1
|
Düz E, İlgün A, Bozkurt FB, Çakır T. Integration of genomic and transcriptomic layers in RNA-Seq data leads to protein interaction modules with improved Alzheimer's disease associations. Eur J Neurosci 2024. [PMID: 39532700 DOI: 10.1111/ejn.16600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/19/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, and it is currently untreatable. RNA sequencing (RNA-Seq) is commonly used in the literature to identify AD-associated molecular mechanisms by analysing changes in gene expression. RNA-Seq data can also be used to detect genomic variants, enabling the identification of the genes with a higher load of deleterious variants in patients compared with controls. Here, we analysed AD RNA-Seq datasets to obtain differentially expressed genes and genes with a higher load of pathogenic variants in AD, and we combined them in a single list. We mapped these genes on a human protein-protein interaction network to discover subnetworks perturbed by AD. Our results show that utilizing gene pathogenicity information from RNA-Seq data positively contributes to the disclosure of AD-related mechanisms. Moreover, dividing the discovered subnetworks into highly connected modules reveals a clearer picture of altered molecular pathways that, otherwise, would not be captured. Repeating the whole pipeline with human metabolic network genes led to results confirming the positive contribution of gene pathogenicity information and enabled a more detailed identification of altered metabolic pathways in AD.
Collapse
Affiliation(s)
- Elif Düz
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Atılay İlgün
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Fatma Betül Bozkurt
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Tunahan Çakır
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| |
Collapse
|
2
|
Li J, Li L, Cai S, Song K, Hu S. Identification of novel risk genes for Alzheimer's disease by integrating genetics from hippocampus. Sci Rep 2024; 14:27484. [PMID: 39523385 PMCID: PMC11551212 DOI: 10.1038/s41598-024-78181-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) stands as the most prevalent neurodegenerative ailment, presently lacking a definitive cure. Given that primary medications for AD patients in the early or middle stages demonstrate optimal efficacy, it becomes crucial to delve into the identification of risk genes associated with early onset. In our study, we compiled and integrated three transcriptomics datasets (GSE48350, GSE36980, GSE5281) originating from the hippocampus of 37 AD patients and 66 healthy controls (CTR) for comprehensive bioinformatics analysis. Comparative analysis with CTR revealed 25 up-regulated genes and 291 down-regulated genes in AD. Those down-regulated genes were notably enriched in processes related to the transmission and transport of synaptic signals. Intriguingly, 27 differentially expressed genes implicated in AD were also correlated with the Braak stage, establishing a connection with various immune cell types that exhibit differences in AD, including cytotoxic T cells, neutrophils, CD4 T cells, Th1, Th2, and Tfh. Significantly, a Cox model, constructed using nine feature genes, effectively stratified AD samples (HR = 2.72, 95% CI 1.94 ~ 3.81, P = 3.6e-10), highlighting their promising potential for risk assessment. In conclusion, our investigation sheds light on novel genes intricately linked to the onset and progression of AD, offering potential biomarkers for the early detection of this debilitating condition. This study contributes valuable insights toward enhancing the strategies for preventing and treating AD.
Collapse
Affiliation(s)
- Jie Li
- School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Lingfang Li
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shanshan Cai
- School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Kun Song
- Department of Gastrointestinal Surgery & National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Shenghui Hu
- Department of Orthopaedics, Xiangya Second Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Lamisa AB, Ahammad I, Bhattacharjee A, Hossain MU, Ishtiaque A, Chowdhury ZM, Das KC, Salimullah M, Keya CA. A meta-analysis of bulk RNA-seq datasets identifies potential biomarkers and repurposable therapeutics against Alzheimer's disease. Sci Rep 2024; 14:24717. [PMID: 39433822 PMCID: PMC11494203 DOI: 10.1038/s41598-024-75431-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Alzheimer's disease (AD) poses a major challenge due to its impact on the elderly population and the lack of effective early diagnosis and treatment options. In an effort to address this issue, a study focused on identifying potential biomarkers and therapeutic agents for AD was carried out. Using RNA-Seq data from AD patients and healthy individuals, 12 differentially expressed genes (DEGs) were identified, with 9 expressing upregulation (ISG15, HRNR, MTATP8P1, MTCO3P12, DTHD1, DCX, ST8SIA2, NNAT, and PCDH11Y) and 3 expressing downregulation (LTF, XIST, and TTR). Among them, TTR exhibited the lowest gene expression profile. Interestingly, functional analysis tied TTR to amyloid fiber formation and neutrophil degranulation through enrichment analysis. These findings suggested the potential of TTR as a diagnostic biomarker for AD. Additionally, druggability analysis revealed that the FDA-approved drug Levothyroxine might be effective against the Transthyretin protein encoded by the TTR gene. Molecular docking and dynamics simulation studies of Levothyroxine and Transthyretin suggested that this drug could be repurposed to treat AD. However, additional studies using in vitro and in vivo models are necessary before these findings can be applied in clinical applications.
