levels in environmental samples: DNA sequence capture and metabarcoding approaches using 18S and COI genes. Mol Ecol Resour 2020; 20:1333-1345. [PMID: 32462738 DOI: 10.1111/1755-0998.13201] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/20/2020] [Accepted: 05/15/2020] [Indexed: 12/25/2022]
Abstract
Environmental DNA studies targeting multiple taxa using metabarcoding provide remarkable insights into levels of species diversity in any habitat. The main drawbacks are the presence of primer bias and difficulty in identifying rare species. We tested a DNA sequence-capture method in parallel with the metabarcoding approach to reveal possible advantages of one method over the other. Both approaches were performed using the same eDNA samples and the same 18S and COI regions, followed by high throughput sequencing. Metabarcoded eDNA libraries were PCR amplified with one primer pair from 18S and COI genes. DNA sequence-capture libraries were enriched with 3,639 baits targeting the same gene regions. We tested amplicon sequence variants (ASVs) and operational taxonomic units (OTUs) in silico approaches for both markers and methods, using for this purpose the metabarcoding data set. ASVs methods uncovered more species for the COI gene, whereas the opposite occurred for the 18S gene, suggesting that clustering reads into OTUs could bias diversity richness especially using 18S with relaxed thresholds. Additionally, metabarcoding and DNA sequence-capture recovered 80%-90% of the control sample species. DNA sequence-capture was 8x more expensive, nonetheless it identified 1.5x more species for COI and 13x more genera for 18S than metabarcoding. Both approaches offer reliable results, sharing ca. 40% species and 72% families and retrieve more taxa when nuclear and mitochondrial markers are combined. eDNA metabarcoding is quite well established and low-cost, whereas DNA-sequence capture for biodiversity assessment is still in its infancy, is more time-consuming but provides more taxonomic assignments.
Collapse
Affiliation(s)
- Hendrik Giebner
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz-Institute for Animal Biodiversity, Bonn, Germany
| | - Kathrin Langen
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz-Institute for Animal Biodiversity, Bonn, Germany
| | - Sarah J Bourlat
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz-Institute for Animal Biodiversity, Bonn, Germany
| | - Sandra Kukowka
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz-Institute for Animal Biodiversity, Bonn, Germany
| | - Christoph Mayer
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz-Institute for Animal Biodiversity, Bonn, Germany
| | - Jonas J Astrin
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz-Institute for Animal Biodiversity, Bonn, Germany
| | - Bernhard Misof
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz-Institute for Animal Biodiversity, Bonn, Germany
| | - Vera G Fonseca
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz-Institute for Animal Biodiversity, Bonn, Germany.,Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| |
Collapse
|
6
|
Granados Mendoza C, Jost M, Hágsater E, Magallón S, van den Berg C, Lemmon EM, Lemmon AR, Salazar GA, Wanke S. Target Nuclear and Off-Target Plastid Hybrid Enrichment Data Inform a Range of Evolutionary Depths in the Orchid Genus Epidendrum. FRONTIERS IN PLANT SCIENCE 2020; 10:1761. [PMID: 32063915 PMCID: PMC7000662 DOI: 10.3389/fpls.2019.01761] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/16/2019] [Indexed: 05/12/2023]
Abstract
Universal angiosperm enrichment probe sets designed to enrich hundreds of putatively orthologous nuclear single-copy loci are increasingly being applied to infer phylogenetic relationships of different lineages of angiosperms at a range of evolutionary depths. Studies applying such probe sets have focused on testing the universality and performance of the target nuclear loci, but they have not taken advantage of off-target data from other genome compartments generated alongside the nuclear loci. Here we do so to infer phylogenetic relationships in the orchid genus Epidendrum and closely related genera of subtribe Laeliinae. Our aims are to: 1) test the technical viability of applying the plant anchored hybrid enrichment (AHE) method (Angiosperm v.1 probe kit) to our focal group, 2) mine plastid protein coding genes from off-target reads; and 3) evaluate the performance of the target nuclear and off-target plastid loci in resolving and supporting phylogenetic relationships along a range of taxonomical depths. Phylogenetic relationships were inferred from the nuclear data set through coalescent summary and site-based methods, whereas plastid loci were analyzed in a concatenated partitioned matrix under maximum likelihood. The usefulness of target and flanking non-target nuclear regions and plastid loci was assessed through the estimation of their phylogenetic informativeness. Our study successfully applied the plant AHE probe kit to Epidendrum, supporting the universality of this kit in angiosperms. Moreover, it demonstrated the feasibility of mining plastome loci from off-target reads generated with the Angiosperm v.1 probe kit to obtain additional, uniparentally inherited sequence data at no extra sequencing cost. Our analyses detected some strongly supported incongruences between nuclear and plastid data sets at shallow divergences, an indication of potential lineage sorting, hybridization, or introgression events in the group. Lastly, we found that the per site phylogenetic informativeness of the ycf1 plastid gene surpasses that of all other plastid genes and several nuclear loci, making it an excellent candidate for assessing phylogenetic relationships at medium to low taxonomic levels in orchids.
Collapse
Affiliation(s)
- Carolina Granados Mendoza
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Matthias Jost
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | - Eric Hágsater
- Herbario AMO, Instituto Chinoin, A.C., Mexico City, Mexico
| | - Susana Magallón
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Cássio van den Berg
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Alan R. Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL, United States
| | - Gerardo A. Salazar
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Stefan Wanke
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
7
|
Chung J, Lee KW, Lee C, Shin SH, Kyung S, Jeon HJ, Kim SY, Cho E, Yoo CE, Son DS, Park WY, Park D. Performance evaluation of commercial library construction kits for PCR-based targeted sequencing using a unique molecular identifier. BMC Genomics 2019; 20:216. [PMID: 30871467 PMCID: PMC6416880 DOI: 10.1186/s12864-019-5583-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 03/04/2019] [Indexed: 12/27/2022] Open
Abstract
Background Target enrichment is a critical component of targeted deep next-generation sequencing for the cost-effective and sensitive detection of mutations, which is predominantly performed by either hybrid selection or PCR. Despite the advantages of efficient enrichment, PCR-based methods preclude the identification of PCR duplicates and their subsequent removal. Recently, this limitation was overcome by assigning a unique molecular identifier(UMI) to each template molecule. Currently, several commercial library construction kits based on PCR enrichment are available for UMIs, but there have been no systematic studies to compare their performances. In this study, we evaluated and compared the performances of five commercial library kits from four vendors: the Archer® Reveal ctDNA™ 28 Kit, NEBNext Direct® Cancer HotSpot Panel, Nugen Ovation® Custom Target Enrichment System, Qiagen Human Comprehensive Cancer Panel(HCCP), and Qiagen Human Actionable Solid Tumor Panel(HASTP). Results We evaluated and compared the performances of the five kits using 50 ng of genomic DNA for the library construction in terms of the library complexity, coverage uniformity, and errors in the UMIs. While the duplicate rates for all kits were dramatically decreased by identifying unique molecules with UMIs, the Qiagen HASTP achieved the highest library complexity based on the depth of unique coverage indicating superb library construction efficiency. Regarding the coverage uniformity, the kits from Nugen and NEB performed the best followed by the kits from Qiagen. We also analyzed the UMIs, including errors, which allowed us to adjust the depth of unique coverage and the length required for sufficient complexity. Based on these comparisons, we selected the Qiagen HASTP for further performance evaluations. The targeted deep sequencing method based on PCR target enrichment combined with UMI tagging sensitively detected mutations present at a frequency as low as 1% using 6.25 ng of human genomic DNA as the starting material. Conclusion This study is the first systematic evaluation of commercial library construction kits for PCR-based targeted deep sequencing utilizing UMIs. Because the kits displayed significant variability in different quality metrics, our study offers a practical guideline for researchers to choose appropriate options for PCR-based targeted sequencing and useful benchmark data for evaluating new kits. Electronic supplementary material The online version of this article (10.1186/s12864-019-5583-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jongsuk Chung
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, South Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Ki-Wook Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, South Korea.,Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea
| | - Chung Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, South Korea
| | - Seung-Ho Shin
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, South Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea
| | - Sungkyu Kyung
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, 06978, South Korea
| | - Hyo-Jeong Jeon
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, South Korea
| | - Sook-Young Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, South Korea
| | - Eunjung Cho
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, South Korea
| | - Chang Eun Yoo
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, South Korea
| | - Dae-Soon Son
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, South Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, South Korea. .,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea. .,Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea. .,GENINUS Inc., Seoul, 05836, South Korea.
| | - Donghyun Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, South Korea.
| |
Collapse
|
8
|
Enyedi MZ, Jaksa G, Pintér L, Sükösd F, Gyuris Z, Hajdu A, Határvölgyi E, Priskin K, Haracska L. Simultaneous detection of BRCA mutations and large genomic rearrangements in germline DNA and FFPE tumor samples. Oncotarget 2018; 7:61845-61859. [PMID: 27533253 PMCID: PMC5308695 DOI: 10.18632/oncotarget.11259] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/19/2016] [Indexed: 11/25/2022] Open
Abstract
The development of breast and ovarian cancer is strongly connected to the inactivation of the BRCA1 and BRCA2 genes by different germline and somatic alterations, and their diagnosis has great significance in targeted tumor therapy, since recently approved PARP inhibitors show high efficiency in the treatment of BRCA-deficient tumors. This raises the need for new diagnostic methods that are capable of performing an integrative mutation analysis of the BRCA genes not only from germline DNA but also from formalin-fixed and paraffin-embedded (FFPE) tumor samples. Here we describe the development of such a methodology based on next-generation sequencing and a new bioinformatics software for data analysis. The diagnostic method was initially developed on an Illumina MiSeq NGS platform using germline-mutated stem cell lines and then adapted for the Ion Torrent PGM NGS platform as well. We also investigated the usability of NGS coverage data for the detection of copy number variations and exon deletions as a replacement of the conventional MLPA technique. Finally, we tested the developed workflow on FFPE samples from breast and ovarian cancer patients. Our method meets the sensitivity and specificity requirements for the genetic diagnosis of breast and ovarian cancers both from germline and FFPE samples.
