1
|
Wang L, Wang Y, Dong Z, Chen G, Sluys R, Liu D. Integrative taxonomy unveils a new species of Dugesia (Platyhelminthes, Tricladida, Dugesiidae) from the southern portion of the Taihang Mountains in northern China, with the description of its complete mitogenome and an exploratory analysis of mitochondrial gene order as a taxonomic character. Integr Zool 2021; 17:1193-1214. [PMID: 34783153 DOI: 10.1111/1749-4877.12605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A new species of Dugesia (Platyhelminthes, Tricladida, Dugesiidae) from northern China is described on the basis of an integrative approach, involving morphology, karyology, histology, molecular distance, molecular phylogeny, and mitochondrial gene order. Here, we present the complete mitogenome of the new species Dugesia constrictiva Chen & Dong, sp. nov. This new species is mainly characterized by the presence of the following features: asymmetrical openings of the oviducts; large, cuboidal copulatory bursa; vasa deferentia opening through the ventro-lateral wall of the seminal vesicle; laterally compressed seminal vesicle; ventrally displaced ejaculatory duct, opening at the blunt tip of the penis papilla; long duct intercalated between seminal vesicle and diaphragm; chromosome complement diploid, with 16 metacentric chromosomes; mitochondrial gene order as follows: cox1-E-nad6-nad5-S2-D-R-cox3-I-Q-K-atp6-V-nad1-W-cox2-P-nad3-A-nad2-M-H-F-rrnS-L1-Y-G-S1-rrnL-L2-T-atp8-C-N-cob-nad4l-nad4. In triclads, mitochondrial gene order is considerably conserved between freshwater planarians and land flatworms, whereas it is variable between marine planarians and both freshwater and land flatworms. The secondary structures of tRNAs are all equipped with 4 arms, excepting tRNA S1 and tRNA S2, which lack the D arm and have excessively enlarged loops. Numerous transpositions of tRNA are present between D. constrictiva and its congeners. Mitochondrial gene arrangements may form a new, additional tool for taxonomic studies. The phylogenetic tree based on analysis of the mitochondrial genome basically corroborates current classification of the higher taxa of planarian flatworms.
Collapse
Affiliation(s)
- Lei Wang
- College of Life Science, Henan Normal University, Xinxiang, China.,Medical College, Xinxiang University, Xinxiang, China
| | - Yixuan Wang
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Ronald Sluys
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
2
|
Paludo GP, Thompson CE, Miyamoto KN, Guedes RLM, Zaha A, de Vasconcelos ATR, Cancela M, Ferreira HB. Cestode strobilation: prediction of developmental genes and pathways. BMC Genomics 2020; 21:487. [PMID: 32677885 PMCID: PMC7367335 DOI: 10.1186/s12864-020-06878-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 07/02/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cestoda is a class of endoparasitic worms in the flatworm phylum (Platyhelminthes). During the course of their evolution cestodes have evolved some interesting aspects, such as their increased reproductive capacity. In this sense, they have serial repetition of their reproductive organs in the adult stage, which is often associated with external segmentation in a developmental process called strobilation. However, the molecular basis of strobilation is poorly understood. To assess this issue, an evolutionary comparative study among strobilated and non-strobilated flatworm species was conducted to identify genes and proteins related to the strobilation process. RESULTS We compared the genomic content of 10 parasitic platyhelminth species; five from cestode species, representing strobilated parasitic platyhelminths, and five from trematode species, representing non-strobilated parasitic platyhelminths. This dataset was used to identify 1813 genes with orthologues that are present in all cestode (strobilated) species, but absent from at least one trematode (non-strobilated) species. Development-related genes, along with genes of unknown function (UF), were then selected based on their transcriptional profiles, resulting in a total of 34 genes that were differentially expressed between the larval (pre-strobilation) and adult (strobilated) stages in at least one cestode species. These 34 genes were then assumed to be strobilation related; they included 12 encoding proteins of known function, with 6 related to the Wnt, TGF-β/BMP, or G-protein coupled receptor signaling pathways; and 22 encoding UF proteins. In order to assign function to at least some of the UF genes/proteins, a global gene co-expression analysis was performed for the cestode species Echinococcus multilocularis. This resulted in eight UF genes/proteins being predicted as related to developmental, reproductive, vesicle transport, or signaling processes. CONCLUSIONS Overall, the described in silico data provided evidence of the involvement of 34 genes/proteins and at least 3 developmental pathways in the cestode strobilation process. These results highlight on the molecular mechanisms and evolution of the cestode strobilation process, and point to several interesting proteins as potential developmental markers and/or targets for the development of novel antihelminthic drugs.