Collapse
Affiliation(s)
- Anika Bushra Lamisa
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka, 1229, Bangladesh
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Savar, Dhaka, 1349, Ashulia, Bangladesh
| | - Ishtiaque Ahammad
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Savar, Dhaka, 1349, Ashulia, Bangladesh
| | - Arittra Bhattacharjee
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Savar, Dhaka, 1349, Ashulia, Bangladesh
| | - Mohammad Uzzal Hossain
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Savar, Dhaka, 1349, Ashulia, Bangladesh
| | - Ahmed Ishtiaque
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Zeshan Mahmud Chowdhury
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Savar, Dhaka, 1349, Ashulia, Bangladesh
| | - Keshob Chandra Das
- Molecular Biotechnology Division, National Institute of Biotechnology, Ganakbari, Savar, Dhaka, 1349, Ashulia, Bangladesh
| | - Md Salimullah
- Molecular Biotechnology Division, National Institute of Biotechnology, Ganakbari, Savar, Dhaka, 1349, Ashulia, Bangladesh
| | - Chaman Ara Keya
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka, 1229, Bangladesh.
| |
Collapse
|
4
|
Shen Y, Zhu W, Li S, Zhang Z, Zhang J, Li M, Zheng W, Wang D, Zhong Y, Li M, Zheng H, Du J. Integrated analyses of 5 mC, 5hmC methylation and gene expression reveal pathology-associated AKT3 gene and potential biomarkers for Alzheimer's disease. J Psychiatr Res 2024; 178:367-377. [PMID: 39197298 DOI: 10.1016/j.jpsychires.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/18/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024]
Abstract
AIMS 5 mC methylation and hydroxymethylation (5hmC) are associated with Alzheimer's disease (AD). However, previous studies were limited by the absence of a 5hmC calculation. This study aims to find AD associated predictors and potential therapeutic chemicals using bioinformatics approach integrating 5 mC, 5hmC, and expression changes, and an AD mouse model. METHODS Gene expression microarray and 5 mC and 5hmC sequencing datasets were downloaded from GEO repository. 142 AD and 52 normal entorhinal cortex specimens were enrolled. Data from oxidative bisulfite sequencing (oxBS)-treated samples, which represent only 5 mC, were used to calculate 5hmC level. Functional analyses, random forest supervised classification and methylation validation were applied. Potential chemicals were predicted by CMap. Morris water maze, Y maze and novel object recognition behavior tests were performed using FAD4T AD mice model. Cortex and hippocampus tissues were isolated for immunohistochemical staining. RESULTS C1QTNF5, UBD, ZFP106, NEDD1, AKT3, and MBP genes involving 13 promoter CpG sites with 5mc, 5hmC methylation and expression difference were identified. AKT3 and MBP were down-regulated in both patients and mouse model. Three CpG sites in AKT3 and MBP showed significant methylation difference on validation. FAD4T AD mice showed recession in brain functions and lower AKT3 expression in both cortex and hippocampus. Ten chemicals were predicted as potential treatments for AD. CONCLUSIONS AKT3 and MBP may be associated with AD pathology and could serve as biomarkers. The ten predicted chemicals might offer new therapeutic approaches. Our findings could contribute to identifying novel markers and advancing the understanding of AD mechanisms.
Collapse
Affiliation(s)
- Yupei Shen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Weiqiang Zhu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Shuaicheng Li
- School of Computer Science, Fudan University, Shanghai Key Laboratory of Intelligent Information Processing Shanghai, China
| | - Zhaofeng Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Jian Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Mingjie Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Wei Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Difei Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Yushun Zhong
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Min Li
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Jing Du
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.
| |
Collapse
|
5
|
Grovola MR, Cullen DK. Neuropathological mRNA Expression Changes after Single Mild Traumatic Brain Injury in Pigs. Biomedicines 2024; 12:2019. [PMID: 39335533 PMCID: PMC11428889 DOI: 10.3390/biomedicines12092019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Traumatic brain injury (TBI) is a public health concern, with an estimated 42 million cases globally every year. The majority of TBIs are mild TBIs, also known as concussion, and result from the application of mechanical forces on the head. Most patients make a complete recovery and mortality is rare; therefore, studies investigating cellular changes after mild TBI in a clinical setting are limited. To address this constraint, our group utilized a pig model of closed-head rotational acceleration-induced TBI, which recreated the biomechanical loading parameters associated with concussion on a large gyrencephalic brain similar to humans. While our previous research has focused on immunohistochemical characterization of neuropathology, the current study utilized transcriptomic assays to evaluate an array of TBI-induced neurodegenerative analytes. Pigs subjected to mild TBI were survived for 3 days post-injury (DPI) (n = 3), 30 DPI (n = 3), or 1 year post-injury (YPI) (n = 3) and compared to animals undergoing a sham procedure (n = 8). RNA was isolated from whole coronal sections of fixed tissue and multiplexed on a Nanostring neuropathology panel. Differential expression analysis revealed 11 differentially expressed genes at 3 DPI versus sham, including downregulation of the synaptotagmin calcium sensor gene (SYT1), upregulation of the neurofibromin gene (NF1), and upregulation of the Alzheimer's disease-associated receptor gene (SORL1). There were no differentially expressed genes at 30 DPI or 1 YPI compared to shams. Additionally, high-magnitude undirected global significance scores (GSS) were detected at 3 DPI for chromatin modification and autophagy gene sets, and at 30 DPI for cytokine gene sets, while many dysregulated gene sets were highlighted by directed GSSs out to 1 YPI. This study adds to a growing body of literature on transcriptomic changes in a clinically relevant large animal model of closed-head TBI, which highlights potential therapeutic targets following mild TBI.