Collapse
Affiliation(s)
- Márton Zsolt Enyedi
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged 6726, Hungary
| | | | | | - Farkas Sükösd
- Department of Pathology, Faculty of Medicine, University of Szeged, Szeged 6720, Hungary
| | | | - Adrienn Hajdu
- Delta Bio 2000 Ltd., Szeged 6726, Hungary.,Department of Pathology, Faculty of Medicine, University of Szeged, Szeged 6720, Hungary
| | | | | | - Lajos Haracska
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged 6726, Hungary
| |
Collapse
|
9
|
Stasik S, Schuster C, Ortlepp C, Platzbecker U, Bornhäuser M, Schetelig J, Ehninger G, Folprecht G, Thiede C. An optimized targeted Next-Generation Sequencing approach for sensitive detection of single nucleotide variants. BIOMOLECULAR DETECTION AND QUANTIFICATION 2018; 15:6-12. [PMID: 29349042 PMCID: PMC5766748 DOI: 10.1016/j.bdq.2017.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/27/2017] [Accepted: 12/18/2017] [Indexed: 01/06/2023]
Abstract
NGS based detection of low-level SNVs is feasible with sensitivities up to 10−4. PCR-induced bias could be significantly reduced by the choice of adequate enzymes. The prevalent transition vs. transversion bias affects site-specific detection limits. Results from clinical data validated the feasibility of NGS-based MRD detection. Results help to select suitable biomarkers for MRD quantification.
Monitoring of minimal residual disease (MRD) has become an important clinical aspect for early relapse detection during follow-up care after cancer treatment. Still, the sensitive detection of single base pair point mutations via Next-Generation Sequencing (NGS) is hampered mainly due to high substitution error rates. We evaluated the use of NGS for the detection of low-level variants on an Ion Torrent PGM system. As a model case we used the c.1849G > T (p.Val617Phe) mutation of the JAK2-gene. Several reaction parameters (e.g. choice of DNA-polymerase) were evaluated and a comprehensive analysis of substitution errors was performed. Using optimized conditions, we reliably detected JAK2 c.1849G > T VAFs in the range of 0.01–0.0015% which, in combination with results obtained from clinical data, validated the feasibility of NGS-based MRD detection. Particularly, PCR-induced transitions (mainly G > A and C > T) were the major source of error, which could be significantly reduced by the application of proofreading enzymes. The integration of NGS results for several common point mutations in various oncogenes (i.e. IDH1 and 2, c-KIT, DNMT3A, NRAS, KRAS, BRAF) revealed that the prevalent transition vs. transversion bias (3.57:1) has an impact on site-specific detection limits of low-level mutations. These results may help to select suitable markers for MRD detection and to identify individual cut-offs for detection and quantification.
Collapse
Affiliation(s)
- S. Stasik
- Universitätsklinikum Carl Gustav Carus, Medizinische Klinik und Poliklinik I, Dresden, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Partner Site Dresden, Germany
| | | | | | - U. Platzbecker
- Universitätsklinikum Carl Gustav Carus, Medizinische Klinik und Poliklinik I, Dresden, Germany
| | - M. Bornhäuser
- Universitätsklinikum Carl Gustav Carus, Medizinische Klinik und Poliklinik I, Dresden, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Partner Site Dresden, Germany
| | - J. Schetelig
- Universitätsklinikum Carl Gustav Carus, Medizinische Klinik und Poliklinik I, Dresden, Germany
| | - G. Ehninger
- Universitätsklinikum Carl Gustav Carus, Medizinische Klinik und Poliklinik I, Dresden, Germany
| | - G. Folprecht
- Universitätsklinikum Carl Gustav Carus, Medizinische Klinik und Poliklinik I, Dresden, Germany
| | - C. Thiede
- Universitätsklinikum Carl Gustav Carus, Medizinische Klinik und Poliklinik I, Dresden, Germany
- Corresponding author: Universitätsklinikum Carl Gustav Carus, Medizinische Klinik und Poliklinik I, Fetscherstraße 74, 01307 Dresden, Germany.
| |
Collapse
|
10
|
Kumar G, Chaudhary KK, Misra K, Tripathi A. Next-Generation Sequencing for Drug Designing and Development: An Omics Approach for Cancer Treatment. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.709.723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Lefever S, Pattyn F, De Wilde B, Coppieters F, De Keulenaer S, Hellemans J, Vandesompele J. High-throughput PCR assay design for targeted resequencing using primerXL. BMC Bioinformatics 2017; 18:400. [PMID: 28877663 PMCID: PMC5588703 DOI: 10.1186/s12859-017-1809-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 08/27/2017] [Indexed: 11/15/2022] Open
Abstract
Background Although the sequencing landscape is rapidly evolving and sequencing costs are continuously decreasing, whole genome sequencing is still too expensive for use on a routine basis. Targeted resequencing of only the regions of interest decreases both costs and the complexity of the downstream data-analysis. Various target enrichment strategies are available, but none of them obtain the degree of coverage uniformity, flexibility and specificity of PCR-based enrichment. On the other hand, the biggest limitation of target enrichment by PCR is the need to design large numbers of partially overlapping assays to cover the target. Results To overcome the aforementioned hurdles, we have developed primerXL, a state-of-the-art PCR primer design pipeline for targeted resequencing. It uses an optimized design criteria relaxation cascade and a thorough downstream in silico evaluation process to generate high quality singleplex PCR assays, reducing the need for amplicon normalization, and outperforming other target enrichment strategies and similar primer design tools when considering assay quality, coverage uniformity and target coverage. Results of four different sequencing projects with 2348 amplicons in total covering 470 kb are presented. PrimerXL can be accessed at www.primerxl.org. Conclusion PrimerXL is an state-of-the-art, easy to use primer design webtool capable of generating high-quality targeted resequencing assays. The workflow is fully customizable to suit every researchers’ needs, while an innovative relaxation cascade ensures maximal target coverage. Electronic supplementary material The online version of this article doi:(10.1186/s12859-017-1809-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Steve Lefever
- Center for Medical Genetics, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium. .,pxlence, 9200, Dendermonde, Belgium. .,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium. .,Bioinformatics Institute Ghent (BIG), 9000, Ghent, Belgium.
| | - Filip Pattyn
- Center for Medical Genetics, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.,Present address: Ontoforce, Ottergemsesteenweg-Zuid 808, 9000, Ghent, Belgium
| | - Bram De Wilde
- Center for Medical Genetics, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium.,Bioinformatics Institute Ghent (BIG), 9000, Ghent, Belgium
| | - Frauke Coppieters
- Center for Medical Genetics, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.,pxlence, 9200, Dendermonde, Belgium
| | - Sarah De Keulenaer
- Center for Medical Genetics, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.,Present address: NXTGNT, UGent, FFW Building 3th floor, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Jan Hellemans
- Center for Medical Genetics, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.,Present address: Biogazelle, Technologiepark 3, 9052, Zwijnaarde, Belgium
| | - Jo Vandesompele
- Center for Medical Genetics, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.,pxlence, 9200, Dendermonde, Belgium.,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium.,Bioinformatics Institute Ghent (BIG), 9000, Ghent, Belgium
| |
Collapse
|
12
|
Peng Z, Fan W, Wang L, Paudel D, Leventini D, Tillman BL, Wang J. Target enrichment sequencing in cultivated peanut (Arachis hypogaea L.) using probes designed from transcript sequences. Mol Genet Genomics 2017; 292:955-965. [PMID: 28492983 DOI: 10.1007/s00438-017-1327-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/07/2017] [Indexed: 11/29/2022]
Abstract
Enabled by the next generation sequencing, target enrichment sequencing (TES) is a powerful method to enrich genomic regions of interest and to identify sequence variations. The objective of this study was to explore the feasibility of probe design from transcript sequences for TES application in calling sequence variants in peanut, an important allotetraploid crop with a large genome size. In this study, we applied an in-solution hybridization method to enrich DNA sequences of seven peanut genotypes. Our results showed that it is feasible to apply TES with probes designed from transcript sequences in polyploid peanut. Using a set of 31,123 probes, a total of 5131 and 7521 genes were targeted in peanut A and B genomes, respectively. For each genotype used in this study, the probe target capture regions were efficiently covered with high depth. The average on-target rate of sequencing reads was 42.47%, with a significant amount of off-target reads coming from genomic regions homologous to target regions. In this study, when given predefined genomic regions of interest and the same amount of sequencing data, TES provided the highest coverage of target regions when compared to whole genome sequencing, RNA sequencing, and genotyping by sequencing. Single nucleotide polymorphism (SNP) calling and subsequent validation revealed a high validation rate (85.71%) of homozygous SNPs, providing valuable markers for peanut genotyping. This study demonstrated the success of applying TES for SNP identification in peanut, which shall provide valuable suggestions for TES application in other non-model species without a genome reference available.
