1
|
Zhang LX, Shen CC, Bai YX, Li HY, Zhu CL, Yang CG, Latif A, Sun Y, Pu CX. The receptor kinase OsANX limits precocious flowering and inflorescence over-branching and maintains pollen tube integrity in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112162. [PMID: 38901780 DOI: 10.1016/j.plantsci.2024.112162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
CrRLK1L subfamily members are involved in diverse growth- and development-related processes in Arabidopsis. However, the functions of their counterparts in rice are unknown. Here, OsANX expression was detected in developing inflorescences, mature pollen grains, and growing pollen tubes, and it was localized to the plasma membrane in pollen grains and tobacco epidermal cells. Homozygous osanx progeny could not be segregated from the CRISPR/Cas9-edited mutants osanx-c1+/- and osanx-c2+/-, and such progeny were segregated only occasionally from osanx-c3+/-. Further, all three alleles showed osanx male but not female gamete transmission defects, in line with premature pollen tube rupture in osanx-c3. Additionally, osanx-c3 exhibited precocious flowering, excessively branched inflorescences, and an extremely low seed setting rate of 1.4 %, while osanx-c2+/- and osanx-c3+/- had no obvious defects in inflorescence development or the seed setting rate compared to wild-type Nipponbare (Nip). Consistent with this, the complemented line pPS1:OsANX-GFP/osanx-c2 (PSC), in which the lack of OsANX expression was inflorescence-specific, showed slightly earlier flowering and overly-branched panicles. Multiple inflorescence meristem transition-related and inflorescence architecture-related genes were expressed at higher levels in osanx-c3 than in Nip; thus, they may partially account for the aforementioned mutant phenotypes. Our findings broaden our understanding of the biological functions of OsANX in rice.
Collapse
Affiliation(s)
- Lan-Xin Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Can-Can Shen
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Ying-Xue Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Hao-Yue Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Chen-Li Zhu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Chen-Guang Yang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Ammara Latif
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Ying Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Cui-Xia Pu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.
| |
Collapse
|
2
|
Ding H, Feng X, Yuan Y, Wang B, Wang Y, Zhang J. Genomic investigation of duplication, functional conservation, and divergence in the LRR-RLK Family of Saccharum. BMC Genomics 2024; 25:165. [PMID: 38336615 PMCID: PMC10854099 DOI: 10.1186/s12864-024-10073-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Sugarcane (Saccharum spp.) holds exceptional global significance as a vital crop, serving as a primary source of sucrose, bioenergy, and various by-products. The optimization of sugarcane breeding by fine-tuning essential traits has become crucial for enhancing crop productivity and stress resilience. Leucine-rich repeat receptor-like kinases (LRR-RLK) genes present promising targets for this purpose, as they are involved in various aspects of plant development and defense processes. RESULTS Here, we present a detailed overview of phylogeny and expression of 288 (495 alleles) and 312 (1365 alleles) LRR-RLK genes from two founding Saccharum species, respectively. Phylogenetic analysis categorized these genes into 15 subfamilies, revealing considerable expansion or reduction in certain LRR-type subfamilies. Compared to other plant species, both Saccharum species had more significant LRR-RLK genes. Examination of cis-acting elements demonstrated that SsLRR-RLK and SoLRR-RLK genes exhibited no significant difference in the types of elements included, primarily involved in four physiological processes. This suggests a broad conservation of LRR-RLK gene function during Saccharum evolution. Synteny analysis indicated that all LRR-RLK genes in both Saccharum species underwent gene duplication, primarily through whole-genome duplication (WGD) or segmental duplication. We identified 28 LRR-RLK genes exhibiting novel expression patterns in response to different tissues, gradient development leaves, and circadian rhythm in the two Saccharum species. Additionally, SoLRR-RLK104, SoLRR-RLK7, SoLRR-RLK113, and SsLRR-RLK134 were identified as candidate genes for sugarcane disease defense response regulators through transcriptome data analysis of two disease stresses. This suggests LRR-RLK genes of sugarcane involvement in regulating various biological processes, including leaf development, plant morphology, photosynthesis, maintenance of circadian rhythm stability, and defense against sugarcane diseases. CONCLUSIONS This investigation into gene duplication, functional conservation, and divergence of LRR-RLK genes in two founding Saccharum species lays the groundwork for a comprehensive genomic analysis of the entire LRR-RLK gene family in Saccharum. The results reveal LRR-RLK gene played a critical role in Saccharum adaptation to diverse conditions, offering valuable insights for targeted breeding and precise phenotypic adjustments.