Collapse
Affiliation(s)
- Michael R Grovola
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Center for Brain Injury & Repair, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - D Kacy Cullen
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Center for Brain Injury & Repair, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Uzuner D, İlgün A, Düz E, Bozkurt FB, Çakır T. Multilayer Analysis of RNA Sequencing Data in Alzheimer's Disease to Unravel Molecular Mysteries. ADVANCES IN NEUROBIOLOGY 2024; 41:219-246. [PMID: 39589716 DOI: 10.1007/978-3-031-69188-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Alzheimer's disease (AD) is a complex disease, and numerous cellular events may be involved in etiology. RNAseq-based transcriptome data hold multilayer information content, which could be crucial in unraveling molecular mysteries of AD. It enables quantification of gene expression levels, identification of genomic variants, and elucidation of splicing anomalies such as exon skipping and intron retention. Additional integration of this information into protein-protein interaction networks and genome-scale metabolic models from the literature has potential to decipher functional modules and affected mechanisms for complex scenarios such as AD. In this chapter, we review the application areas of the multilayer content of RNAseq and associated integrative approaches available, with a special focus on AD.
Collapse
Affiliation(s)
- Dilara Uzuner
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Atılay İlgün
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Elif Düz
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Fatma Betül Bozkurt
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Tunahan Çakır
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| |
Collapse
|
7
|
Maiese K. The impact of aging and oxidative stress in metabolic and nervous system disorders: programmed cell death and molecular signal transduction crosstalk. Front Immunol 2023; 14:1273570. [PMID: 38022638 PMCID: PMC10663950 DOI: 10.3389/fimmu.2023.1273570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Life expectancy is increasing throughout the world and coincides with a rise in non-communicable diseases (NCDs), especially for metabolic disease that includes diabetes mellitus (DM) and neurodegenerative disorders. The debilitating effects of metabolic disorders influence the entire body and significantly affect the nervous system impacting greater than one billion people with disability in the peripheral nervous system as well as with cognitive loss, now the seventh leading cause of death worldwide. Metabolic disorders, such as DM, and neurologic disease remain a significant challenge for the treatment and care of individuals since present therapies may limit symptoms but do not halt overall disease progression. These clinical challenges to address the interplay between metabolic and neurodegenerative disorders warrant innovative strategies that can focus upon the underlying mechanisms of aging-related disorders, oxidative stress, cell senescence, and cell death. Programmed cell death pathways that involve autophagy, apoptosis, ferroptosis, and pyroptosis can play a critical role in metabolic and neurodegenerative disorders and oversee processes that include insulin resistance, β-cell function, mitochondrial integrity, reactive oxygen species release, and inflammatory cell activation. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), AMP activated protein kinase (AMPK), and Wnt1 inducible signaling pathway protein 1 (WISP1) are novel targets that can oversee programmed cell death pathways tied to β-nicotinamide adenine dinucleotide (NAD+), nicotinamide, apolipoprotein E (APOE), severe acute respiratory syndrome (SARS-CoV-2) exposure with coronavirus disease 2019 (COVID-19), and trophic factors, such as erythropoietin (EPO). The pathways of programmed cell death, SIRT1, AMPK, and WISP1 offer exciting prospects for maintaining metabolic homeostasis and nervous system function that can be compromised during aging-related disorders and lead to cognitive impairment, but these pathways have dual roles in determining the ultimate fate of cells and organ systems that warrant thoughtful insight into complex autofeedback mechanisms.
Collapse
Affiliation(s)
- Kenneth Maiese
- Innovation and Commercialization, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
8
|
Farhadieh ME, Ghaedi K. Analyzing alternative splicing in Alzheimer's disease postmortem brain: a cell-level perspective. Front Mol Neurosci 2023; 16:1237874. [PMID: 37799732 PMCID: PMC10548223 DOI: 10.3389/fnmol.2023.1237874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/01/2023] [Indexed: 10/07/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with no effective cure that attacks the brain's cells resulting in memory loss and changes in behavior and language skills. Alternative splicing is a highly regulated process influenced by specific cell types and has been implicated in age-related disorders such as neurodegenerative diseases. A comprehensive detection of alternative splicing events (ASEs) at the cellular level in postmortem brain tissue can provide valuable insights into AD pathology. Here, we provided cell-level ASEs in postmortem brain tissue by employing bioinformatics pipelines on a bulk RNA sequencing study sorted by cell types and two single-cell RNA sequencing studies from the prefrontal cortex. This comprehensive analysis revealed previously overlooked splicing and expression changes in AD patient brains. Among the observed alterations were changed in the splicing and expression of transcripts associated with chaperones, including CLU in astrocytes and excitatory neurons, PTGDS in astrocytes and endothelial cells, and HSP90AA1 in microglia and tauopathy-afflicted neurons, which were associated with differential expression of the splicing factor DDX5. In addition, novel, unknown transcripts were altered, and structural changes were observed in lncRNAs such as MEG3 in neurons. This work provides a novel strategy to identify the notable ASEs at the cell level in neurodegeneration, which revealed cell type-specific splicing changes in AD. This finding may contribute to interpreting associations between splicing and neurodegenerative disease outcomes.