Collapse
Affiliation(s)
- Ze Peng
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA
| | - Wen Fan
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA
| | - Liping Wang
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA
| | - Dev Paudel
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA
| | - Dante Leventini
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA
| | - Barry L Tillman
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA.
- Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA.
- Center for Genomics and Biotechnology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
13
|
Ma S, Murphy TW, Lu C. Microfluidics for genome-wide studies involving next generation sequencing. BIOMICROFLUIDICS 2017; 11:021501. [PMID: 28396707 PMCID: PMC5346105 DOI: 10.1063/1.4978426] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/16/2017] [Indexed: 05/11/2023]
Abstract
Next-generation sequencing (NGS) has revolutionized how molecular biology studies are conducted. Its decreasing cost and increasing throughput permit profiling of genomic, transcriptomic, and epigenomic features for a wide range of applications. Microfluidics has been proven to be highly complementary to NGS technology with its unique capabilities for handling small volumes of samples and providing platforms for automation, integration, and multiplexing. In this article, we review recent progress on applying microfluidics to facilitate genome-wide studies. We emphasize on several technical aspects of NGS and how they benefit from coupling with microfluidic technology. We also summarize recent efforts on developing microfluidic technology for genomic, transcriptomic, and epigenomic studies, with emphasis on single cell analysis. We envision rapid growth in these directions, driven by the needs for testing scarce primary cell samples from patients in the context of precision medicine.
Collapse
Affiliation(s)
- Sai Ma
- Department of Biomedical Engineering and Mechanics, Virginia Tech , Blacksburg, Virginia 24061, USA
| | - Travis W Murphy
- Department of Chemical Engineering, Virginia Tech , Blacksburg, Virginia 24061, USA
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech , Blacksburg, Virginia 24061, USA
| |
Collapse
|
14
|
Abstract
Conventional microbiological methods have been readily taken over by newer molecular techniques due to the ease of use, reproducibility, sensitivity and speed of working with nucleic acids. These tools allow high throughput analysis of complex and diverse microbial communities, such as those in soil, freshwater, saltwater, or the microbiota living in collaboration with a host organism (plant, mouse, human, etc). For instance, these methods have been robustly used for characterizing the plant (rhizosphere), animal and human microbiome specifically the complex intestinal microbiota. The human body has been referred to as the Superorganism since microbial genes are more numerous than the number of human genes and are essential to the health of the host. In this review we provide an overview of the Next Generation tools currently available to study microbial ecology, along with their limitations and advantages.
Collapse
Affiliation(s)
- Lisa A Boughner
- Center for Microbial Ecology, Michigan State University, E. Lansing MI 48823
| | - Pallavi Singh
- Department of Microbiology and Molecular Genetics, Michigan State University, E. Lansing MI 48823
| |
Collapse
|
15
|
Guo J, Fan J, Hauser BA, Rhee SY. Target Enrichment Improves Mapping of Complex Traits by Deep Sequencing. G3 (BETHESDA, MD.) 2015; 6:67-77. [PMID: 26530422 PMCID: PMC4704726 DOI: 10.1534/g3.115.023671] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/28/2015] [Indexed: 01/25/2023]
Abstract
Complex traits such as crop performance and human diseases are controlled by multiple genetic loci, many of which have small effects and often go undetected by traditional quantitative trait locus (QTL) mapping. Recently, bulked segregant analysis with large F2 pools and genome-level markers (named extreme-QTL or X-QTL mapping) has been used to identify many QTL. To estimate parameters impacting QTL detection for X-QTL mapping, we simulated the effects of population size, marker density, and sequencing depth of markers on QTL detectability for traits with differing heritabilities. These simulations indicate that a high (>90%) chance of detecting QTL with at least 5% effect requires 5000× sequencing depth for a trait with heritability of 0.4-0.7. For most eukaryotic organisms, whole-genome sequencing at this depth is not economically feasible. Therefore, we tested and confirmed the feasibility of applying deep sequencing of target-enriched markers for X-QTL mapping. We used two traits in Arabidopsis thaliana with different heritabilities: seed size (H(2) = 0.61) and seedling greening in response to salt (H(2) = 0.94). We used a modified G test to identify QTL regions and developed a model-based statistical framework to resolve individual peaks by incorporating recombination rates. Multiple QTL were identified for both traits, including previously undiscovered QTL. We call our method target-enriched X-QTL (TEX-QTL) mapping; this mapping approach is not limited by the genome size or the availability of recombinant inbred populations and should be applicable to many organisms and traits.
Collapse
Affiliation(s)
- Jianjun Guo
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Jue Fan
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Bernard A Hauser
- Department of Biology, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32611
| | - Seung Y Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| |
Collapse
|
16
|
Li CM, Chu WY, Wong DL, Tsang HF, Tsui NBY, Chan CML, Xue VWW, Siu PMF, Yung BYM, Chan LWC, Wong SCC. Current and future molecular diagnostics in non-small-cell lung cancer. Expert Rev Mol Diagn 2015; 15:1061-74. [DOI: 10.1586/14737159.2015.1063420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Druzhkova AS, Vorobieva NV, Trifonov VA, Graphodatsky AS. Ancient DNA: Results and prospects (The 30th anniversary). RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415060046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Sharma R, Agarwal A, Rohra VK, Assidi M, Abu-Elmagd M, Turki RF. Effects of increased paternal age on sperm quality, reproductive outcome and associated epigenetic risks to offspring. Reprod Biol Endocrinol 2015; 13:35. [PMID: 25928123 PMCID: PMC4455614 DOI: 10.1186/s12958-015-0028-x] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/09/2015] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, there has been a significant increase in average paternal age when the first child is conceived, either due to increased life expectancy, widespread use of contraception, late marriages and other factors. While the effect of maternal ageing on fertilization and reproduction is well known and several studies have shown that women over 35 years have a higher risk of infertility, pregnancy complications, spontaneous abortion, congenital anomalies, and perinatal complications. The effect of paternal age on semen quality and reproductive function is controversial for several reasons. First, there is no universal definition for advanced paternal ageing. Secondly, the literature is full of studies with conflicting results, especially for the most common parameters tested. Advancing paternal age also has been associated with increased risk of genetic disease. Our exhaustive literature review has demonstrated negative effects on sperm quality and testicular functions with increasing paternal age. Epigenetics changes, DNA mutations along with chromosomal aneuploidies have been associated with increasing paternal age. In addition to increased risk of male infertility, paternal age has also been demonstrated to impact reproductive and fertility outcomes including a decrease in IVF/ICSI success rate and increasing rate of preterm birth. Increasing paternal age has shown to increase the incidence of different types of disorders like autism, schizophrenia, bipolar disorders, and childhood leukemia in the progeny. It is thereby essential to educate the infertile couples on the disturbing links between increased paternal age and rising disorders in their offspring, to better counsel them during their reproductive years.
Collapse
Affiliation(s)
- Rakesh Sharma
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.
| | - Ashok Agarwal
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.
| | - Vikram K Rohra
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.
| | - Mourad Assidi
- Center of Excellence in Genomic Medicine Research, King AbdulAziz University, Jeddah, Saudi Arabia.
- KACST Technology Innovation Center in Personalized Medicine at King AbdulAziz University, Jeddah, Saudi Arabia.
| | - Muhammad Abu-Elmagd
- Center of Excellence in Genomic Medicine Research, King AbdulAziz University, Jeddah, Saudi Arabia.
- KACST Technology Innovation Center in Personalized Medicine at King AbdulAziz University, Jeddah, Saudi Arabia.
| | - Rola F Turki
- KACST Technology Innovation Center in Personalized Medicine at King AbdulAziz University, Jeddah, Saudi Arabia.