Collapse
Affiliation(s)
- Hongyan Ding
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, 530004, China
| | - Xiaoxi Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, 530004, China
| | - Yuan Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, 530004, China
| | - Baiyu Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, 530004, China
| | - Yuhao Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Sugarcane Biology and Genetic Breeding, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jisen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
3
|
Liu J, Li W, Wu G, Ali K. An update on evolutionary, structural, and functional studies of receptor-like kinases in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1305599. [PMID: 38362444 PMCID: PMC10868138 DOI: 10.3389/fpls.2024.1305599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/03/2024] [Indexed: 02/17/2024]
Abstract
All living organisms must develop mechanisms to cope with and adapt to new environments. The transition of plants from aquatic to terrestrial environment provided new opportunities for them to exploit additional resources but made them vulnerable to harsh and ever-changing conditions. As such, the transmembrane receptor-like kinases (RLKs) have been extensively duplicated and expanded in land plants, increasing the number of RLKs in the advanced angiosperms, thus becoming one of the largest protein families in eukaryotes. The basic structure of the RLKs consists of a variable extracellular domain (ECD), a transmembrane domain (TM), and a conserved kinase domain (KD). Their variable ECDs can perceive various kinds of ligands that activate the conserved KD through a series of auto- and trans-phosphorylation events, allowing the KDs to keep the conserved kinase activities as a molecular switch that stabilizes their intracellular signaling cascades, possibly maintaining cellular homeostasis as their advantages in different environmental conditions. The RLK signaling mechanisms may require a coreceptor and other interactors, which ultimately leads to the control of various functions of growth and development, fertilization, and immunity. Therefore, the identification of new signaling mechanisms might offer a unique insight into the regulatory mechanism of RLKs in plant development and adaptations. Here, we give an overview update of recent advances in RLKs and their signaling mechanisms.
Collapse
Affiliation(s)
| | | | - Guang Wu
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Khawar Ali
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
4
|
Ma W, Du J, Yu X, Chen K, Ming Y, Jiang L, Chen T, Ji D. Genome-Wide Identification and Analysis of Catharanthus roseus Receptor-like Kinase 1-like Proteins in Eggplant. PLANTS (BASEL, SWITZERLAND) 2023; 12:3379. [PMID: 37836119 PMCID: PMC10574150 DOI: 10.3390/plants12193379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
As an important member of the plant receptor-like kinases, Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) plays vital roles in plant growth and development, as well as biotic and abiotic stress response. Numerous CrRLK1Ls have been identified and analyzed in various plant species, while our knowledge about eggplant (Solanum melongena L.) CrRLK1Ls is still scarce. Utilizing state-of-the-art genomic data, we conducted the first genome-wide identification and analysis of CrRLK1L proteins in eggplant. In this study, 32 CrRLK1L proteins were identified and analyzed in eggplant. A subsequent gene structure and protein domain analysis showed that the identified eggplant CrRLK1Ls possessed typical features of CrRLK1Ls. A subcellular localization prediction demonstrated that these proteins mostly localized on the plasma membrane. A collinearity analysis showed that some eggplant CrRLK1L genes had predicted intraspecies or interspecies evolutionary duplication events. Promoter analysis suggests that eggplant CrRLK1Ls may be involved in plant hormone signaling, host-pathogen interactions, and environmental responses. Based on transcriptomic gene expression analysis, it is indicated that eggplant CrRLK1Ls may be involved in the resistance response of eggplant to Botrytis cinerea. Together, these results will give us a theoretical foundation and guidance for elaborating the biological functions of CrRLK1Ls in eggplant growth, development, and resistance response.
Collapse
Affiliation(s)
- Wenpeng Ma
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Juan Du
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Xinlong Yu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Kai Chen
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Yucheng Ming
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Libo Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
| | - Dongchao Ji
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| |
Collapse
|
5
|
Jing X, Deng N, Shalmani A. Characterization of Malectin/Malectin-like Receptor-like Kinase Family Members in Foxtail Millet ( Setaria italica L.). Life (Basel) 2023; 13:1302. [PMID: 37374087 DOI: 10.3390/life13061302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Plant malectin/malectin-like receptor-like kinases (MRLKs) play crucial roles throughout the life course of plants. Here, we identified 23 SiMRLK genes from foxtail millet. All the SiMRLK genes were named according to the chromosomal distribution of the SiMRLKs in the foxtail millet genome and grouped into five subfamilies based on phylogenetic relationships and structural features. Synteny analysis indicated that gene duplication events may take part in the evolution of SiMRLK genes in foxtail millet. The expression profiles of 23 SiMRLK genes under abiotic stresses and hormonal applications were evaluated through qRT-PCR. The expression of SiMRLK1, SiMRLK3, SiMRLK7 and SiMRLK19 were significantly affected by drought, salt and cold stresses. Exogenous ABA, SA, GA and MeJA also obviously changed the transcription levels of SiMRLK1, SiMRLK3, SiMRLK7 and SiMRLK19. These results signified that the transcriptional patterns of SiMRLKs showed diversity and complexity in response to abiotic stresses and hormonal applications in foxtail millet.