Collapse
Affiliation(s)
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
9
|
RNAseq Analysis of FABP4 Knockout Mouse Hippocampal Transcriptome Suggests a Role for WNT/β-Catenin in Preventing Obesity-Induced Cognitive Impairment. Int J Mol Sci 2023; 24:ijms24043381. [PMID: 36834799 PMCID: PMC9961923 DOI: 10.3390/ijms24043381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Microglial fatty-acid binding protein 4 (FABP4) is a regulator of neuroinflammation. We hypothesized that the link between lipid metabolism and inflammation indicates a role for FABP4 in regulating high fat diet (HFD)-induced cognitive decline. We have previously shown that obese FABP4 knockout mice exhibit decreased neuroinflammation and cognitive decline. FABP4 knockout and wild type mice were fed 60% HFD for 12 weeks starting at 15 weeks old. Hippocampal tissue was dissected and RNA-seq was performed to measure differentially expressed transcripts. Reactome molecular pathway analysis was utilized to examine differentially expressed pathways. Results showed that HFD-fed FABP4 knockout mice have a hippocampal transcriptome consistent with neuroprotection, including associations with decreased proinflammatory signaling, ER stress, apoptosis, and cognitive decline. This is accompanied by an increase in transcripts upregulating neurogenesis, synaptic plasticity, long-term potentiation, and spatial working memory. Pathway analysis revealed that mice lacking FABP4 had changes in metabolic function that support reduction in oxidative stress and inflammation, and improved energy homeostasis and cognitive function. Analysis suggested a role for WNT/β-Catenin signaling in the protection against insulin resistance, alleviating neuroinflammation and cognitive decline. Collectively, our work shows that FABP4 represents a potential target in alleviating HFD-induced neuroinflammation and cognitive decline and suggests a role for WNT/β-Catenin in this protection.
Collapse
|
10
|
Bahado-Singh RO, Radhakrishna U, Gordevičius J, Aydas B, Yilmaz A, Jafar F, Imam K, Maddens M, Challapalli K, Metpally RP, Berrettini WH, Crist RC, Graham SF, Vishweswaraiah S. Artificial Intelligence and Circulating Cell-Free DNA Methylation Profiling: Mechanism and Detection of Alzheimer's Disease. Cells 2022; 11:1744. [PMID: 35681440 PMCID: PMC9179874 DOI: 10.3390/cells11111744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Despite extensive efforts, significant gaps remain in our understanding of Alzheimer’s disease (AD) pathophysiology. Novel approaches using circulating cell-free DNA (cfDNA) have the potential to revolutionize our understanding of neurodegenerative disorders. Methods: We performed DNA methylation profiling of cfDNA from AD patients and compared them to cognitively normal controls. Six Artificial Intelligence (AI) platforms were utilized for the diagnosis of AD while enrichment analysis was used to elucidate the pathogenesis of AD. Results: A total of 3684 CpGs were significantly (adj. p-value < 0.05) differentially methylated in AD versus controls. All six AI algorithms achieved high predictive accuracy (AUC = 0.949−0.998) in an independent test group. As an example, Deep Learning (DL) achieved an AUC (95% CI) = 0.99 (0.95−1.0), with 94.5% sensitivity and specificity. Conclusion: We describe numerous epigenetically altered genes which were previously reported to be differentially expressed in the brain of AD sufferers. Genes identified by AI to be the best predictors of AD were either known to be expressed in the brain or have been previously linked to AD. We highlight enrichment in the Calcium signaling pathway, Glutamatergic synapse, Hedgehog signaling pathway, Axon guidance and Olfactory transduction in AD sufferers. To the best of our knowledge, this is the first reported genome-wide DNA methylation study using cfDNA to detect AD.
Collapse
Affiliation(s)
- Ray O. Bahado-Singh
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Royal Oak, MI 48309, USA; (R.O.B.-S.); (A.Y.); (S.F.G.)
- Department of Obstetrics and Gynecology, Beaumont Health, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (F.J.); (K.C.)
| | - Uppala Radhakrishna
- Department of Obstetrics and Gynecology, Beaumont Health, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (F.J.); (K.C.)
| | - Juozas Gordevičius
- Vugene, LLC, 625 Kenmoor Ave Suite 301 PMB 96578, Grand Rapids, MI 49546, USA;
| | - Buket Aydas
- Department of Care Management Analytics, Blue Cross Blue Shield of Michigan, Detroit, MI 48226, USA;
| | - Ali Yilmaz
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Royal Oak, MI 48309, USA; (R.O.B.-S.); (A.Y.); (S.F.G.)
- Department of Alzheimer’s Disease Research, Beaumont Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA
| | - Faryal Jafar
- Department of Obstetrics and Gynecology, Beaumont Health, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (F.J.); (K.C.)
| | - Khaled Imam
- Department of Internal Medicine, Beaumont Health, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (K.I.); (M.M.)
| | - Michael Maddens
- Department of Internal Medicine, Beaumont Health, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (K.I.); (M.M.)
| | - Kshetra Challapalli
- Department of Obstetrics and Gynecology, Beaumont Health, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (F.J.); (K.C.)
| | - Raghu P. Metpally
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA 17821, USA; (R.P.M.); (W.H.B.)
| | - Wade H. Berrettini
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA 17821, USA; (R.P.M.); (W.H.B.)
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Richard C. Crist
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Stewart F. Graham
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Royal Oak, MI 48309, USA; (R.O.B.-S.); (A.Y.); (S.F.G.)
- Department of Obstetrics and Gynecology, Beaumont Health, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (F.J.); (K.C.)