- Obstetrics and Gynecology Department, King Abdulaziz University Hospital, Jeddah, Saudi Arabia.
| |
Collapse
|
19
|
Kollias S, Poortvliet M, Smolina I, Hoarau G. Low cost sequencing of mitogenomes from museum samples using baits capture and Ion Torrent. CONSERV GENET RESOUR 2015. [DOI: 10.1007/s12686-015-0433-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Ilinsky VV, Korneeva VA, Shatalov PA. Application of whole exome sequencing in the diagnosis of hereditary neurological diseases. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:45-52. [DOI: 10.17116/jnevro20151151145-52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Abstract
Ancient mitochondrial DNA has been used in a wide variety of paleontological and archeological studies, ranging from population dynamics of extinct species to patterns of domestication. Most of these studies have traditionally been based on the analysis of short fragments from the mitochondrial control region, analyzed using PCR coupled with Sanger sequencing. With the introduction of high-throughput sequencing, as well as new enrichment technologies, the recovery of full mitochondrial genomes (mitogenomes) from ancient specimens has become significantly less complicated. Here we present a protocol to build ancient extracts into Illumina high-throughput sequencing libraries, and subsequent Agilent array-based capture to enrich for the desired mitogenome. Both are based on previously published protocols, with the introduction of several improvements aimed to increase the recovery of short DNA fragments, while keeping the cost and effort requirements low. This protocol was designed for enrichment of mitochondrial DNA in ancient or other degraded samples. However, the protocols can be easily adapted for using for building libraries for shotgun-sequencing of whole genomes, or enrichment of other genomic regions.
Collapse
Affiliation(s)
| | - Johanna L A Paijmans
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
22
|
Wunderlin T, Junier T, Roussel-Delif L, Jeanneret N, Junier P. Endospore-enriched sequencing approach reveals unprecedented diversity of Firmicutes in sediments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:631-639. [PMID: 25756117 DOI: 10.1111/1758-2229.12179] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present a method for the physical isolation of endospores from environmental samples allowing the specific targeting of endospore-forming bacteria for sequencing (endospore-enriched community). The efficiency of the method was tested on lake sediment samples. After 16S rRNA gene amplicon sequencing, the composition in the endospore-enriched community was compared with the community from untreated control samples (whole community). In the whole community, Firmicutes had a relative abundance of 8% and 19% in the two different lake sediments. In contrast, in the endospore-enriched community, Firmicutes abundance increased to 90.6% and 83.9%, respectively, confirming the efficiency of the endospore enrichment. The relative abundance of other microbial groups that form spore-like resisting states (i.e. actinobacteria, cyanobacteria and myxococcales) was below 2% in the endospore-enriched community, indicating that the method is adapted to true endospores. Representatives from two out of the three known classes of Firmicutes (Bacilli and Clostridia) were detected and supposedly asporogenic groups (e.g. Ethanoligenes and Trichococcus) could be detected. The method presented here is a leap forward for ecological studies of endospore-forming Firmicutes. It can be applied to other types of samples in order to reveal the diversity and metabolic potential of this bacterial group in the environment.
Collapse
|
23
|
Roh MS. Molecular pathology of lung cancer: current status and future directions. Tuberc Respir Dis (Seoul) 2014; 77:49-54. [PMID: 25237374 PMCID: PMC4165659 DOI: 10.4046/trd.2014.77.2.49] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 06/27/2014] [Accepted: 07/04/2014] [Indexed: 01/15/2023] Open
Abstract
The rapid development of targeted therapies has enormously changed the clinical management of lung cancer patients over the past decade; therefore, molecular testing, such as epidermal growth factor receptor (EGFR) gene mutations or anaplastic lymphoma kinase (ALK) gene rearrangements, is now routinely used to predict the therapeutic responses in lung cancer patients. Moreover, as technology and knowledge supporting molecular testing is rapidly evolving, the landscape of targetable genomic alterations in lung cancer is expanding as well. This article will summarize the current state of the most commonly altered and most clinically relevant genes in lung cancer along with a brief review of potential future developments in molecular testing of lung cancer.
Collapse
Affiliation(s)
- Mee Sook Roh
- Department of Pathology, Dong-A University College of Medicine, Busan, Korea
| |
Collapse
|
24
|
Target capture and massive sequencing of genes transcribed in Mytilus galloprovincialis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:538549. [PMID: 25101286 PMCID: PMC4101229 DOI: 10.1155/2014/538549] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/29/2014] [Accepted: 06/07/2014] [Indexed: 02/04/2023]
Abstract
Next generation sequencing (NGS) allows fast and massive production of both genome and transcriptome sequence datasets. As the genome of the Mediterranean mussel Mytilus galloprovincialis is not available at present, we have explored the possibility of reducing the whole genome sequencing efforts by using capture probes coupled with PCR amplification and high-throughput 454-sequencing to enrich selected genomic regions. The enrichment of DNA target sequences was validated by real-time PCR, whereas the efficacy of the applied strategy was evaluated by mapping the 454-output reads against reference transcript data already available for M. galloprovincialis and by measuring coverage, SNPs, number of de novo sequenced introns, and complete gene sequences. Focusing on a target size of nearly 1.5 Mbp, we obtained a target coverage which allowed the identification of more than 250 complete introns, 10,741 SNPs, and also complete gene sequences. This study confirms the transcriptome-based enrichment of gDNA regions as a good strategy to expand knowledge on specific subsets of genes also in nonmodel organisms.
Collapse
|
25
|
Kubik G, Schmidt MJ, Penner JE, Summerer D. Programmierbare und hochaufgelöste In-vitro-Detektion von genomischem 5-Methylcytosin durch TALEs. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Kubik G, Schmidt MJ, Penner JE, Summerer D. Programmable and highly resolved in vitro detection of 5-methylcytosine by TALEs. Angew Chem Int Ed Engl 2014; 53:6002-6. [PMID: 24801054 DOI: 10.1002/anie.201400436] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/25/2014] [Indexed: 01/20/2023]
Abstract
Gene expression is extensively regulated by specific patterns of genomic 5-methylcytosine (mC), but the ability to directly detect this modification at user-defined genomic loci is limited. One reason is the lack of molecules that discriminate between mC and cytosine (C) and at the same time provide inherent, programmable sequence-selectivity. Programmable transcription-activator-like effectors (TALEs) have been observed to exhibit mC-sensitivity in vivo, but to only a limited extent in vitro. We report an mC-detection assay based on TALE control of DNA replication that displays unexpectedly strong mC-discrimination ability in vitro. The status and level of mC modification at single positions in oligonucleotides can be determined unambiguously by this assay, independently of the overall target sequence. Moreover, discrimination is reliably observed for positions bound by N-terminal and central regions of TALEs. This indicates the wide scope and robustness of the approach for highly resolved mC detection and enabled the detection of a single mC in a large, eukaryotic genome.
Collapse
Affiliation(s)
- Grzegorz Kubik
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz (Germany)
| | | | | | | |
Collapse
|
27
|
Abstract
The rapid development of targeted therapies has tremendously changed clinical management of lung carcinoma patients and set the stage for similar developments in other tumor types. Many studies have been published in the past decade in search for the most acceptable method of assessment for predictors of response to targeted therapies in lung cancer. As a result, several guidelines for molecular testing have been published in a past couple of years. Because of accumulated evidence that targetable drugs show the best efficacy and improved progression survival rates in lung cancer patients whose tumors have a specific genotype, molecular testing for predictors of therapy response has became standard of care. Presently, testing for EGFR mutations and ALK rearrangements in lung adenocarcinoma has been standardized. The landscape of targetable genomic alterations in lung carcinoma is expanding, but none of other potentially targetable biomarkers have been standardized outside of clinical trials. This review will summarize current practice of molecular testing. Future methods in molecular testing of lung carcinoma will be briefly reviewed.
Collapse
|
28
|
Abstract
Early in embryogenesis, cells that are destined to become germ cells take on a different destiny from other cells in the embryo. The germ cells are not programmed to perform "vital" functions but to perpetuate the species through the transfer of genetic materials to the next generation. To fulfill their destiny, male germ cells undergo meiosis and extensive morphogenesis that transforms the round-shaped cells into freely motile sperm propelled by a beating flagellum to seek out their missing half. Apparently, extra genes and additional regulatory mechanisms are required to achieve all these unique features, and an estimated 11 % of genes are involved in fertility in Drosophila (Hackstein et al., Trends Genet 16(12):565-572, 2000). If comparative numbers of male fertility genes are needed in mammals, extra risks of male fertility problems are associated with disruptive mutations in those genes. Among human male infertility cases, approximately 22 % were classified as "idiopathic," a term used to describe diseases of unknown causes, with idiopathic oligozoospermia being the most common semen abnormality (11.2 %) (Comhaire et al., Int J Androl (Suppl 7):1-53, 1987). "Idiopathic" is a widely used adjective that is used to reflect our lack of understanding of the genetics of male fertility. Fortunately, after more than two decades of phenotypic studies using knockout mice and identifying genes disrupted in spontaneous mutant mice, we have unveiled new and unexpected aspects of crucial gene functions for fertility. Other efforts to categorize genes involved in male fertility in mammals have suggested a total of 1,188 genes (Hermo et al., Microsc Res Tech 73(4):241-494, 2010). Although intracytoplasmic sperm injection (ICSI) can be used to bypass many fertilization obstacles to achieve fertilization with only a few extracted sperm, the widespread use of ICSI without proper knowledge for genetic testing and counseling could still potentially propagate pleiotropic gene mutations associated with male infertility and other genetic diseases (Alukal and Lamb, Urol Clin North Am 35(2):277-288, 2008). In this chapter, we give a brief account of major events during the development of male germ cells and focus on the functions of several crucial genes that have been studied in mutant mouse models and are potential causes of human male infertility.