Collapse
Affiliation(s)
- Xiuqing Jing
- Department of Biology, Taiyuan Normal University, Jinzhong 030619, China
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Ning Deng
- Department of Biology, Taiyuan Normal University, Jinzhong 030619, China
| | - Abdullah Shalmani
- National Key Laboratory for Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Wang P, Wu X, Shi Z, Tao S, Liu Z, Qi K, Xie Z, Qiao X, Gu C, Yin H, Cheng M, Gu X, Liu X, Tang C, Cao P, Xu S, Zhou B, Gu T, Bian Y, Wu J, Zhang S. A large-scale proteogenomic atlas of pear. MOLECULAR PLANT 2023; 16:599-615. [PMID: 36733253 DOI: 10.1016/j.molp.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Pear is an important fruit tree that is widely distributed around the world. The first pear genome map was reported from our laboratory approximately 10 years ago. To further study global protein expression patterns in pear, we generated pear proteome data based on 24 major tissues. The tissue-resolved profiles provided evidence of the expression of 17 953 proteins. We identified 4294 new coding events and improved the pear genome annotation via the proteogenomic strategy based on 18 090 peptide spectra with peptide spectrum matches >1. Among the eight randomly selected new short coding open reading frames that were expressed in the style, four promoted and one inhibited the growth of pear pollen tubes. Based on gene coexpression module analysis, we explored the key genes associated with important agronomic traits, such as stone cell formation in fruits. The network regulating the synthesis of lignin, a major component of stone cells, was reconstructed, and receptor-like kinases were implicated as core factors in this regulatory network. Moreover, we constructed the online database PearEXP (http://www.peardb.org.cn) to enable access to the pear proteogenomic resources. This study provides a paradigm for in-depth proteogenomic studies of woody plants.
Collapse
Affiliation(s)
- Peng Wang
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Wu
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zebin Shi
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shutian Tao
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhe Liu
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaijie Qi
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihua Xie
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Qiao
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Gu
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Yin
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengyu Cheng
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoyu Gu
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xueying Liu
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Tang
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Cao
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | - Tingting Gu
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangyang Bian
- College of Life Sciences, Northwest University, Xi'an 710127, China
| | - Juyou Wu
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shaoling Zhang
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
7
|
Ma W, Liu X, Chen K, Yu X, Ji D. Genome-Wide Re-Identification and Analysis of CrRLK1Ls in Tomato. Int J Mol Sci 2023; 24:ijms24043142. [PMID: 36834555 PMCID: PMC9959574 DOI: 10.3390/ijms24043142] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The Catharanthus roseus receptor-like kinase 1-like (CrRLK1L), which is a vital member of the plant receptor-like kinase family, plays versatile roles in plant growth, development, and stress response. Although the primary screening of tomato CrRLK1Ls has been reported previously, our knowledge of these proteins is still scarce. Using the latest genomic data annotations, a genome-wide re-identification and analysis of the CrRLK1Ls in tomatoes were conducted. In this study, 24 CrRLK1L members were identified in tomatoes and researched further. Subsequent gene structures, protein domains, Western blot analyses, and subcellular localization analyses all confirmed the accuracy of the newly identified SlCrRLK1L members. Phylogenetic analyses showed that the identified SlCrRLK1L proteins had homologs in Arabidopsis. Evolutionary analysis indicated that two pairs of the SlCrRLK1L genes had predicted segmental duplication events. Expression profiling analyses demonstrated that the SlCrRLK1L genes were expressed in various tissues, and most of them were up- or down-regulated by bacteria and PAMP treatments. Together, these results will lay the foundation for elaborating the biological roles of SlCrRLK1Ls in tomato growth, development, and stress response.