- Department of Alzheimer’s Disease Research, Beaumont Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA
| | - Sangeetha Vishweswaraiah
- Department of Obstetrics and Gynecology, Beaumont Health, 3601 W. 13 Mile Road, Royal Oak, MI 48073, USA; (F.J.); (K.C.)
| |
Collapse
|
11
|
Transcriptional Profiling of Hippocampus Identifies Network Alterations in Alzheimer’s Disease. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by rapid brain cell degeneration affecting different areas of the brain. Hippocampus is one of the earliest involved brain regions in the disease. Modern technologies based on high-throughput data have identified transcriptional profiling of several neurological diseases, including AD, for a better comprehension of genetic mechanisms of the disease. In this study, we investigated differentially expressed genes (DEGs) from six Gene Expression Omnibus (GEO) datasets of hippocampus of AD patients. The identified DEGs were submitted to Weighted correlation network analysis (WGCNA) and ClueGo to explore genes with a higher degree centrality and to comprehend their biological role. Subsequently, MCODE was used to identify subnetworks of interconnected DEGs. Our study found 40 down-regulated genes and 36 up-regulated genes as consensus DEGs. Analysis of the co-expression network revealed ACOT7, ATP8A2, CDC42, GAD1, GOT1, INA, NCALD, and WWTR1 to be genes with a higher degree centrality. ClueGO revealed the pathways that were mainly enriched, such as clathrin coat assembly, synaptic vesicle endocytosis, and DNA damage response signal transduction by p53 class mediator. In addition, we found a subnetwork of 12 interconnected genes (AMPH, CA10, CALY, NEFL, SNAP25, SNAP91, SNCB, STMN2, SV2B, SYN2, SYT1, and SYT13). Only CA10 and CALY are targets of known drugs while the others could be potential novel drug targets.
Collapse
|
12
|
Louros N, Ramakers M, Michiels E, Konstantoulea K, Morelli C, Garcia T, Moonen N, D'Haeyer S, Goossens V, Thal DR, Audenaert D, Rousseau F, Schymkowitz J. Mapping the sequence specificity of heterotypic amyloid interactions enables the identification of aggregation modifiers. Nat Commun 2022; 13:1351. [PMID: 35292653 PMCID: PMC8924238 DOI: 10.1038/s41467-022-28955-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Heterotypic amyloid interactions between related protein sequences have been observed in functional and disease amyloids. While sequence homology seems to favour heterotypic amyloid interactions, we have no systematic understanding of the structural rules determining such interactions nor whether they inhibit or facilitate amyloid assembly. Using structure-based thermodynamic calculations and extensive experimental validation, we performed a comprehensive exploration of the defining role of sequence promiscuity in amyloid interactions. Using tau as a model system we demonstrate that proteins with local sequence homology to tau amyloid nucleating regions can modify fibril nucleation, morphology, assembly and spreading of aggregates in cultured cells. Depending on the type of mutation such interactions inhibit or promote aggregation in a manner that can be predicted from structure. We find that these heterotypic amyloid interactions can result in the subcellular mis-localisation of these proteins. Moreover, equilibrium studies indicate that the critical concentration of aggregation is altered by heterotypic interactions. Our findings suggest a structural mechanism by which the proteomic background can modulate the aggregation propensity of amyloidogenic proteins and we discuss how such sequence-specific proteostatic perturbations could contribute to the selective cellular susceptibility of amyloid disease progression. In this work, Louros et al. uncover a rule book for interactions of amyloids with other proteins. This grammar was shown to promote cellular spreading of tau aggregates in cells, but can also be harvested to develop structure-based aggregation blockers.
Collapse
Affiliation(s)
- Nikolaos Louros
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Meine Ramakers
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Emiel Michiels
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Katerina Konstantoulea
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Chiara Morelli
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Teresa Garcia
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Nele Moonen
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Sam D'Haeyer
- VIB Screening Core, Ghent, Belgium.,Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Vera Goossens
- VIB Screening Core, Ghent, Belgium.,Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Dietmar Rudolf Thal
- KU Leuven, Leuven Brain Institute, 3000, Leuven, Belgium.,Laboratory for Neuropathology, KU Leuven, and Department of Pathology, UZ Leuven, 3000, Leuven, Belgium
| | - Dominique Audenaert
- VIB Screening Core, Ghent, Belgium.,Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium. .,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium. .,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
13
|
Li JZ, Hao XH, Wu HP, Li M, Liu XM, Wu ZB. An enriched environment delays the progression from mild cognitive impairment to Alzheimer's disease in senescence-accelerated mouse prone 8 mice. Exp Ther Med 2021; 22:1320. [PMID: 34630674 PMCID: PMC8495563 DOI: 10.3892/etm.2021.10755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022] Open
Abstract
A previous study demonstrated that middle-aged (5-6 months of age) senescence-accelerated mouse prone 8 (SAMP8) mice can be used as animal models of mild cognitive impairment (MCI). An enriched environment (EE) can mitigate cognitive decline and decrease the pathological changes associated with various neurodegenerative diseases. In the present study, the learning-memory abilities of SAMP8 mice during the MCI phase (5 months of age) was evaluated and neuropathological changes in the hippocampus were examined after the mice were exposed to an EE for 60 days. In the Morris water maze test, EE-exposed mice demonstrated significantly decreased escape latency and increased time spent in the target quadrant and number of platform crossings compared with control mice. Terminal deoxynucleotidyl transferase dUTP nick end labeling and Nissl staining showed that EE-exposed mice had reduced neuronal apoptosis and increased number of surviving neurons compared with control mice. Golgi staining, transmission electron microscopy, and immunohistochemical staining demonstrated that EE-exposed mice exhibited increased dendritic spine densities among secondary and tertiary apical dendrites; increases in synaptic numerical density, synaptic surface density, and expression of synaptophysin; and reduced deposition of amyloid-β (Aβ) and expression of amyloid-precursor protein (APP) in the hippocampal CA1 region compared with control mice. These results demonstrate that EE exposure effectively decreases neuronal loss and regulates neuronal synaptic plasticity by reducing the expression of APP and the deposition of Aβ in the hippocampal CA1 region, thereby mitigating cognitive decline in SAMP8 mice during the MCI phase and delaying the progression from MCI to Alzheimer's disease.