Collapse
Affiliation(s)
- Yi-Nan Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | |
Collapse
|
29
|
Paijmans JL, Gilbert MTP, Hofreiter M. Mitogenomic analyses from ancient DNA. Mol Phylogenet Evol 2013; 69:404-16. [DOI: 10.1016/j.ympev.2012.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 05/27/2012] [Accepted: 06/04/2012] [Indexed: 10/28/2022]
|
30
|
Gao Q, Sun W, You X, Froehler S, Chen W. A systematic evaluation of hybridization-based mouse exome capture system. BMC Genomics 2013; 14:492. [PMID: 23870319 PMCID: PMC3722074 DOI: 10.1186/1471-2164-14-492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 07/19/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Exome sequencing is increasingly used to search for phenotypically-relevant sequence variants in the mouse genome. All of the current hybridization-based mouse exome capture systems are designed based on the genome reference sequences of the C57BL/6 J strain. Given that the substantial sequence divergence exists between C57BL/6 J and other distantly-related strains, the impact of sequence divergence on the efficiency of such capture systems needs to be systematically evaluated before they can be widely applied to the study of those strains. RESULTS Using the Agilent SureSelect mouse exome capture system, we performed exome sequencing on F1 generation hybrid mice that were derived by crossing two divergent strains, C57BL/6 J and SPRET/EiJ. Our results showed that the C57BL/6 J-based probes captured the sequences derived from C57BL/6 J alleles more efficiently and that the bias was higher for the target regions with greater sequence divergence. At low sequencing depths, the bias also affected the efficiency of variant detection. However, the effects became negligible when sufficient sequencing depth was achieved. CONCLUSION Sufficient sequence depth needs to be planned to match the sequence divergence between C57BL/6 J and the strain to be studied, when the C57BL/6 J-based Agilent SureSelect exome capture system is to be used.
Collapse
|
31
|
Vieregg J, Nelson HM, Stoltz BM, Pierce NA. Selective nucleic acid capture with shielded covalent probes. J Am Chem Soc 2013; 135:9691-9. [PMID: 23745667 PMCID: PMC3703666 DOI: 10.1021/ja4009216] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Indexed: 11/29/2022]
Abstract
Nucleic acid probes are used for diverse applications in vitro, in situ, and in vivo. In any setting, their power is limited by imperfect selectivity (binding of undesired targets) and incomplete affinity (binding is reversible, and not all desired targets bound). These difficulties are fundamental, stemming from reliance on base pairing to provide both selectivity and affinity. Shielded covalent (SC) probes eliminate the longstanding trade-off between selectivity and durable target capture, achieving selectivity via programmable base pairing and molecular conformation change, and durable target capture via activatable covalent cross-linking. In pure and mixed samples, SC probes covalently capture complementary DNA or RNA oligo targets and reject two-nucleotide mismatched targets with near-quantitative yields at room temperature, achieving discrimination ratios of 2-3 orders of magnitude. Semiquantitative studies with full-length mRNA targets demonstrate selective covalent capture comparable to that for RNA oligo targets. Single-nucleotide DNA or RNA mismatches, including nearly isoenergetic RNA wobble pairs, can be efficiently rejected with discrimination ratios of 1-2 orders of magnitude. Covalent capture yields appear consistent with the thermodynamics of probe/target hybridization, facilitating rational probe design. If desired, cross-links can be reversed to release the target after capture. In contrast to existing probe chemistries, SC probes achieve the high sequence selectivity of a structured probe, yet durably retain their targets even under denaturing conditions. This previously incompatible combination of properties suggests diverse applications based on selective and stable binding of nucleic acid targets under conditions where base-pairing is disrupted (e.g., by stringent washes in vitro or in situ, or by enzymes in vivo).
Collapse
Affiliation(s)
- Jeffrey
R. Vieregg
- Department
of Bioengineering, Department of Chemistry, Department of Computing and Mathematical Sciences, California Institute of Technology,
Pasadena, California 91125, United States
| | - Hosea M. Nelson
- Department
of Bioengineering, Department of Chemistry, Department of Computing and Mathematical Sciences, California Institute of Technology,
Pasadena, California 91125, United States
| | - Brian M. Stoltz
- Department
of Bioengineering, Department of Chemistry, Department of Computing and Mathematical Sciences, California Institute of Technology,
Pasadena, California 91125, United States
| | - Niles A. Pierce
- Department
of Bioengineering, Department of Chemistry, Department of Computing and Mathematical Sciences, California Institute of Technology,
Pasadena, California 91125, United States
| |
Collapse
|
32
|
Yan D, Tekin M, Blanton SH, Liu XZ. Next-generation sequencing in genetic hearing loss. Genet Test Mol Biomarkers 2013; 17:581-7. [PMID: 23738631 DOI: 10.1089/gtmb.2012.0464] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The advent of the $1000 genome has the potential to revolutionize the identification of genes and their mutations underlying genetic disorders. This is especially true for extremely heterogeneous Mendelian conditions such as deafness, where the mutation, and indeed the gene, may be private. The recent technological advances in target-enrichment methods and next generation sequencing offer a unique opportunity to break through the barriers of limitations imposed by gene arrays. These approaches now allow for the complete analysis of all known deafness-causing genes and will result in a new wave of discoveries of the remaining genes for Mendelian disorders. In this review, we describe commonly used genomic technologies as well as the application of these technologies to the genetic diagnosis of hearing loss (HL) and to the discovery of novel genes for syndromic and nonsyndromic HL.
Collapse
Affiliation(s)
- Denise Yan
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | | | | | | |
Collapse
|
33
|
Fokstuen S, Makrythanasis P, Nikolaev S, Santoni F, Robyr D, Munoz A, Bevillard J, Farinelli L, Iseli C, Antonarakis SE, Blouin JL. Multiplex targeted high-throughput sequencing for Mendelian cardiac disorders. Clin Genet 2013; 85:365-70. [PMID: 23590259 DOI: 10.1111/cge.12168] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 04/11/2013] [Accepted: 04/11/2013] [Indexed: 01/01/2023]
Abstract
Mendelian cardiomyopathies and arrhythmias are characterized by an important genetic heterogeneity, rendering Sanger sequencing very laborious and expensive. As a proof of concept, we explored multiplex targeted high-throughput sequencing (HTS) as a fast and cost-efficient diagnostic method for individuals suffering from Mendelian cardiac disorders. We designed a DNA capture assay including all exons from 130 genes involved in cardiovascular Mendelian disorders and analysed simultaneously four samples by multiplexing. Two patients had familial hypertrophic cardiomyopathy (HCM) and two patients suffered from long QT syndrome (LQTS). In patient 1 with HCM, we identified two known pathogenic missense variants in the two most frequently mutated sarcomeric genes MYH7 and MYBPC. In patient 2 with HCM, a known acceptor splice site variant in MYBPC3 was found. In patient 3 with LQTS, two missense variants in the genes SCN5A and KCNQ were identified. Finally, in patient 4 with LQTS a known missense variant was found in MYBPC3, which is usually mutated in patients with cardiomyopathy. Our results showed that multiplex targeted HTS works as an efficient and cost-effective tool for molecular diagnosis of heterogeneous disorders in clinical practice and offers new insights in the pathogenesis of these complex diseases.
Collapse
Affiliation(s)
- S Fokstuen
- Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Denonfoux J, Parisot N, Dugat-Bony E, Biderre-Petit C, Boucher D, Morgavi DP, Le Paslier D, Peyretaillade E, Peyret P. Gene capture coupled to high-throughput sequencing as a strategy for targeted metagenome exploration. DNA Res 2013; 20:185-96. [PMID: 23364577 PMCID: PMC3628448 DOI: 10.1093/dnares/dst001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Next-generation sequencing (NGS) allows faster acquisition of metagenomic data, but complete exploration of complex ecosystems is hindered by the extraordinary diversity of microorganisms. To reduce the environmental complexity, we created an innovative solution hybrid selection (SHS) method that is combined with NGS to characterize large DNA fragments harbouring biomarkers of interest. The quality of enrichment was evaluated after fragments containing the methyl coenzyme M reductase subunit A gene (mcrA), the biomarker of methanogenesis, were captured from a Methanosarcina strain and a metagenomic sample from a meromictic lake. The methanogen diversity was compared with direct metagenome and mcrA-based amplicon pyrosequencing strategies. The SHS approach resulted in the capture of DNA fragments up to 2.5 kb with an enrichment efficiency between 41 and 100%, depending on the sample complexity. Compared with direct metagenome and amplicons sequencing, SHS detected broader mcrA diversity, and it allowed efficient sampling of the rare biosphere and unknown sequences. In contrast to amplicon-based strategies, SHS is less biased and GC independent, and it recovered complete biomarker sequences in addition to conserved regions. Because this method can also isolate the regions flanking the target sequences, it could facilitate operon reconstructions.