Collapse
Affiliation(s)
- Wenpeng Ma
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Xin Liu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Kai Chen
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Xinlong Yu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Dongchao Ji
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
8
|
Li X, Guo C, Wang Q, Li Z, Cai J, Wu D, Li Y, Yang A, Guo Y, Gao J, Wen L, Pu W. Systematic Analysis of Tobacco CrRLK1L Family Genes and Functional Identification of NtCrRLK1L47 in Environmental Stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:838857. [PMID: 35783983 PMCID: PMC9247620 DOI: 10.3389/fpls.2022.838857] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
The Catharanthus roseus RLK1-like (CrRLK1L) family is involved in the regulation of plant reproduction, growth and development, cell wall integrity sensing, as well as responses to both biotic and abiotic stress conditions. Extraordinary progress has been made in elucidating the CrRLK1L family receptor kinases-mediated signaling pathway, while limited research addressed the functions of CrRLK1L proteins in tobacco. In this study, we identified and analyzed 48 NtCrRLK1L members from the tobacco genome. The newly identified NtCrRLK1L members were divided into seven groups together with the Arabidopsis CrRLK1L members. The syntenic analysis revealed that four pairs of NtCrRLK1L genes were predicted to have arisen from segmental duplication events. Expression profiling showed that the NtCrRLK1L genes were expressed in various tissues, and most NtCrRLK1L genes were induced by salt and drought stress conditions. Notably, NtCrRLK1L47 was upregulated under drought and salinity stresses, and the NtCrRLK1L47-GFP fusion protein was located in the cell membrane. Furthermore, overexpression of the NtCrRLK1L47 gene enhanced the salt tolerance in tobacco seedlings.
Collapse
Affiliation(s)
- Xiaoxu Li
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Cun Guo
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Qi Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhiyuan Li
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jun Cai
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Dousheng Wu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Yangyang Li
- Hunan Tobacco Research Institute, Changsha, China
| | - Aiguo Yang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yongfeng Guo
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Junping Gao
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Liuying Wen
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Wenxuan Pu
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| |
Collapse
|
9
|
Serra O, de Sousa RM, Guimarães JB, Matos J, Vicente P, de Sousa ML, Simões F. Genome-wide clonal variability in European pear "Rocha" using high-throughput sequencing. HORTICULTURE RESEARCH 2022; 9:uhac111. [PMID: 38486834 PMCID: PMC10939347 DOI: 10.1093/hr/uhac111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/27/2022] [Indexed: 03/17/2024]
Abstract
Pears (Pyrus) are one of the most economically important fruits worldwide. The Pyrus genus is characterized by a high degree of genetic variability between species and interspecific hybrids, and several studies have been performed to assess this variability for both cultivated and wild accessions. These studies have mostly been limited by the resolving power of traditional molecular markers, although in the recent past the availability of reference genome sequences or SNP arrays for pear have enhanced the capability of high-resolution genomics studies. These tools can also be applied to better understand the intra-varietal (or clonal) variability in pear. Here we report the first high resolution genomics analysis of a pear clonal population using whole genome sequencing (WGS). Results showed unique signatures for the accumulation of mutations and transposable element insertions in each clone, which are likely related to their history of propagation and cultivation. The nucleotide diversity remained low in the clonal collection with the exception of few genomic windows, suggesting that balancing selection may be occurring. These windows included mainly genes related to plant fertility. Regions with higher mutational load were partially associated with transcription factors, probably reflecting the distinctive phenotypes in the collection. The annotation of variants also revealed the theoretical disruption of relevant genes in pear. Taken together, the results from this study show that pear clones accumulate mutations differently, and that those mutations can play a role on pear phenotypes, meaning that the study of pear clonal populations can be relevant in genetic studies, mainly when comparing with traditional association studies.