Collapse
Affiliation(s)
- Gabriela Prado Paludo
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia (CBiot), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, CBiot, UFRGS, Porto Alegre, RS, Brazil
| | - Claudia Elizabeth Thompson
- Programa de Pós-Graduação em Biologia Celular e Molecular, CBiot, UFRGS, Porto Alegre, RS, Brazil
- Departamento de Farmacociências, Universidade Federal de Ciências Médicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Kendi Nishino Miyamoto
- Programa de Pós-Graduação em Biologia Celular e Molecular, CBiot, UFRGS, Porto Alegre, RS, Brazil
| | - Rafael Lucas Muniz Guedes
- Laboratório Nacional de Computação Científica, Petrópolis, RJ, Brazil
- Present address: Instituto Hermes Pardini, Vespasiano, MG, Brazil
| | - Arnaldo Zaha
- Programa de Pós-Graduação em Biologia Celular e Molecular, CBiot, UFRGS, Porto Alegre, RS, Brazil
| | | | - Martin Cancela
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia (CBiot), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, CBiot, UFRGS, Porto Alegre, RS, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia (CBiot), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, CBiot, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Oya Y, Kajihara H. Molecular Phylogenetic Analysis of Acotylea (Platyhelminthes: Polycladida). Zoolog Sci 2020; 37:271-279. [PMID: 32549541 DOI: 10.2108/zs190136] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/25/2020] [Indexed: 11/17/2022]
Abstract
Acotylea is a suborder of Polycladida (Rhabditophora, Platyhelminthes) characterized by lack of a cotyl (sucker-like structure) on the ventral surface of the body. We newly determined partial sequences of two mitochondrial (16S ribosomal RNA and cytochrome c oxidase subunit I) and two nuclear (18S and 28S ribosomal RNA) genes from 24 acotylean species (12 families and 14 genera). Based on these sequences in addition to those available in public databases, we inferred the phylogeny of 16 families and 27 genera of Acotylea from molecular phylogenetic analyses (maximum likelihood and Bayesian inference) based on concatenated gene sequences. Our analyses supported three clades corresponding to Discoceloidea, Leptoplanoidea, and Stylochoidea. The phylogenetic position of Callioplanidae remains unclear. Among family- or genus-level taxa, Gnesiocerotidae, Stylochoplanidae, and Comoplana were not monophyletic. We discuss the validities of Notocomplanidae and Koinostylochus, and the family-level assignment of Mirostylochus.
Collapse
Affiliation(s)
- Yuki Oya
- Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan,
| | - Hiroshi Kajihara
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
4
|
Monnens M, Thijs S, Briscoe AG, Clark M, Frost EJ, Littlewood DTJ, Sewell M, Smeets K, Artois T, Vanhove MPM. The first mitochondrial genomes of endosymbiotic rhabdocoels illustrate evolutionary relaxation of atp8 and genome plasticity in flatworms. Int J Biol Macromol 2020; 162:454-469. [PMID: 32512097 DOI: 10.1016/j.ijbiomac.2020.06.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/02/2023]
Abstract
The first three mitochondrial (mt) genomes of endosymbiotic turbellarian flatworms are characterised for the rhabdocoels Graffilla buccinicola, Syndesmis echinorum and S. kurakaikina. Interspecific comparison of the three newly obtained sequences and the only previously characterised rhabdocoel, the free-living species Bothromesostoma personatum, reveals high mt genomic variability, including numerous rearrangements. The first intrageneric comparison within rhabdocoels shows that gene order is not fully conserved even between congeneric species. Atp8, until recently assumed absent in flatworms, was putatively annotated in two sequences. Selection pressure was tested in a phylogenetic framework and is shown to be significantly relaxed in this and another protein-coding gene: cox1. If present, atp8 appears highly derived in platyhelminths and its functionality needs to be addressed in future research. Our findings for the first time allude to a large degree of undiscovered (mt) genomic plasticity in rhabdocoels. It merits further attention whether this variation is correlated with a symbiotic lifestyle. Our results illustrate that this phenomenon is widespread in flatworms as a whole and not exclusive to the better-studied neodermatans.
Collapse
Affiliation(s)
- Marlies Monnens
- Hasselt University, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.
| | - Sofie Thijs
- Hasselt University, Centre for Environmental Sciences, Research Group Environmental Biology, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.
| | - Andrew G Briscoe
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom.
| | - Miriam Clark
- School of Biological Sciences, University of Auckland, New Zealand.
| | - Emily Joy Frost
- School of Biological Sciences, University of Auckland, New Zealand.
| | - D Tim J Littlewood
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom.
| | - Mary Sewell
- School of Biological Sciences, University of Auckland, New Zealand.
| | - Karen Smeets
- Hasselt University, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.
| | - Tom Artois
- Hasselt University, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.
| | - Maarten P M Vanhove
- Hasselt University, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium; Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium; Zoology Unit, Finnish Museum of Natural History, University of Helsinki, P.O. Box 17, Helsinki FI-00014, Finland; Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| |
Collapse
|