Collapse
Affiliation(s)
- Jérémie Denonfoux
- Centre de Recherche en Nutrition Humaine Auvergne, Clermont Université, Université d'Auvergne, EA 4678, Conception, Ingénierie et Développement de l'Aliment et du Médicament, BP 10448, Clermont-Ferrand 63000, France
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhou L, Holliday JA. Targeted enrichment of the black cottonwood (Populus trichocarpa) gene space using sequence capture. BMC Genomics 2012; 13:703. [PMID: 23241106 PMCID: PMC3542275 DOI: 10.1186/1471-2164-13-703] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 12/05/2012] [Indexed: 01/04/2023] Open
Abstract
Background High-throughput re-sequencing is rapidly becoming the method of choice for studies of neutral and adaptive processes in natural populations across taxa. As re-sequencing the genome of large numbers of samples is still cost-prohibitive in many cases, methods for genome complexity reduction have been developed in attempts to capture most ecologically-relevant genetic variation. One of these approaches is sequence capture, in which oligonucleotide baits specific to genomic regions of interest are synthesized and used to retrieve and sequence those regions. Results We used sequence capture to re-sequence most predicted exons, their upstream regulatory regions, as well as numerous random genomic intervals in a panel of 48 genotypes of the angiosperm tree Populus trichocarpa (black cottonwood, or ‘poplar’). A total of 20.76Mb (5%) of the poplar genome was targeted, corresponding to 173,040 baits. With 12 indexed samples run in each of four lanes on an Illumina HiSeq instrument (2x100 paired-end), 86.8% of the bait regions were on average sequenced at a depth ≥10X. Few off-target regions (>250bp away from any bait) were present in the data, but on average ~80bp on either side of the baits were captured and sequenced to an acceptable depth (≥10X) to call heterozygous SNPs. Nucleotide diversity estimates within and adjacent to protein-coding genes were similar to those previously reported in Populus spp., while intergenic regions had higher values consistent with a relaxation of selection. Conclusions Our results illustrate the efficiency and utility of sequence capture for re-sequencing highly heterozygous tree genomes, and suggest design considerations to optimize the use of baits in future studies.
Collapse
Affiliation(s)
- Lecong Zhou
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, 304 Cheatham Hall, Blacksburg, VA 24061, USA
| | | |
Collapse
|
36
|
Dettai A, Gallut C, Brouillet S, Pothier J, Lecointre G, Debruyne R. Conveniently pre-tagged and pre-packaged: extended molecular identification and metagenomics using complete metazoan mitochondrial genomes. PLoS One 2012; 7:e51263. [PMID: 23251474 PMCID: PMC3522660 DOI: 10.1371/journal.pone.0051263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/31/2012] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Researchers sorely need markers and approaches for biodiversity exploration (both specimen linked and metagenomics) using the full potential of next generation sequencing technologies (NGST). Currently, most studies rely on expensive multiple tagging, PCR primer universality and/or the use of few markers, sometimes with insufficient variability. METHODOLOGY/PRINCIPAL FINDINGS We propose a novel approach for the isolation and sequencing of a universal, useful and popular marker across distant, non-model metazoans: the complete mitochondrial genome. It relies on the properties of metazoan mitogenomes for enrichment, on careful choice of the organisms to multiplex, as well as on the wide collection of accumulated mitochondrial reference datasets for post-sequencing sorting and identification instead of individual tagging. Multiple divergent organisms can be sequenced simultaneously, and their complete mitogenome obtained at a very low cost. We provide in silico testing of dataset assembly for a selected set of example datasets. CONCLUSIONS/SIGNIFICANCE This approach generates large mitogenome datasets. These sequences are useful for phylogenetics, molecular identification and molecular ecology studies, and are compatible with all existing projects or available datasets based on mitochondrial sequences, such as the Barcode of Life project. Our method can yield sequences both from identified samples and metagenomic samples. The use of the same datasets for both kinds of studies makes for a powerful approach, especially since the datasets have a high variability even at species level, and would be a useful complement to the less variable 18S rDNA currently prevailing in metagenomic studies.
Collapse
Affiliation(s)
- Agnes Dettai
- Muséum national d'Histoire naturelle, Département Systématique et Évolution, UMR 7138 Systématique, Adaptation, Évolution UPMC-CNRS-MNHN-IRD-ENS, Paris, France.
| | | | | | | | | | | |
Collapse
|
37
|
Servoli E, Feitsma H, Kaptheijns B, van der Zaag PJ, Wimberger-Friedl R. Improving DNA capture on microarrays by integrated repeated denaturing. LAB ON A CHIP 2012; 12:4992-4999. [PMID: 23044700 DOI: 10.1039/c2lc40691h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Hybridization of nucleic acids to microarrays is a crucial step for several biological and biomedical applications. However, the poor efficiency and resulting long incubation times are major drawbacks. In addition to diffusion limitation, back hybridization to complementary strands in solution is shown to be an important cause of the low efficiency. In this paper, repeated denaturing in an integrated device has been investigated in order to increase the efficiency of microarray hybridization. The sample solution is circulated from the microarray chamber over a denaturing zone and back in a closed loop. In addition to the improved binding rate due to flow, repeated denaturing significantly increases the total amount of molecules bound. Our results demonstrate that cyclic repeated denaturing improves the efficiency of hybridization by up to an order of magnitude over a broad range of concentrations studied (1 pM to 100 nM).
Collapse
Affiliation(s)
- E Servoli
- Philips Research Laboratories, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Creation and application of immortalized bait libraries for targeted enrichment and next-generation sequencing. Biotechniques 2012; 52:375-80. [PMID: 22668416 DOI: 10.2144/0000113877] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/18/2012] [Indexed: 11/23/2022] Open
Abstract
Since the introduction of next-generation sequencing, several techniques have been developed to selectively enrich and sequence specific parts of the genome at high coverage. These techniques include enzymatic methods employing molecular inversion probes, PCR based approaches, hybrid capture, and in-solution capture. In-solution capture employs RNA probes transcribed from a pool of DNA template oligos designed to match regions of interest to specifically bind and enrich genomic DNA fragments. This method is highly efficient, especially if genomic target regions are large in size or quantity. Diverse in-solution capture kits are available, but are costly when large sample numbers need to be analyzed. Here we present a cost-effective strategy for the design of custom DNA libraries, their transcription into RNA libraries, and application for in-solution capture. We show the efficacy by comparing the method to a commercial kit and further demonstrate that emulsion PCR can be used for bias free amplification and virtual immortalization of DNA template libraries.
Collapse
|
39
|
Licastro D, Mutarelli M, Peluso I, Neveling K, Wieskamp N, Rispoli R, Vozzi D, Athanasakis E, D'Eustacchio A, Pizzo M, D'Amico F, Ziviello C, Simonelli F, Fabretto A, Scheffer H, Gasparini P, Banfi S, Nigro V. Molecular diagnosis of Usher syndrome: application of two different next generation sequencing-based procedures. PLoS One 2012; 7:e43799. [PMID: 22952768 PMCID: PMC3430670 DOI: 10.1371/journal.pone.0043799] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 07/26/2012] [Indexed: 11/20/2022] Open
Abstract
Usher syndrome (USH) is a clinically and genetically heterogeneous disorder characterized by visual and hearing impairments. Clinically, it is subdivided into three subclasses with nine genes identified so far. In the present study, we investigated whether the currently available Next Generation Sequencing (NGS) technologies are already suitable for molecular diagnostics of USH. We analyzed a total of 12 patients, most of which were negative for previously described mutations in known USH genes upon primer extension-based microarray genotyping. We enriched the NGS template either by whole exome capture or by Long-PCR of the known USH genes. The main NGS sequencing platforms were used: SOLiD for whole exome sequencing, Illumina (Genome Analyzer II) and Roche 454 (GS FLX) for the Long-PCR sequencing. Long-PCR targeting was more efficient with up to 94% of USH gene regions displaying an overall coverage higher than 25×, whereas whole exome sequencing yielded a similar coverage for only 50% of those regions. Overall this integrated analysis led to the identification of 11 novel sequence variations in USH genes (2 homozygous and 9 heterozygous) out of 18 detected. However, at least two cases were not genetically solved. Our result highlights the current limitations in the diagnostic use of NGS for USH patients. The limit for whole exome sequencing is linked to the need of a strong coverage and to the correct interpretation of sequence variations with a non obvious, pathogenic role, whereas the targeted approach suffers from the high genetic heterogeneity of USH that may be also caused by the presence of additional causative genes yet to be identified.