Collapse
Affiliation(s)
- Octávio Serra
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Banco Português de Germoplasma Vegetal (BPGV), Quinta de S. José, S. Pedro de Merelim 4700-859 Braga, Portugal
| | - Rui Maia de Sousa
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Estação Nacional de Fruticultura Vieira Natividade (ENFVN), Estrada de Leiria 2460-059 Alcobaça, Portugal
| | - Joana Bagoin Guimarães
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Quinta do Marquês, 2780-159 Oeiras, Portugal
| | - José Matos
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Quinta do Marquês, 2780-159 Oeiras, Portugal
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Patricia Vicente
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Estação Nacional de Fruticultura Vieira Natividade (ENFVN), Estrada de Leiria 2460-059 Alcobaça, Portugal
| | - Miguel Leão de Sousa
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Estação Nacional de Fruticultura Vieira Natividade (ENFVN), Estrada de Leiria 2460-059 Alcobaça, Portugal
| | - Fernanda Simões
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Quinta do Marquês, 2780-159 Oeiras, Portugal
| |
Collapse
|
10
|
Kou X, Cao P, He Q, Wang P, Zhang S, Wu J. PbrROP1/2-elicited imbalance of cellulose deposition is mediated by a CrRLK1L-ROPGEF module in the pollen tube of Pyrus. HORTICULTURE RESEARCH 2022; 9:uhab034. [PMID: 35043175 PMCID: PMC8824538 DOI: 10.1093/hr/uhab034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/11/2021] [Accepted: 10/21/2021] [Indexed: 06/14/2023]
Abstract
Pollen tube growth is critical for the sexual reproduction of flowering plants. Catharanthus roseus receptor-like kinases (CrRLK1L) play an important role in plant sexual reproduction, pollen tube growth, and male and female gametophyte recognition. Here, we identified a CrRLK1L protein in pear (Pyrus bretschneideri), PbrCrRLK1L13, which is necessary for normal tip growth of pollen tube. When PbrCrRLK1L13 was knocked down, the pollen tube grew faster. Interaction analysis showed that the kinase domain of PbrCrRLK1L13 interacted with the C-terminal region of PbrGEF8, and PbrCrRLK1L13 activated the phosphorylation of PbrGEF8 in vitro. Furthermore, PbrROP1 and PbrROP2 were the downstream targets of PbrCrRLK1L13-PbrGEF8. When we knocked down the expression of PbrCrRLK1L13, PbrGEF8 or PbrROP1/2, the balance of cellulose deposition in the pollen tube wall was disrupted. Considering these factors, we proposed a model for a signaling event regulating pear pollen tube growth. During pear pollen tube elongation, PbrCrRLK1L13 acted as a surface regulator of the PbrROP1 and PbrROP2 signaling pathway via PbrGEF8 to affect the balance of cellulose deposition and regulate pear pollen tube growth.
Collapse
Affiliation(s)
- Xiaobing Kou
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, No 6. Tongwei Road, Nanjing, 210095, China
| | - Peng Cao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, No 6. Tongwei Road, Nanjing, 210095, China
| | - Qianke He
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, No 6. Tongwei Road, Nanjing, 210095, China
| | - Peng Wang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, No 6. Tongwei Road, Nanjing, 210095, China
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, No 6. Tongwei Road, Nanjing, 210095, China
| | - Juyou Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, No 6. Tongwei Road, Nanjing, 210095, China
| |
Collapse
|
11
|
Zhu S, Fu Q, Xu F, Zheng H, Yu F. New paradigms in cell adaptation: decades of discoveries on the CrRLK1L receptor kinase signalling network. THE NEW PHYTOLOGIST 2021; 232:1168-1183. [PMID: 34424552 DOI: 10.1111/nph.17683] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/15/2021] [Indexed: 05/15/2023]
Abstract
Receptor-like kinases (RLKs), which constitute the largest receptor family in plants, are essential for perceiving and relaying information about various environmental stimuli. Tremendous progress has been made in the past few decades towards elucidating the mechanisms of action of several RLKs, with emerging paradigms pointing to their roles in cell adaptations. Among these paradigms, Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) proteins and their rapid alkalinization factor (RALF) peptide ligands have attracted much interest. In particular, FERONIA (FER) is a CrRLK1L protein that participates in a wide array of physiological processes associated with RALF signalling, including cell growth and monitoring cell wall integrity, RNA and energy metabolism, and phytohormone and stress responses. Here, we analyse FER in the context of CrRLK1L members and their ligands in multiple species. The FER working model raises many questions about the role of CrRLK1L signalling networks during cell adaptation. For example, how do CrRLK1Ls recognize various RALF peptides from different organisms to initiate specific phosphorylation signal cascades? How do RALF-FER complexes achieve their specific, sometimes opposite, functions in different cell types? Here, we summarize recent major findings and highlight future perspectives in the field of CrRLK1L signalling networks.