Collapse
Affiliation(s)
- Jian-Zhong Li
- Department of Human Anatomy, Changzhi Medical College, Changzhi, Shangxi 046000, P.R. China
| | - Xing-Hua Hao
- Department of Clinical Psychology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shangxi 046000, P.R. China
| | - Hai-Ping Wu
- Department of Human Anatomy, Changzhi Medical College, Changzhi, Shangxi 046000, P.R. China
| | - Ming Li
- Department of Human Anatomy, Changzhi Medical College, Changzhi, Shangxi 046000, P.R. China
| | - Xue-Min Liu
- Department of Human Anatomy, Changzhi Medical College, Changzhi, Shangxi 046000, P.R. China
| | - Zhi-Bing Wu
- Department of Human Anatomy, Changzhi Medical College, Changzhi, Shangxi 046000, P.R. China
| |
Collapse
|
14
|
Rybak-Wolf A, Plass M. RNA Dynamics in Alzheimer's Disease. Molecules 2021; 26:5113. [PMID: 34500547 PMCID: PMC8433936 DOI: 10.3390/molecules26175113] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder that heavily burdens healthcare systems worldwide. There is a significant requirement to understand the still unknown molecular mechanisms underlying AD. Current evidence shows that two of the major features of AD are transcriptome dysregulation and altered function of RNA binding proteins (RBPs), both of which lead to changes in the expression of different RNA species, including microRNAs (miRNAs), circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and messenger RNAs (mRNAs). In this review, we will conduct a comprehensive overview of how RNA dynamics are altered in AD and how this leads to the differential expression of both short and long RNA species. We will describe how RBP expression and function are altered in AD and how this impacts the expression of different RNA species. Furthermore, we will also show how changes in the abundance of specific RNA species are linked to the pathology of AD.
Collapse
Affiliation(s)
- Agnieszka Rybak-Wolf
- Max Delbrück Center for Molecular Medicine (MDC), Berlin Institute for Medical Systems Biology (BIMSB), 10115 Berlin, Germany
| | - Mireya Plass
- Gene Regulation of Cell Identity, Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908 Barcelona, Spain
- Program for Advancing Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet del Llobregat, 08908 Barcelona, Spain
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
15
|
Hark TJ, Rao NR, Castillon C, Basta T, Smukowski S, Bao H, Upadhyay A, Bomba-Warczak E, Nomura T, O'Toole ET, Morgan GP, Ali L, Saito T, Guillermier C, Saido TC, Steinhauser ML, Stowell MHB, Chapman ER, Contractor A, Savas JN. Pulse-Chase Proteomics of the App Knockin Mouse Models of Alzheimer's Disease Reveals that Synaptic Dysfunction Originates in Presynaptic Terminals. Cell Syst 2020; 12:141-158.e9. [PMID: 33326751 DOI: 10.1016/j.cels.2020.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/23/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022]
Abstract
Compromised protein homeostasis underlies accumulation of plaques and tangles in Alzheimer's disease (AD). To observe protein turnover at early stages of amyloid beta (Aβ) proteotoxicity, we performed pulse-chase proteomics on mouse brains in three genetic models of AD that knock in alleles of amyloid precursor protein (APP) prior to the accumulation of plaques and during disease progression. At initial stages of Aβ accumulation, the turnover of proteins associated with presynaptic terminals is selectively impaired. Presynaptic proteins with impaired turnover, particularly synaptic vesicle (SV)-associated proteins, have elevated levels, misfold in both a plaque-dependent and -independent manner, and interact with APP and Aβ. Concurrent with elevated levels of SV-associated proteins, we found an enlargement of the SV pool as well as enhancement of presynaptic potentiation. Together, our findings reveal that the presynaptic terminal is particularly vulnerable and represents a critical site for manifestation of initial AD etiology. A record of this paper's transparent peer review process is included in the Supplemental Information.
Collapse
Affiliation(s)
- Timothy J Hark
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nalini R Rao
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Charlotte Castillon
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tamara Basta
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Samuel Smukowski
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Huan Bao
- Department of Neuroscience and Howard Hughes Medical Institute, University of Wisconsin, Madison, WI 53706, USA; Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Arun Upadhyay
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ewa Bomba-Warczak
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Toshihiro Nomura
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Eileen T O'Toole
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Garry P Morgan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Laith Ali
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Takashi Saito
- Laboratory of Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan; Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, Nagoya, Aichi 467-8601, Japan
| | - Christelle Guillermier
- Center for NanoImaging, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA 02138, USA
| | - Takaomi C Saido
- Laboratory of Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Matthew L Steinhauser
- Center for NanoImaging, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA 02138, USA; Department of Medicine, Divisions of Genetics and Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Michael H B Stowell
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA; Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Edwin R Chapman
- Department of Neuroscience and Howard Hughes Medical Institute, University of Wisconsin, Madison, WI 53706, USA
| | - Anis Contractor
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL 60611, USA
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
16
|
Rangaswamy U, Dharshini SAP, Yesudhas D, Gromiha MM. VEPAD - Predicting the effect of variants associated with Alzheimer's disease using machine learning. Comput Biol Med 2020; 124:103933. [PMID: 32828070 DOI: 10.1016/j.compbiomed.2020.103933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/25/2020] [Accepted: 07/25/2020] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a complex and heterogeneous disease that affects neuronal cells over time and it is prevalent among all neurodegenerative diseases. Next Generation Sequencing (NGS) techniques are widely used for developing high-throughput screening methods to identify biomarkers and variants, which help early diagnosis and treatments. OBJECTIVE The primary purpose of this study is to develop a classification model using machine learning for predicting the deleterious effect of variants with respect to AD. METHODS We have constructed a set of 20,401 deleterious and 37,452 control variants from Genome-Wide Association Study (GWAS) and Genotype-Tissue Expression (GTEx) portals, respectively. Recursive feature elimination using cross-validation (RFECV) followed by a forward feature selection method was utilized to select the important features and a random forest classifier was used for distinguishing between deleterious and neutral variants. RESULTS Our method showed an accuracy of 81.21% on 10-fold cross-validation and 70.63% on a test set of 5785 variants. The same test set was used to compare the performance of CADD and FATHMM and their accuracies are in the range of 54%-62%. CONCLUSION Our model is freely available as the Variant Effect Predictor for Alzheimer's Disease (VEPAD) at http://web.iitm.ac.in/bioinfo2/vepad/. VEPAD can be used to predict the effect of new variants associated with AD.