Collapse
Affiliation(s)
- Danilo Licastro
- Cluster in Biomedicine (CBM) scrl - Genomics, Area Science Park, Basovizza, Trieste, Italy
| | | | - Ivana Peluso
- Telethon Institute of Genetics and Medicine (TIGEM), Napoli, Italy
| | - Kornelia Neveling
- Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Nienke Wieskamp
- Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Rossella Rispoli
- Telethon Institute of Genetics and Medicine (TIGEM), Napoli, Italy
| | - Diego Vozzi
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”,Trieste, Italy
| | | | - Angela D'Eustacchio
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”,Trieste, Italy
| | | | - Francesca D'Amico
- Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Napoli, Italy
| | - Carmela Ziviello
- Telethon Institute of Genetics and Medicine (TIGEM), Napoli, Italy
| | - Francesca Simonelli
- Dipartimento di Oftalmologia, Seconda Università degli Studi di Napoli, Napoli, Italy
| | - Antonella Fabretto
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”,Trieste, Italy
| | - Hans Scheffer
- Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Paolo Gasparini
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”,Trieste, Italy
- * E-mail: (PG); (SB); (VN)
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine (TIGEM), Napoli, Italy
- Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Napoli, Italy
- * E-mail: (PG); (SB); (VN)
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine (TIGEM), Napoli, Italy
- Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Napoli, Italy
- * E-mail: (PG); (SB); (VN)
| |
Collapse
|
40
|
Grover CE, Salmon A, Wendel JF. Targeted sequence capture as a powerful tool for evolutionary analysis. AMERICAN JOURNAL OF BOTANY 2012; 99:312-9. [PMID: 22268225 DOI: 10.3732/ajb.1100323] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Next-generation sequencing technologies (NGS) have revolutionized biological research by significantly increasing data generation while simultaneously decreasing the time to data output. For many ecologists and evolutionary biologists, the research opportunities afforded by NGS are substantial; even for taxa lacking genomic resources, large-scale genome-level questions can now be addressed, opening up many new avenues of research. While rapid and massive sequencing afforded by NGS increases the scope and scale of many research objectives, whole genome sequencing is often unwarranted and unnecessarily complex for specific research questions. Recently developed targeted sequence enrichment, coupled with NGS, represents a beneficial strategy for enhancing data generation to answer questions in ecology and evolutionary biology. This marriage of technologies offers researchers a simple method to isolate and analyze a few to hundreds, or even thousands, of genes or genomic regions from few to many samples in a relatively efficient and effective manner. These strategies can be applied to questions at both the infra- and interspecific levels, including those involving parentage, gene flow, divergence, phylogenetics, reticulate evolution, and many more. Here we provide a brief overview of targeted sequence enrichment, and emphasize the power of this technology to increase our ability to address a wide range of questions of interest to ecologists and evolutionary biologists, particularly for those working with taxa for which few genomic resources are available.
Collapse
Affiliation(s)
- Corrinne E Grover
- Department of Ecology, Evolution, & Organismal Biology, Iowa State University, Ames, Iowa 50011, USA.
| | | | | |
Collapse
|
41
|
Mullen MP, Creevey CJ, Berry DP, McCabe MS, Magee DA, Howard DJ, Killeen AP, Park SD, McGettigan PA, Lucy MC, Machugh DE, Waters SM. Polymorphism discovery and allele frequency estimation using high-throughput DNA sequencing of target-enriched pooled DNA samples. BMC Genomics 2012; 13:16. [PMID: 22235840 PMCID: PMC3315736 DOI: 10.1186/1471-2164-13-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 01/11/2012] [Indexed: 11/10/2022] Open
Abstract
Background The central role of the somatotrophic axis in animal post-natal growth, development and fertility is well established. Therefore, the identification of genetic variants affecting quantitative traits within this axis is an attractive goal. However, large sample numbers are a pre-requisite for the identification of genetic variants underlying complex traits and although technologies are improving rapidly, high-throughput sequencing of large numbers of complete individual genomes remains prohibitively expensive. Therefore using a pooled DNA approach coupled with target enrichment and high-throughput sequencing, the aim of this study was to identify polymorphisms and estimate allele frequency differences across 83 candidate genes of the somatotrophic axis, in 150 Holstein-Friesian dairy bulls divided into two groups divergent for genetic merit for fertility. Results In total, 4,135 SNPs and 893 indels were identified during the resequencing of the 83 candidate genes. Nineteen percent (n = 952) of variants were located within 5' and 3' UTRs. Seventy-two percent (n = 3,612) were intronic and 9% (n = 464) were exonic, including 65 indels and 236 SNPs resulting in non-synonymous substitutions (NSS). Significant (P < 0.01) mean allele frequency differentials between the low and high fertility groups were observed for 720 SNPs (58 NSS). Allele frequencies for 43 of the SNPs were also determined by genotyping the 150 individual animals (Sequenom® MassARRAY). No significant differences (P > 0.1) were observed between the two methods for any of the 43 SNPs across both pools (i.e., 86 tests in total). Conclusions The results of the current study support previous findings of the use of DNA sample pooling and high-throughput sequencing as a viable strategy for polymorphism discovery and allele frequency estimation. Using this approach we have characterised the genetic variation within genes of the somatotrophic axis and related pathways, central to mammalian post-natal growth and development and subsequent lactogenesis and fertility. We have identified a large number of variants segregating at significantly different frequencies between cattle groups divergent for calving interval plausibly harbouring causative variants contributing to heritable variation. To our knowledge, this is the first report describing sequencing of targeted genomic regions in any livestock species using groups with divergent phenotypes for an economically important trait.
Collapse
Affiliation(s)
- Michael P Mullen
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Athenry, Galway, Ireland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Good JM. Reduced representation methods for subgenomic enrichment and next-generation sequencing. Methods Mol Biol 2012; 772:85-103. [PMID: 22065433 DOI: 10.1007/978-1-61779-228-1_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Several methods have been developed to enrich DNA for subsets of the genome prior to next-generation sequencing. These front-end enrichment strategies provide powerful and cost-effective tools for researchers interested in collecting large-scale genomic sequence data. In this review, I provide an overview of both general and targeted reduced representation enrichment strategies that are commonly used in tandem with next-generation sequencing. I focus on several key issues that are likely to be important when deciding which enrichment strategy is most appropriate for a given experiment. Overall, these techniques can enable the collection of large-scale genomic data in diverse species, providing a powerful tool for the study of evolutionary biology.
Collapse
Affiliation(s)
- Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT, USA.
| |
Collapse
|
43
|
Mertes F, Elsharawy A, Sauer S, van Helvoort JMLM, van der Zaag PJ, Franke A, Nilsson M, Lehrach H, Brookes AJ. Targeted enrichment of genomic DNA regions for next-generation sequencing. Brief Funct Genomics 2011; 10:374-86. [PMID: 22121152 PMCID: PMC3245553 DOI: 10.1093/bfgp/elr033] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In this review, we discuss the latest targeted enrichment methods and aspects of their utilization along with second-generation sequencing for complex genome analysis. In doing so, we provide an overview of issues involved in detecting genetic variation, for which targeted enrichment has become a powerful tool. We explain how targeted enrichment for next-generation sequencing has made great progress in terms of methodology, ease of use and applicability, but emphasize the remaining challenges such as the lack of even coverage across targeted regions. Costs are also considered versus the alternative of whole-genome sequencing which is becoming ever more affordable. We conclude that targeted enrichment is likely to be the most economical option for many years to come in a range of settings.
Collapse
Affiliation(s)
- Florian Mertes
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Moorthie S, Mattocks CJ, Wright CF. Review of massively parallel DNA sequencing technologies. THE HUGO JOURNAL 2011. [PMID: 23205160 DOI: 10.1007/s11568-011-9156-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since the development of technologies that can determine the base-pair sequence of DNA, the ability to sequence genes has contributed much to science and medicine. However, it has remained a relatively costly and laborious process, hindering its use as a routine biomedical tool. Recent times are seeing rapid developments in this field, both in the availability of novel sequencing platforms, as well as supporting technologies involved in processes such as targeting and data analysis. This is leading to significant reductions in the cost of sequencing a human genome and the potential for its use as a routine biomedical tool. This review is a snapshot of this rapidly moving field examining the current state of the art, forthcoming developments and some of the issues still to be resolved prior to the use of new sequencing technologies in routine clinical diagnosis.