Collapse
Affiliation(s)
- Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Qiong Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Fan Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Heping Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Centre, Changsha, 410125, China
| |
Collapse
|
12
|
Duan YF, Zhang C, Zhang M, Ye Y, Zhang KL, Chen MX, Chen L, Wang XR, Zhu FY. SWATH-MS based quantitive proteomics reveal regulatory metabolism and networks of androdioecy breeding system in Osmanthus fragrans. BMC PLANT BIOLOGY 2021; 21:468. [PMID: 34645403 PMCID: PMC8513349 DOI: 10.1186/s12870-021-03243-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/30/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND The fragrant flower plant Osmanthus fragrans has an extremely rare androdioecious breeding system displaying the occurrence of males and hermaphrodites in a single population, which occupies a crucial intermediate stage in the evolutionary transition between hermaphroditism and dioecy. However, the molecular mechanism of androdioecy plant is very limited and still largely unknown. RESULTS Here, we used SWATH-MS-based quantitative approach to study the proteome changes between male and hermaphroditic O. fragrans pistils. A total of 428 proteins of diverse functions were determined to show significant abundance changes including 210 up-regulated and 218 down-regulated proteins in male compared to hermaphroditic pistils. Functional categorization revealed that the differentially expressed proteins (DEPs) primarily distributed in the carbohydrate metabolism, secondary metabolism as well as signaling cascades. Further experimental analysis showed the substantial carbohydrates accumulation associated with promoted net photosynthetic rate and water use efficiency were observed in purplish red pedicel of hermaphroditic flower compared with green pedicel of male flower, implicating glucose metabolism serves as nutritional modulator for the differentiation of male and hermaphroditic flower. Meanwhile, the entire upregulation of secondary metabolism including flavonoids, isoprenoids and lignins seem to protect and maintain the male function in male flowers, well explaining important feature of androdioecy that aborted pistil of a male flower still has a male function. Furthermore, nine selected DEPs were validated via gene expression analysis, suggesting an extra layer of post-transcriptional regulation occurs during O. fragrans floral development. CONCLUSION Taken together, our findings represent the first SWATH-MS-based proteomic report in androdioecy plant O. fragrans, which reveal carbohydrate metabolism, secondary metabolism and post-transcriptional regulation contributing to the androdioecy breeding system and ultimately extend our understanding on genetic basis as well as the industrialization development of O. fragrans.
Collapse
Affiliation(s)
- Yi-Fan Duan
- College of Biology and the Environment, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, China
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Cheng Zhang
- College of Biology and the Environment, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, China
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Min Zhang
- College of Biology and the Environment, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, China
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yu Ye
- College of Biology and the Environment, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, China
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Kai-Lu Zhang
- College of Biology and the Environment, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, China
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Mo-Xian Chen
- College of Biology and the Environment, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, China
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Lin Chen
- College of Biology and the Environment, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, China
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xian-Rong Wang
- College of Biology and the Environment, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, China.
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Fu-Yuan Zhu
- College of Biology and the Environment, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing, 210037, China.
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
13
|
Kou X, Sun J, Wang P, Wang D, Cao P, Lin J, Chang Y, Zhang S, Wu J. PbrRALF2-elicited reactive oxygen species signaling is mediated by the PbrCrRLK1L13-PbrMPK18 module in pear pollen tubes. HORTICULTURE RESEARCH 2021; 8:222. [PMID: 34608125 PMCID: PMC8490453 DOI: 10.1038/s41438-021-00684-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Rapid alkalinization factors (RALFs) are cysteine-rich peptides that play important roles in a variety of biological processes, such as cell elongation and immune signaling. Recent studies in Arabidopsis have shown that RALFs regulate pollen tube growth via plasma membrane receptor-like kinases (RLKs). However, the downstream signal transduction mechanisms of RLKs in pollen tubes are unknown. Here, we identified PbrRALF2, a pear (Pyrus bretschneideri) pollen RALF peptide that inhibits pollen tube growth. We found that PbrRALF2 interacts with a malectin-like domain-containing RLK, PbrCrRLK1L13. The relative affinity between PbrRALF2 and PbrCrRLK1L13 was at the submicromolar level, which is consistent with the values of ligand-receptor kinase pairs and the physiological concentration for PbrRALF2-mediated inhibition of pollen tube growth. After binding to its extracellular domain, PbrRALF2 activated the phosphorylation of PbrCrRLK1L13 in a dose-dependent manner. We further showed that the MAP kinase PbrMPK18 is a downstream target of PbrCrRLK1L13 that mediates PbrRALF2-elicited reactive oxygen species (ROS) production. The excessive accumulation of ROS inhibits pollen tube growth. We show that MPK acts as a mediator for CrRLK1L to stimulate ROS production, which might represent a general mechanism by which RALF and CrRLK1L function in signaling pathways.
Collapse
Affiliation(s)
- Xiaobing Kou
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jiangmei Sun
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Peng Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Danqi Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Peng Cao
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jing Lin
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, 210014, Nanjing, China
| | - Youhong Chang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, 210014, Nanjing, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Juyou Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China.