Collapse
Affiliation(s)
- Uday Rangaswamy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - S Akila Parvathy Dharshini
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Dhanusha Yesudhas
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India; School of Computing, Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Kanagawa, 226-8503, Yokohama, Japan.
| |
Collapse
|
17
|
Bagyinszky E, Giau VV, An SA. Transcriptomics in Alzheimer's Disease: Aspects and Challenges. Int J Mol Sci 2020; 21:E3517. [PMID: 32429229 PMCID: PMC7278930 DOI: 10.3390/ijms21103517] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Although the heritability of AD is high, the knowledge of the disease-associated genes, their expression, and their disease-related pathways remain limited. Hence, finding the association between gene dysfunctions and pathological mechanisms, such as neuronal transports, APP processing, calcium homeostasis, and impairment in mitochondria, should be crucial. Emerging studies have revealed that changes in gene expression and gene regulation may have a strong impact on neurodegeneration. The mRNA-transcription factor interactions, non-coding RNAs, alternative splicing, or copy number variants could also play a role in disease onset. These facts suggest that understanding the impact of transcriptomes in AD may improve the disease diagnosis and also the therapies. In this review, we highlight recent transcriptome investigations in multifactorial AD, with emphasis on the insights emerging at their interface.
Collapse
Affiliation(s)
- Eva Bagyinszky
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam 13120, Korea;
- Department of Bionano Technology, Gachon University, Seongnam 13120, Korea
| | - Vo Van Giau
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam 13120, Korea;
- Department of Bionano Technology, Gachon University, Seongnam 13120, Korea
| | - SeongSoo A. An
- Department of Bionano Technology, Gachon University, Seongnam 13120, Korea
| |
Collapse
|
18
|
Muddapu VR, Dharshini SAP, Chakravarthy VS, Gromiha MM. Neurodegenerative Diseases - Is Metabolic Deficiency the Root Cause? Front Neurosci 2020; 14:213. [PMID: 32296300 PMCID: PMC7137637 DOI: 10.3389/fnins.2020.00213] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/26/2020] [Indexed: 01/31/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer, Parkinson, Huntington, and amyotrophic lateral sclerosis, are a prominent class of neurological diseases currently without a cure. They are characterized by an inexorable loss of a specific type of neurons. The selective vulnerability of specific neuronal clusters (typically a subcortical cluster) in the early stages, followed by the spread of the disease to higher cortical areas, is a typical pattern of disease progression. Neurodegenerative diseases share a range of molecular and cellular pathologies, including protein aggregation, mitochondrial dysfunction, glutamate toxicity, calcium load, proteolytic stress, oxidative stress, neuroinflammation, and aging, which contribute to neuronal death. Efforts to treat these diseases are often limited by the fact that they tend to address any one of the above pathological changes while ignoring others. Lack of clarity regarding a possible root cause that underlies all the above pathologies poses a significant challenge. In search of an integrative theory for neurodegenerative pathology, we hypothesize that metabolic deficiency in certain vulnerable neuronal clusters is the common underlying thread that links many dimensions of the disease. The current review aims to present an outline of such an integrative theory. We present a new perspective of neurodegenerative diseases as metabolic disorders at molecular, cellular, and systems levels. This helps to understand a common underlying mechanism of the many facets of the disease and may lead to more promising disease-modifying therapeutic interventions. Here, we briefly discuss the selective metabolic vulnerability of specific neuronal clusters and also the involvement of glia and vascular dysfunctions. Any failure in satisfaction of the metabolic demand by the neurons triggers a chain of events that precipitate various manifestations of neurodegenerative pathology.
Collapse
Affiliation(s)
- Vignayanandam Ravindernath Muddapu
- Laboratory for Computational Neuroscience, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - S. Akila Parvathy Dharshini
- Protein Bioinformatics Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - V. Srinivasa Chakravarthy
- Laboratory for Computational Neuroscience, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - M. Michael Gromiha
- Protein Bioinformatics Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
19
|
Wijasa TS, Sylvester M, Brocke-Ahmadinejad N, Schwartz S, Santarelli F, Gieselmann V, Klockgether T, Brosseron F, Heneka MT. Quantitative proteomics of synaptosome S-nitrosylation in Alzheimer's disease. J Neurochem 2019; 152:710-726. [PMID: 31520481 DOI: 10.1111/jnc.14870] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/23/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022]
Abstract
Increasing evidence suggests that both synaptic loss and neuroinflammation constitute early pathologic hallmarks of Alzheimer's disease. A downstream event during inflammatory activation of microglia and astrocytes is the induction of nitric oxide synthase type 2, resulting in an increased release of nitric oxide and the post-translational S-nitrosylation of protein cysteine residues. Both early events, inflammation and synaptic dysfunction, could be connected if this excess nitrosylation occurs on synaptic proteins. In the long term, such changes could provide new insight into patho-mechanisms as well as biomarker candidates from the early stages of disease progression. This study investigated S-nitrosylation in synaptosomal proteins isolated from APP/PS1 model mice in comparison to wild type and NOS2-/- mice, as well as human control, mild cognitive impairment and Alzheimer's disease brain tissues. Proteomics data were obtained using an established protocol utilizing an isobaric mass tag method, followed by nanocapillary high performance liquid chromatography tandem mass spectrometry. Statistical analysis identified the S-nitrosylation sites most likely derived from an increase in nitric oxide (NO) in dependence of presence of AD pathology, age and the key enzyme NOS2. The resulting list of candidate proteins is discussed considering function, previous findings in the context of neurodegeneration, and the potential for further validation studies.