Collapse
|
45
|
Mason VC, Li G, Helgen KM, Murphy WJ. Efficient cross-species capture hybridization and next-generation sequencing of mitochondrial genomes from noninvasively sampled museum specimens. Genome Res 2011; 21:1695-704. [PMID: 21880778 PMCID: PMC3202286 DOI: 10.1101/gr.120196.111] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 07/28/2011] [Indexed: 12/20/2022]
Abstract
The ability to uncover the phylogenetic history of recently extinct species and other species known only from archived museum material has rapidly improved due to the reduced cost and increased sequence capacity of next-generation sequencing technologies. One limitation of these approaches is the difficulty of isolating and sequencing large, orthologous DNA regions across multiple divergent species, which is exacerbated for museum specimens, where DNA quality varies greatly between samples and contamination levels are often high. Here we describe the use of cross-species DNA capture hybridization techniques and next-generation sequencing to selectively isolate and sequence partial to full-length mitochondrial DNA genomes from the degraded DNA of museum specimens, using probes generated from the DNA of a single extant species. We demonstrate our approach on specimens from an enigmatic gliding mammal, the Sunda colugo, which is widely distributed throughout Southeast Asia. We isolated DNA from 13 colugo specimens collected 47-170 years ago, and successfully captured and sequenced mitochondrial DNA from every specimen, frequently recovering fragments with 10%-13% sequence divergence from the capture probe sequence. Phylogenetic results reveal deep genetic divergence among colugos, both within and between the islands of Borneo and Java, as well as between the Malay Peninsula and different Sundaic islands. Our method is based on noninvasive sampling of minute amounts of soft tissue material from museum specimens, leaving the original specimen essentially undamaged. This approach represents a paradigm shift away from standard PCR-based approaches for accessing population genetic and phylogenomic information from poorly known and difficult-to-study species.
Collapse
Affiliation(s)
- Victor C. Mason
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas 77843-4458, USA
| | - Gang Li
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA
| | - Kristofer M. Helgen
- Smithsonian Institution, National Museum of Natural History, Washington, D.C. 20560, USA
| | - William J. Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas 77843-4458, USA
| |
Collapse
|
46
|
Paux E, Sourdille P, Mackay I, Feuillet C. Sequence-based marker development in wheat: advances and applications to breeding. Biotechnol Adv 2011; 30:1071-88. [PMID: 21989506 DOI: 10.1016/j.biotechadv.2011.09.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 08/24/2011] [Accepted: 09/25/2011] [Indexed: 01/04/2023]
Abstract
In the past two decades, the wheat community has made remarkable progress in developing molecular resources for breeding. A wide variety of molecular tools has been established to accelerate genetic and physical mapping for facilitating the efficient identification of molecular markers linked to genes and QTL of agronomic interest. Already, wheat breeders are benefiting from a wide range of techniques to follow the introgression of the most favorable alleles in elite material and develop improved varieties. Breeders soon will be able to take advantage of new technological developments based on Next Generation Sequencing. In this paper, we review the molecular toolbox available to wheat scientists and breeders for performing fundamental genomic studies and breeding. Special emphasis is given on the production and detection of single nucleotide polymorphisms (SNPs) that should enable a step change in saturating the wheat genome for more efficient genetic studies and for the development of new selection methods. The perspectives offered by the access to an ordered full genome sequence for further marker development and enhanced precision breeding is also discussed. Finally, we discuss the advantages and limitations of marker-assisted selection for supporting wheat improvement.
Collapse
Affiliation(s)
- Etienne Paux
- INRA-UBP 1095, Genetics Diversity and Ecophysiology of Cereals, 234 Avenue du Brézet, Clermont-Ferrand, France
| | | | | | | |
Collapse
|
47
|
Robinson PN, Krawitz P, Mundlos S. Strategies for exome and genome sequence data analysis in disease-gene discovery projects. Clin Genet 2011; 80:127-32. [PMID: 21615730 DOI: 10.1111/j.1399-0004.2011.01713.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In whole-exome sequencing (WES), target capture methods are used to enrich the sequences of the coding regions of genes from fragmented total genomic DNA, followed by massively parallel, 'next-generation' sequencing of the captured fragments. Since its introduction in 2009, WES has been successfully used in several disease-gene discovery projects, but the analysis of whole-exome sequence data can be challenging. In this overview, we present a summary of the main computational strategies that have been applied to identify novel disease genes in whole-exome data, including intersect filters, the search for de novo mutations, and the application of linkage mapping or inference of identity-by-descent (IBD) in family studies.
Collapse
Affiliation(s)
- Peter N Robinson
- Institute for Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | |
Collapse
|
48
|
Hedges DJ, Guettouche T, Yang S, Bademci G, Diaz A, Andersen A, Hulme WF, Linker S, Mehta A, Edwards YJK, Beecham GW, Martin ER, Pericak-Vance MA, Zuchner S, Vance JM, Gilbert JR. Comparison of three targeted enrichment strategies on the SOLiD sequencing platform. PLoS One 2011; 6:e18595. [PMID: 21559511 PMCID: PMC3084696 DOI: 10.1371/journal.pone.0018595] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 03/04/2011] [Indexed: 01/04/2023] Open
Abstract
Despite the ever-increasing throughput and steadily decreasing cost of next generation sequencing (NGS), whole genome sequencing of humans is still not a viable option for the majority of genetics laboratories. This is particularly true in the case of complex disease studies, where large sample sets are often required to achieve adequate statistical power. To fully leverage the potential of NGS technology on large sample sets, several methods have been developed to selectively enrich for regions of interest. Enrichment reduces both monetary and computational costs compared to whole genome sequencing, while allowing researchers to take advantage of NGS throughput. Several targeted enrichment approaches are currently available, including molecular inversion probe ligation sequencing (MIPS), oligonucleotide hybridization based approaches, and PCR-based strategies. To assess how these methods performed when used in conjunction with the ABI SOLID3+, we investigated three enrichment techniques: Nimblegen oligonucleotide hybridization array-based capture; Agilent SureSelect oligonucleotide hybridization solution-based capture; and Raindance Technologies' multiplexed PCR-based approach. Target regions were selected from exons and evolutionarily conserved areas throughout the human genome. Probe and primer pair design was carried out for all three methods using their respective informatics pipelines. In all, approximately 0.8 Mb of target space was identical for all 3 methods. SOLiD sequencing results were analyzed for several metrics, including consistency of coverage depth across samples, on-target versus off-target efficiency, allelic bias, and genotype concordance with array-based genotyping data. Agilent SureSelect exhibited superior on-target efficiency and correlation of read depths across samples. Nimblegen performance was similar at read depths at 20× and below. Both Raindance and Nimblegen SeqCap exhibited tighter distributions of read depth around the mean, but both suffered from lower on-target efficiency in our experiments. Raindance demonstrated the highest versatility in assay design.
Collapse
Affiliation(s)
- Dale J Hedges
- John T. MacDonald Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Cardinal-Fernández P, Nin N, Lorente JA. [Acute lung injury and acute respiratory distress syndrome: a genomic perspective]. Med Intensiva 2011; 35:361-72. [PMID: 21429625 DOI: 10.1016/j.medin.2011.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/20/2010] [Accepted: 02/02/2011] [Indexed: 11/16/2022]
Abstract
Genomics have allowed important advances in the knowledge of the etiology and pathogenesis of complex disease entities such as acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Genomic medicine aims to personalize and optimize diagnosis, prognosis and treatment by determining the influence of genetic polymorphisms in specific diseases. The scientific community must cope with the important challenge of securing rapid transfer of knowledge to clinical practice, in order to prevent patients from becoming exposed to unnecessary risks. In the present article we describe the main concepts of genomic medicine pertaining to ALI/ARDS, and its currently recognized clinical applications.
Collapse
Affiliation(s)
- P Cardinal-Fernández
- Unidad de Cuidados Intensivos, CASMU-IAMPP-Hospital Central de las Fuerzas Armadas, Montevideo, Uruguay.
| | | | | |
Collapse
|
50
|
Lehne B, Lewis CM, Schlitt T. Exome localization of complex disease association signals. BMC Genomics 2011; 12:92. [PMID: 21284873 PMCID: PMC3045337 DOI: 10.1186/1471-2164-12-92] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 02/01/2011] [Indexed: 12/19/2022] Open
Abstract
Background Genome-wide association studies (GWAS) of common diseases have had a tremendous impact on genetic research over the last five years; the field is now moving from microarray-based technology towards next-generation sequencing. To evaluate the potential of association studies for complex diseases based on exome sequencing we analysed the distribution of association signal with respect to protein-coding genes based on GWAS data for seven diseases from the Wellcome Trust Case Control Consortium. Results We find significant concentration of association signal in exons and genes for Crohn's Disease, Type 1 Diabetes and Bipolar Disorder, but also observe enrichment from up to 40 kilobases upstream to 40 kilobases downstream of protein-coding genes for Crohn's Disease and Type 1 Diabetes; the exact extent of the distribution is disease dependent. Conclusions Our work suggests that exome sequencing may be a feasible approach to find genetic variation associated with complex disease. Extending the exome sequencing to include flanking regions therefore promises further improvement of covering disease-relevant variants.
Collapse
Affiliation(s)
- Benjamin Lehne
- King's College London, Department of Medical and Molecular Genetics, 8th floor Tower Wing, Guy's Hospital, London SE19RT, UK
| | | | | |
Collapse
|