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, 210014, Nanjing, China.
| |
Collapse
|
14
|
Solis-Miranda J, Quinto C. The CrRLK1L subfamily: One of the keys to versatility in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:88-102. [PMID: 34091211 DOI: 10.1016/j.plaphy.2021.05.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Catharanthus roseous kinase 1L receptors (CrRLK1Ls) are a subfamily of membrane receptors unique to plant cells that perceive internal and external signals, integrate metabolic, physiological, and molecular processes, and regulate plant development. Recent genomic studies have suggested that this receptor subfamily arose during the emergence of terrestrial plants and has since diversified, preserving its essential functions. Participation of some of these CrRLK1Ls in different processes is presented and discussed herein, as well as the increasing number of interactors necessary for their function. At least five different responses have been detected after activating these receptors, such as physiological changes, formation or disassembly of protein complexes, metabolic responses, modification of gene expression, and modulation of phytohormone activity. To date, a common response mechanism for all processes involving CrRLK1Ls has not been described. In this review, the information available on the different functions of CrRLK1Ls was compiled. Additionally, the physiological and/or molecular mechanisms involved in the signaling processes triggered by these receptors are also discussed. In this review, we propose a possible common signaling mechanism for all processes regulated by CrRLK1Ls and pose questions to be answered in the future.
Collapse
Affiliation(s)
- Jorge Solis-Miranda
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| | - Carmen Quinto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
15
|
Zheng T, Zhang K, Sadeghnezhad E, Jiu S, Zhu X, Dong T, Liu Z, Guan L, Jia H, Fang J. Chitinase family genes in grape differentially expressed in a manner specific to fruit species in response to Botrytis cinerea. Mol Biol Rep 2020; 47:7349-7363. [PMID: 32914265 DOI: 10.1007/s11033-020-05791-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/28/2020] [Indexed: 01/03/2023]
Abstract
Chitinases (Chi), an important resistance-related protein, act against fungal pathogens by catalyzing the fungal cell wall, whereas are involved in different biological pathways in grape. In this study, we found 42 Chi family genes in Vitis vinifera L. (VvChis) and evaluated their expression levels after Botrytis infection, stress hormones like ethylene (ETH) and methyl-jasmonate (MeJA), and abiotic stresses like salinity and temperature changes in ripened fruits. VvChis were categorized into five groups including A, B, C, D, and E belonged to glycoside hydrolase family 18 and 19 (GH18 and GH19) according to genes structure, which expression analysis showed distinct temporal and spatial expression patterns changed in different tissues and various development stages. Different responsive elements to biotic and abiotic stresses were determined in the promoter regions of VvChis, specially elicitor-responsive element that was conserved among all VvChis genes. The expression levels of VvChis in groups A, B, and E increased after Botrytis cinerea infection in leaves and berries. Meanwhile, VvChis in glycoside hydrolase family 18 (GH18) were up-regulated under MeJA and ETH treatment, although the induction of VvChis by low temperature was more significant than high temperature. The expression of VvChis was also positively correlated with the concentration of NaCl treatment. Furthermore, differential gene-overexpression of VvChi5, VvChi17, VvChi22, VvChi26, and VvChi31 in strawberry and tomato fruits demonstrated the involvement of various isoforms in resistance to Botrytis infection through antioxidant system and lignin accumulation, which led to a reduction of damage. Among different isoforms of VvChis, we confirmed the interaction of Chi17 with Metallothionein (MTL) as oxidative stress protection, which suggests VvChis can modulate oxidative stress during postharvest storage in ripened fruits.
Collapse
Affiliation(s)
- Ting Zheng
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China
| | - Kekun Zhang
- College of Enology, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Ehsan Sadeghnezhad
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China
| | - Songtao Jiu
- Department of Plant Science, Shanghai Jiao Tong University, Shanghai City, 200030, Shanghai, People's Republic of China
| | - Xudong Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China
| | - Tianyu Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China
| | - Zhongjie Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China
| | - Le Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China.
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
16
|
Genome-Wide Identification of the CrRLK1L Subfamily and Comparative Analysis of Its Role in the Legume-Rhizobia Symbiosis. Genes (Basel) 2020; 11:genes11070793. [PMID: 32674446 PMCID: PMC7397338 DOI: 10.3390/genes11070793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
The plant receptor-like-kinase subfamily CrRLK1L has been widely studied, and CrRLK1Ls have been described as crucial regulators in many processes in Arabidopsis thaliana (L.), Heynh. Little is known, however, about the functions of these proteins in other plant species, including potential roles in symbiotic nodulation. We performed a phylogenetic analysis of CrRLK1L subfamily receptors of 57 different plant species and identified 1050 CrRLK1L proteins, clustered into 11 clades. This analysis revealed that the CrRLK1L subfamily probably arose in plants during the transition from chlorophytes to embryophytes and has undergone several duplication events during its evolution. Among the CrRLK1Ls of legumes and A. thaliana, protein structure, gene structure, and expression patterns were highly conserved. Some legume CrRLK1L genes were active in nodules. A detailed analysis of eight nodule-expressed genes in Phaseolus vulgaris L. showed that these genes were differentially expressed in roots at different stages of the symbiotic process. These data suggest that CrRLK1Ls are both conserved and underwent diversification in a wide group of plants, and shed light on the roles of these genes in legume–rhizobia symbiosis.