Collapse
Affiliation(s)
| | - Marc Sylvester
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | | | - Stephanie Schwartz
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | | | - Volkmar Gieselmann
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Thomas Klockgether
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurology, University of Bonn, Bonn, Germany
| | | | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
20
|
Davis S, Scott C, Ansorge O, Fischer R. Development of a Sensitive, Scalable Method for Spatial, Cell-Type-Resolved Proteomics of the Human Brain. J Proteome Res 2019; 18:1787-1795. [PMID: 30768908 PMCID: PMC6456870 DOI: 10.1021/acs.jproteome.8b00981] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
While nearly comprehensive proteome
coverage can be achieved from
bulk tissue or cultured cells, the data usually lacks spatial resolution.
As a result, tissue based proteomics averages protein abundance across
multiple cell types and/or localizations. With proteomics platforms
lacking sensitivity and throughput to undertake deep single-cell proteome
studies in order to resolve spatial or cell type dependent protein
expression gradients within tissue, proteome analysis has been combined
with sorting techniques to enrich for certain cell populations. However,
the spatial resolution and context is lost after cell sorting. Here,
we report an optimized method for the proteomic analysis of neurons
isolated from post-mortem human brain by laser capture microdissection
(LCM). We tested combinations of sample collection methods, lysis
buffers and digestion methods to maximize the number of identifications
and quantitative performance, identifying 1500 proteins from 60 000
μm2 of 10 μm thick cerebellar molecular layer
with excellent reproducibility. To demonstrate the ability of our
workflow to resolve cell type specific proteomes within human brain
tissue, we isolated sets of individual Betz and Purkinje cells. Both
neuronal cell types are involved in motor coordination and were found
to express highly specific proteomes to a depth of 2800 to 3600 proteins.
Collapse
Affiliation(s)
- Simon Davis
- Target Discovery Institute, Nuffield Department of Medicine , University of Oxford , Roosevelt Drive , Oxford , OX3 7FZ , U.K
| | - Connor Scott
- Academic Unit of Neuropathology, Nuffield Department of Clinical Neurosciences , University of Oxford, John Radcliffe Hospital , Oxford , OX3 9DU , U.K
| | - Olaf Ansorge
- Academic Unit of Neuropathology, Nuffield Department of Clinical Neurosciences , University of Oxford, John Radcliffe Hospital , Oxford , OX3 9DU , U.K
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine , University of Oxford , Roosevelt Drive , Oxford , OX3 7FZ , U.K
| |
Collapse
|
21
|
Jackson TC, Kochanek PM. A New Vision for Therapeutic Hypothermia in the Era of Targeted Temperature Management: A Speculative Synthesis. Ther Hypothermia Temp Manag 2019; 9:13-47. [PMID: 30802174 PMCID: PMC6434603 DOI: 10.1089/ther.2019.0001] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Three decades of animal studies have reproducibly shown that hypothermia is profoundly cerebroprotective during or after a central nervous system (CNS) insult. The success of hypothermia in preclinical acute brain injury has not only fostered continued interest in research on the classic secondary injury mechanisms that are prevented or blunted by hypothermia but has also sparked a surge of new interest in elucidating beneficial signaling molecules that are increased by cooling. Ironically, while research into cold-induced neuroprotection is enjoying newfound interest in chronic neurodegenerative disease, conversely, the scope of the utility of therapeutic hypothermia (TH) across the field of acute brain injury is somewhat controversial and remains to be fully defined. This has led to the era of Targeted Temperature Management, which emphasizes a wider range of temperatures (33–36°C) showing benefit in acute brain injury. In this comprehensive review, we focus on our current understandings of the novel neuroprotective mechanisms activated by TH, and discuss the critical importance of developmental age germane to its clinical efficacy. We review emerging data on four cold stress hormones and three cold shock proteins that have generated new interest in hypothermia in the field of CNS injury, to create a framework for new frontiers in TH research. We make the case that further elucidation of novel cold responsive pathways might lead to major breakthroughs in the treatment of acute brain injury, chronic neurological diseases, and have broad potential implications for medicines of the distant future, including scenarios such as the prevention of adverse effects of long-duration spaceflight, among others. Finally, we introduce several new phrases that readily summarize the essence of the major concepts outlined by this review—namely, Ultramild Hypothermia, the “Responsivity of Cold Stress Pathways,” and “Hypothermia in a Syringe.”
Collapse
Affiliation(s)
- Travis C Jackson
- 1 John G. Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania.,2 Department of Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Patrick M Kochanek
- 1 John G. Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania.,2 Department of Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|