Collapse
|
17
|
Zhang X, Yang Z, Wu D, Yu F. RALF-FERONIA Signaling: Linking Plant Immune Response with Cell Growth. PLANT COMMUNICATIONS 2020; 1:100084. [PMID: 33367248 PMCID: PMC7747976 DOI: 10.1016/j.xplc.2020.100084] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 05/26/2023]
Abstract
Plants perceive various external and internal signals to self-modulate biological processes through members of the receptor-like kinase (RLK) family, among which Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) proteins with their ligands, rapid alkalinization factor (RALF) peptides, have attracted considerable interest. FERONIA (FER), a CrRLK1L member, was initially reported to act as a major plant cell growth modulator in distinct tissues. Subsequently, the RALF-FER pathway was confirmed to function as an essential regulator of plant stress responses, including but not limited to immune responses. Furthermore, the RALF-FER pathway modulates immune responses and cell growth in a context-specific manner, and the vital roles of this pathway are beginning to be appreciated in crop species. The recent remarkable advances in understanding the functions and molecular mechanisms of the RALF-FER pathway have also raised many interesting questions that need to be answered in the future. This review mainly focuses on the roles of FER and other CrRLK1L members in modulating immune responses in the context of cell growth in response to their RALF peptide ligands and presents a brief outlook for future research.
Collapse
Affiliation(s)
- Xin Zhang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
| | - Zhuhong Yang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, P.R. China
| | - Dousheng Wu
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
| | - Feng Yu
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, P.R. China
| |
Collapse
|
18
|
Tang C, Zhu X, Qiao X, Gao H, Li Q, Wang P, Wu J, Zhang S. Characterization of the pectin methyl-esterase gene family and its function in controlling pollen tube growth in pear (Pyrus bretschneideri). Genomics 2020; 112:2467-2477. [PMID: 32014523 DOI: 10.1016/j.ygeno.2020.01.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/20/2019] [Accepted: 01/31/2020] [Indexed: 11/26/2022]
Abstract
Pectin methyl-esterases (PMEs) play crucial roles in plant growth. In this study, we identified 81 PbrPMEs in pear. Whole-genome duplication and purifying selection drove the evolution of PbrPME gene family. The expression of 47 PbrPMEs was detected in pear pollen tube, which were assigned to 13 clusters by an expression tendency analysis. One of the 13 clusters presented opposite expression trends towards the changes of methyl-esterified pectins at the apical cell wall. PbrPMEs were localized in the cytoplasm and plasma membrane. Repression of PbrPME11, PbrPME44, and PbrPME59 resulted in the inhibition of pear pollen tube growth and abnormal deposition of methyl-esterified pectins at pollen tube tip. Pharmacological analysis confirmed that reduced PbrPME activities repressed the pollen tube growth. Overall, we have explored the evolutionary characteristics of PbrPME gene family and found the key PbrPME genes that control the growth of pollen tube, which deepened the understanding of pear fertility regulation.
Collapse
Affiliation(s)
- Chao Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxuan Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Qiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongru Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Qionghou Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Juyou Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
19
|
Franck CM, Westermann J, Boisson-Dernier A. Plant Malectin-Like Receptor Kinases: From Cell Wall Integrity to Immunity and Beyond. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:301-328. [PMID: 29539271 DOI: 10.1146/annurev-arplant-042817-040557] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant cells are surrounded by cell walls protecting them from a myriad of environmental challenges. For successful habitat adaptation, extracellular cues are perceived at the cell wall and relayed to downstream signaling constituents to mediate dynamic cell wall remodeling and adapted intracellular responses. Plant malectin-like receptor kinases, also known as Catharanthus roseus receptor-like kinase 1-like proteins (CrRLK1Ls), take part in these perception and relay processes. CrRLK1Ls are involved in many different plant functions. Their ligands, interactors, and downstream signaling partners are being unraveled, and studies about CrRLK1Ls' roles in plant species other than the plant model Arabidopsis thaliana are beginning to flourish. This review focuses on recent CrRLK1L-related advances in cell growth, reproduction, hormone signaling, abiotic stress responses, and, particularly, immunity. We also give an overview of the comparative genomics and evolution of CrRLK1Ls, and present a brief outlook for future research.
Collapse
|